1
|
Cracchiolo G, Baram A, Capo G, Rossini Z, Riva M, Fanti A, De Robertis M, Fornari M, Pessina F, Brembilla C. The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment. Brain Sci 2024; 14:1228. [PMID: 39766427 PMCID: PMC11675030 DOI: 10.3390/brainsci14121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Congenital craniovertebral junction anomalies (CCVJAs) encompass a diverse range of conditions characterized by distorted anatomy and significant variation in the pathways of neurovascular structures. This study aims to assess the safety and feasibility of tailoring posterior fixation for CCVJAs through intraoperative CT-based navigation. METHODS An in-depth retrospective analysis was conducted on eight patients diagnosed with CCVJAs (excluding Arnold-Chiari malformation). These patients underwent posterior fixation/arthrodesis facilitated by intraoperative CT-based navigation. The analysis included an examination of the fixation strategies, complication rates, length of stay, post-operative complications, and success of arthrodesis. Additionally, a comprehensive literature review was undertaken to contextualize and compare our findings. RESULTS Patients undergoing CVJ posterior fixation with intraoperative CT-based navigation exhibited a flawless record, devoid of complications related to the damage to neurovascular structures, as well as any instances of screw misposition, pullout, or breakage (0 out of 36 total screws). Furthermore, the entire cohort demonstrated a 100% arthrodesis rate. None of the patients required treatment with an occipital plate. CONCLUSIONS The incorporation of intraoperative CT-based navigation proves to be an invaluable asset in executing CVJ posterior fixation within the context of CCVJAs. This technology facilitates the customization of posterior constructs, a crucial adaptation required to navigate the anatomical challenges posed by these anomalies. The secure placement of screws into the occipital condyles, made possible by navigation, has proven highly effective in achieving CVJ fixation, obviating the need for an occipital plate. This technological leap represents a significant advancement, enhancing the safety, precision, and overall outcomes for patients undergoing this surgical procedure, while concurrently reducing the necessity for more invasive and morbid interventions.
Collapse
Affiliation(s)
- Giorgio Cracchiolo
- School of Medicine and Surgery, University of Milano-Bicocca, 24127 Bergamo, Bergamo, Italy;
- Department of Neurosurgery, ASST Papa Giovanni XXIII, 24127 Bergamo, Bergamo, Italy;
| | - Ali Baram
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| | - Gabriele Capo
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| | - Zefferino Rossini
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| | - Marco Riva
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Andrea Fanti
- Department of Neurosurgery, ASST Papa Giovanni XXIII, 24127 Bergamo, Bergamo, Italy;
| | - Mario De Robertis
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| | - Maurizio Fornari
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| | - Federico Pessina
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Carlo Brembilla
- Department of Neurosurgery, IRCSS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy; (A.B.); (G.C.); (Z.R.); (M.R.); (M.D.R.); (M.F.); (F.P.)
| |
Collapse
|
2
|
Cai D, Wang X, Hu W, Mo J, Liu H, Li X, Zheng X, Ding X, An J, Hua Y, Zhang J, Zhang K, Zhang C. The 3-Dimensional Intelligent Structured Light Technique: A New Registration Method in Stereotactic Neurosurgery. Oper Neurosurg (Hagerstown) 2024; 27:566-572. [PMID: 38687040 DOI: 10.1227/ons.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Surface-based facial scanning registration emerged as an essential registration method in the robot-assisted neuronavigation surgery, providing a marker-free way to align a patient's facial surface with the imaging data. The 3-dimensional (3D) structured light was developed as an advanced registration method based on surface-based facial scanning registration. We aspire to introduce the 3D structured light as a new registration method in the procedure of the robot-assisted neurosurgery and assess the accuracy, efficiency, and safety of this method by analyzing the relative operative results. METHODS We analyzed the results of 47 patients who underwent Ommaya reservoir implantation (n = 17) and stereotactic biopsy (n = 30) assisted by 3D structured light at our hospital from January 2022 to May 2023. The accuracy and additional operative results were analyzed. RESULTS For the Ommaya reservoir implantation, the target point error was 3.2 ± 2.2 mm and the entry point error was 3.3 ± 2.4 mm, while the operation duration was 35.8 ± 8.3 minutes. For the stereotactic biopsy, the target point error was 2.3 ± 1.3 mm and the entry point error was 2.7 ± 1.2 mm, while the operation duration was 24.5 ± 6.3 minutes. CONCLUSION The 3D structured light technique reduces the patients' discomfort and offers the advantage of a simpler procedure, which can improve the clinical efficiency with the sufficient accuracy and safety to meet the clinical requirements of the puncture and navigation.
Collapse
Affiliation(s)
- Du Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Wenhan Hu
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xixi Zheng
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xiaosheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Juan An
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Yichun Hua
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| |
Collapse
|
3
|
Taleb A, Guigou C, Leclerc S, Lalande A, Bozorg Grayeli A. Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges. J Clin Med 2023; 12:5398. [PMID: 37629441 PMCID: PMC10455300 DOI: 10.3390/jcm12165398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures. It establishes a correspondence between the patient's preoperative imaging and the intraoperative data. When it comes to the head-and-neck region, the presence of many sensitive structures such as the central nervous system or the neurosensory organs requires a millimetric precision. This review allows evaluating the characteristics and the performances of different registration methods in the head-and-neck region used in the operation room from the perspectives of accuracy, invasiveness, and processing times. Our work led to the conclusion that invasive marker-based methods are still considered as the gold standard of image-to-patient registration. The surface-based methods are recommended for faster procedures and applied on the surface tissues especially around the eyes. In the near future, computer vision technology is expected to enhance these systems by reducing human errors and cognitive load in the operating room.
Collapse
Affiliation(s)
- Ali Taleb
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Caroline Guigou
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| | - Sarah Leclerc
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
| | - Alain Lalande
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Medical Imaging Department, University Hospital of Dijon, 21000 Dijon, France
| | - Alexis Bozorg Grayeli
- Team IFTIM, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), Univ. Bourgogne Franche-Comté, 21000 Dijon, France; (C.G.); (S.L.); (A.L.); (A.B.G.)
- Otolaryngology Department, University Hospital of Dijon, 21000 Dijon, France
| |
Collapse
|
4
|
de Geer AF, van Alphen MJA, Zuur CL, Loeve AJ, van Veen RLP, Karakullukcu MB. A hybrid registration method using the mandibular bone surface for electromagnetic navigation in mandibular surgery. Int J Comput Assist Radiol Surg 2022; 17:1343-1353. [PMID: 35441961 DOI: 10.1007/s11548-022-02610-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To utilize navigated mandibular (reconstructive) surgery, accurate registration of the preoperative CT scan with the actual patient in the operating room (OR) is required. In this phantom study, the feasibility of a noninvasive hybrid registration method is assessed. This method consists of a point registration with anatomic landmarks for initialization and a surface registration using the bare mandibular bone surface for optimization. METHODS Three mandible phantoms with reference notches on two osteotomy planes were 3D printed. An electromagnetic tracking system in combination with 3D Slicer software was used for navigation. Different configurations, i.e., different surface point areas and number and configuration of surface points, were tested with a dentate phantom (A) in a metal-free environment. To simulate the intraoperative environment and different anatomies, the registration procedure was also performed with an OR bed using the dentate phantom and two (partially) edentulous phantoms with atypical anatomy (B and C). The accuracy of the registration was calculated using the notches on the osteotomy planes and was expressed as the target registration error (TRE). TRE values of less than 2.0 mm were considered as clinically acceptable. RESULTS In all experiments, the mean TRE was less than 2.0 mm. No differences were found using different surface point areas or number or configurations of surface points. Registration accuracy in the simulated intraoperative setting was-mean (SD)-0.96 (0.22), 0.93 (0.26), and 1.50 (0.28) mm for phantom A, phantom B, and phantom C. CONCLUSION Hybrid registration is a noninvasive method that requires only a small area of the bare mandibular bone surface to obtain high accuracy in phantom setting. Future studies should test this method in clinical setting during actual surgery.
Collapse
Affiliation(s)
- A F de Geer
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology, Erasmus University Medical Center, Leiden, Delft, Rotterdam, The Netherlands
| | - M J A van Alphen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
| | - C L Zuur
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - A J Loeve
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - R L P van Veen
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M B Karakullukcu
- Verwelius 3D Lab, Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Is the Mirroring Technology Reliable in the Use of Computer-Aided Design for Orbital Reconstruction? Three-Dimensional Analysis of Asymmetry in the Orbits. Plast Reconstr Surg 2022; 149:453-460. [PMID: 35077421 DOI: 10.1097/prs.0000000000008735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reconstruction of the orbital area remains a challenge in many cases. The recently introduced mirroring technology provides surgeons with patient-specific information for accurate orbital reconstruction; its premise is that the three-dimensional anatomy of craniofacial bone is symmetric. The purpose of this study was to verify this premise of the mirroring technology by assessing three-dimensional asymmetry. METHODS Facial computed tomographic data of 104 patients were imported into iPlan software. Four reference points (i.e., zygomaticofrontal suture, frontomaxillary suture, infraorbital foramen, and optic canal) were set, and the three-dimensional distances from these points to the anterior nasal spine on the mirroring plane were calculated. In addition, the orbital cavity volume and the three-dimensional distances from point optic canal to the other reference points were calculated for the assessment of the orbit anatomy. Three plastic surgeons performed these processes independently. RESULTS No statistically significant difference was found in the three-dimensional distances between anterior nasal spine and the four reference points bilaterally. Also, no statistically significant difference in the three-dimensional distances between the point representing the optic canal and other reference points was detected bilaterally. Orbital cavity volume showed a mild asymmetry, but the discrepancy was acceptable for computer-aided design applications. For all reference points, the maximum value of the 95 percent CI was less than 1.4 mm. CONCLUSIONS The three-dimensional location of the orbits and the three-dimensional anatomy of the orbit were symmetric. Thus, the mirroring technology could be a reliable first step in computer-aided design, computer-assisted surgery, and navigation-assisted surgery. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
6
|
Dho YS, Park SJ, Choi H, Kim Y, Moon HC, Kim KM, Kang H, Lee EJ, Kim MS, Kim JW, Kim YH, Kim YG, Park CK. Development of an inside-out augmented reality technique for neurosurgical navigation. Neurosurg Focus 2021; 51:E21. [PMID: 34333463 DOI: 10.3171/2021.5.focus21184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE With the advancement of 3D modeling techniques and visualization devices, augmented reality (AR)-based navigation (AR navigation) is being developed actively. The authors developed a pilot model of their newly developed inside-out tracking AR navigation system. METHODS The inside-out AR navigation technique was developed based on the visual inertial odometry (VIO) algorithm. The Quick Response (QR) marker was created and used for the image feature-detection algorithm. Inside-out AR navigation works through the steps of visualization device recognition, marker recognition, AR implementation, and registration within the running environment. A virtual 3D patient model for AR rendering and a 3D-printed patient model for validating registration accuracy were created. Inside-out tracking was used for the registration. The registration accuracy was validated by using intuitive, visualization, and quantitative methods for identifying coordinates by matching errors. Fine-tuning and opacity-adjustment functions were developed. RESULTS ARKit-based inside-out AR navigation was developed. The fiducial marker of the AR model and those of the 3D-printed patient model were correctly overlapped at all locations without errors. The tumor and anatomical structures of AR navigation and the tumors and structures placed in the intracranial space of the 3D-printed patient model precisely overlapped. The registration accuracy was quantified using coordinates, and the average moving errors of the x-axis and y-axis were 0.52 ± 0.35 and 0.05 ± 0.16 mm, respectively. The gradients from the x-axis and y-axis were 0.35° and 1.02°, respectively. Application of the fine-tuning and opacity-adjustment functions was proven by the videos. CONCLUSIONS The authors developed a novel inside-out tracking-based AR navigation system and validated its registration accuracy. This technical system could be applied in the novel navigation system for patient-specific neurosurgery.
Collapse
Affiliation(s)
- Yun-Sik Dho
- 1Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | | | - Haneul Choi
- 2MEDICALIP Co. Ltd., Seoul, Republic of Korea; and
| | | | - Hyeong Cheol Moon
- 1Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Kyung Min Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Kang
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Sung Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Wook Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Hwy Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Kim
- 1Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Chul-Kee Park
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Nilius M, Nilius MH. How precise are oral splints for frameless stereotaxy in guided ear, nose, throat, and maxillofacial surgery: a cadaver study. Eur Radiol Exp 2021; 5:27. [PMID: 34195878 PMCID: PMC8245614 DOI: 10.1186/s41747-021-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Background Computer-assisted surgery optimises accuracy and serves to improve precise surgical procedures. We validated oral splints with fiducial markers by testing them against rigid bone markers. Methods We screwed twenty bone anchors as fiducial markers into different regions of a dried skull and measured the distances. After computed tomography (CT) scanning, the accuracy was evaluated by determining the markers’ position using frameless stereotaxy on a dry cadaver and indicated on the CT scan. We compared the accuracy of chairside fabricated oral splints to standard registration with bone markers immediately after fabrication and after a ten-time use. Accuracy was calculated as deviation (mean ± standard deviation). For statistical analysis, t test, Kruskal-Wallis, Tukey's, and various linear regression models, such as the Pearson's product–moment correlation coefficient, were used. Results Oral splints showed an accuracy of 0.90 mm ± 0.27 for viscerocranium, 1.10 mm ± 0.39 for skull base, and 1.45 mm ± 0.59 for neurocranium. We found an accuracy of less than 2 mm for both splints for a distance of up to 152 mm. The accuracy persisted even after ten times removing and reattaching the splints. Conclusions Oral splints offer a non-invasive indicator to improve the accuracy of image-guided surgery. The precision is dependent on the distance to the target. Up to 150-mm distance, a precision of fewer than 2 mm is possible. Dental splints provide sufficient accuracy than bone markers and may opt for higher precision combined with other non-invasive registration methods.
Collapse
Affiliation(s)
- Manfred Nilius
- NILIUSKLINIK Dortmund, Londoner Bogen 6, D-44269, Dortmund, Germany. .,Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
8
|
Machetanz K, Grimm F, Wang S, Bender B, Tatagiba M, Gharabaghi A, Naros G. Patient-to-robot registration: The fate of robot-assisted stereotaxy. Int J Med Robot 2021; 17:e2288. [PMID: 34036749 DOI: 10.1002/rcs.2288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Robot-assisted stereotaxy (RAS) promises higher stereotactic accuracy (SA) and time efficiency (TE) than frame-based stereotaxy. However, both aspects are attributed to the problem of patient-to-robot registration. OBJECTIVE To examine different registration techniques regarding their SA and TE. METHODS This study enrolled 57 patients undergoing RAS with bone fiducial registration (BFR) or laser surface registration (LSR). SA was measured by the entry point error (EPE). Additionally, predictors of SA (registration error [RegE], distance-to-registration plane [DTC]) and TE (imaging, skin-to-skin) were assessed. RESULTS The mean SA was 1.0 ± 0.8 mm. BFR increased SA by reducing RegE and DTC. In LSR, EPE depended on DTC (face and forehead) with highest accuracy for DTC ≤100 mm. CT-based LSR exerted a higher SA than MR-based LSR. In BFR, TE was confined by the additional imaging. CONCLUSION Every registration technique counteracts one of the promises of RAS. New solutions are needed to increase the acceptance of RAS in neurosurgery.
Collapse
Affiliation(s)
- Kathrin Machetanz
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Florian Grimm
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Eberhard Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Georgios Naros
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
9
|
Li W, Fan J, Li S, Tian Z, Zheng Z, Ai D, Song H, Yang J. Calibrating 3D Scanner in the Coordinate System of Optical Tracker for Image-To-Patient Registration. Front Neurorobot 2021; 15:636772. [PMID: 34054454 PMCID: PMC8160243 DOI: 10.3389/fnbot.2021.636772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional scanners have been widely applied in image-guided surgery (IGS) given its potential to solve the image-to-patient registration problem. How to perform a reliable calibration between a 3D scanner and an external tracker is especially important for these applications. This study proposes a novel method for calibrating the extrinsic parameters of a 3D scanner in the coordinate system of an optical tracker. We bound an optical marker to a 3D scanner and designed a specified 3D benchmark for calibration. We then proposed a two-step calibration method based on the pointset registration technique and nonlinear optimization algorithm to obtain the extrinsic matrix of the 3D scanner. We applied repeat scan registration error (RSRE) as the cost function in the optimization process. Subsequently, we evaluated the performance of the proposed method on a recaptured verification dataset through RSRE and Chamfer distance (CD). In comparison with the calibration method based on 2D checkerboard, the proposed method achieved a lower RSRE (1.73 mm vs. 2.10, 1.94, and 1.83 mm) and CD (2.83 mm vs. 3.98, 3.46, and 3.17 mm). We also constructed a surgical navigation system to further explore the application of the tracked 3D scanner in image-to-patient registration. We conducted a phantom study to verify the accuracy of the proposed method and analyze the relationship between the calibration accuracy and the target registration error (TRE). The proposed scanner-based image-to-patient registration method was also compared with the fiducial-based method, and TRE and operation time (OT) were used to evaluate the registration results. The proposed registration method achieved an improved registration efficiency (50.72 ± 6.04 vs. 212.97 ± 15.91 s in the head phantom study). Although the TRE of the proposed registration method met the clinical requirements, its accuracy was lower than that of the fiducial-based registration method (1.79 ± 0.17 mm vs. 0.92 ± 0.16 mm in the head phantom study). We summarized and analyzed the limitations of the scanner-based image-to-patient registration method and discussed its possible development.
Collapse
Affiliation(s)
- Wenjie Li
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Jingfan Fan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Shaowen Li
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Zhaorui Tian
- Ariemedi Medical Technology (Beijing) CO., LTD., Beijing, China
| | - Zhao Zheng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Danni Ai
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Hong Song
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
Chen F, Liu J, Zhang X, Zhang D, Liao H. Improved 3D Catheter Shape Estimation Using Ultrasound Imaging for Endovascular Navigation: A Further Study. IEEE J Biomed Health Inform 2020; 24:3616-3629. [PMID: 32966224 DOI: 10.1109/jbhi.2020.3026105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Two-dimensional fluoroscopy is the standard guidance imaging method for closed endovascular intervention. However, two-dimensional fluoroscopy lacks depth perception for the intervention catheter and causes radiation exposure for both surgeons and patients. In this paper, we extend our previous study and develop the improved three-dimensional (3D) catheter shape estimation using ultrasound imaging. In addition, we perform further quantitative evaluations of endovascular navigation. METHOD First, the catheter tracking accuracy in ultrasound images is improved by adjusting the state vector and adding direction information. Then, the 3D catheter points from the catheter tracking are further optimized based on the 3D catheter shape optimization with a high-quality sample set. Finally, the estimated 3D catheter shapes from ultrasound images are overlaid with preoperative 3D tissue structures for the intuitive endovascular navigation. RESULTS the tracking accuracy of the catheter increased by 24.39%, and the accuracy of the catheter shape optimization step also increased by approximately 17.34% compared with our previous study. Furthermore, the overall error of catheter shape estimation was further validated in the catheter intervention experiment of in vitro cardiovascular tissue and in a vivo swine, and the errors were 2.13 mm and 3.37 mm, respectively. CONCLUSION Experimental results demonstrate that the improved catheter shape estimation using ultrasound imaging is accurate and appropriate for endovascular navigation. SIGNIFICANCE Improved navigation reduces the radiation risk because it decreases use of X-ray imaging. In addition, this navigation method can also provide accurate 3D catheter shape information for endovascular surgery.
Collapse
|
11
|
Bow H, Yang X, Chotai S, Feldman M, Yu H, Englot DJ, Miga MI, Pruthi S, Dawant BM, Parker SL. Initial Experience with Using a Structured Light 3D Scanner and Image Registration to Plan Bedside Subdural Evacuating Port System Placement. World Neurosurg 2020; 137:350-356. [PMID: 32032785 DOI: 10.1016/j.wneu.2020.01.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chronic subdural hematoma evacuation can be achieved in select patients through bedside placement of the Subdural Evacuation Port System (SEPS; Medtronic, Inc., Dublin, Ireland). This procedure involves drilling a burr hole at the thickest part of the hematoma. Identifying this location is often difficult, given the variable tilt of available imaging and distant anatomic landmarks. This paper evaluates the feasibility and accuracy of a bedside navigation system that relies on visible light-based 3-dimensional (3D) scanning and image registration to a pre-procedure computed tomography scan. The information provided by this system may increase accuracy of the burr hole location. METHODS In Part 1, the accuracy of this system was evaluated using a rigid 3D printed phantom head with implanted fiducials. In Part 2, the navigation system was tested on 3 patients who underwent SEPS placement. RESULTS The error in registration of this system was less than 2.5 mm when tested on a rigid 3D printed phantom head. Fiducials located in the posterior aspect of the head were difficult to reliably capture. For the 3 patients who underwent 5 SEPS placements, the distance between anticipated SEPS burr hole location based on registration and actual burr hole location was less than 1cm. CONCLUSIONS A bedside cranial navigation system based on 3D scanning and image registration has been introduced. Such a system may increase the success rate of bedside procedures, such as SEPS placement. However, technical challenges such as the ability to scan hair and practical challenges such as minimization of patient movement during scans must be overcome.
Collapse
Affiliation(s)
- Hansen Bow
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Xiaochen Yang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Silky Chotai
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Feldman
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hong Yu
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael I Miga
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Sumit Pruthi
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott L Parker
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Regional-surface-based registration for image-guided neurosurgery: effects of scan modes on registration accuracy. Int J Comput Assist Radiol Surg 2019; 14:1303-1315. [PMID: 31055765 DOI: 10.1007/s11548-019-01990-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE The conventional surface-based method only registers the facial zone with preoperative point cloud, resulting in low accuracy away from the facial area. Acquiring a point cloud of the entire head for registration can improve registration accuracy in all parts of the head. However, it takes a long time to collect a point cloud of the entire head. It may be more practical to selectively scan part of the head to ensure high registration accuracy in the surgical area of interest. In this study, we investigate the effects of different scan regions on registration errors in different target areas when using a surface-based registration method. METHODS We first evaluated the correlation between the laser scan resolution and registration accuracy to determine an appropriate scan resolution. Then, with the appropriate resolution, we explored the effects of scan modes on registration error in computer simulation experiments, phantom experiments and two clinical cases. The scan modes were designed based on different combinations of five zones of the head surface, i.e., the sphenoid-frontal zone, parietal zone, left temporal zone, right temporal zone and occipital zone. In the phantom experiment, a handheld scanner was used to acquire a point cloud of the head. A head model containing several tumors was designed, enabling us to calculate the target registration errors deep in the brain to evaluate the effect of regional-surface-based registration. RESULT The optimal scan modes for tumors located in the sphenoid-frontal, parietal and temporal areas are mode 4 (i.e., simultaneously scanning the sphenoid-frontal zone and the temporal zone), mode 4 and mode 6 (i.e., simultaneously scanning the sphenoid-frontal zone, the temporal zone and the parietal zone), respectively. For the tumor located in the occipital area, no modes were able to achieve reliable accuracy. CONCLUSION The results show that selecting an appropriate scan resolution and scan mode can achieve reliable accuracy for use in sphenoid-frontal, parietal and temporal area surgeries while effectively reducing the operation time.
Collapse
|
13
|
Basnet BR, Alsadoon A, Withana C, Deva A, Paul M. A novel noise filtered and occlusion removal: navigational accuracy in augmented reality-based constructive jaw surgery. Oral Maxillofac Surg 2018; 22:385-401. [PMID: 30206745 DOI: 10.1007/s10006-018-0719-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Augmented reality-based constructive jaw surgery has been facing various limitations such as noise in real-time images, the navigational error of implants and jaw, image overlay error, and occlusion handling which have limited the implementation of augmented reality (AR) in corrective jaw surgery. This research aimed to improve the navigational accuracy, through noise and occlusion removal, during positioning of an implant in relation to the jaw bone to be cut or drilled. METHOD The proposed system consists of a weighting-based de-noising filter and depth mapping-based occlusion removal for removing any occluded object such as surgical tools, the surgeon's body parts, and blood. RESULTS The maxillary (upper jaw) and mandibular (lower jaw) jaw bone sample results show that the proposed method can achieve the image overlay error (video accuracy) of 0.23~0.35 mm and processing time of 8-12 frames per second compared to 0.35~0.45 mm and 6-11 frames per second by the existing best system. CONCLUSION The proposed system concentrates on removing the noise from the real-time video frame and the occlusion. Thus, the acceptable range of accuracy and the processing time are provided by this study for surgeons for carrying out a smooth surgical flow.
Collapse
Affiliation(s)
- Bijaya Raj Basnet
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Sydney, Australia
| | - Abeer Alsadoon
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Sydney, Australia
| | - Chandana Withana
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Sydney, Australia.
| | - Anand Deva
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Manoranjan Paul
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Sydney, Australia
| |
Collapse
|
14
|
Franz L, Isola M, Bagatto D, Tuniz F, Robiony M. A novel approach to skull-base and orbital osteotomies through virtual planning and navigation. Laryngoscope 2018; 129:823-831. [PMID: 30151894 DOI: 10.1002/lary.27479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Computer-assisted planning of osteotomy lines, coupled with navigation-guided performance of planned osteotomies, is a highly innovative approach to skull-base and orbital surgery. The aim of this pilot study is to provide an assessment of the accuracy of this novel approach in guiding the correct positioning of osteotomy lines in frontal, temporal, and orbital regions, defining the agreement between the spatial position of the planned and performed osteotomies. METHODS Fifteen patients with orbital, frontal sinus, and lateral skull-base diseases underwent virtual surgical planning. Osteotomies to access the orbit, frontal sinus, and lateral skull base were planned on computer tomography-based three-dimensional models. The planned osteotomies were reproduced on the operating field using a navigation system. The positions of the performed and planned osteotomies were compared. The results were described as the mean positional difference between planned and performed osteotomies and as Lin's concordance coefficient, and Bland-Altman limits of agreement were also defined. RESULTS The overall mean difference was 0.719 mm (95% confidence interval [CI]: 0.472 to 0.965 mm). Overall, Lin's concordance coefficient was 0.997 (95% CI: 0.996 to 0.998), and overall Bland-Altman limits of agreement ranged from -1.407 to 2.844 mm. The smallest mean difference (0.587 mm, 95% CI: 0.244 to 0.931 mm) was calculated in the orbit group, whereas the highest mean difference (0.904 mm, 95% CI: 0.428 to 1.379 mm) was described in the lateral skull-base group. CONCLUSION This study's results support the use of this novel planning and navigation protocol for guiding osteotomy in anterior and lateral skull-base surgery, providing a clinical validation of this technique. LEVEL OF EVIDENCE 4 Laryngoscope, 00:1-9, 2018 Laryngoscope, 129:823-831, 2019.
Collapse
Affiliation(s)
- Leonardo Franz
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy
| | - Miriam Isola
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy.,Institute of Statistics, Department of Medicine, University of Udine
| | | | - Francesco Tuniz
- Department of Neurosurgery , Academic Hospital of Udine, Udine, Italy
| | - Massimo Robiony
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
15
|
Accuracy Assessment of Different Registration and Imaging Methods on Image-Guided Surgery of Lateral Skull Base. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.74051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
16
|
Probe versus microscope: a comparison of different methods for image-to-patient registration. Int J Comput Assist Radiol Surg 2018; 13:1539-1548. [PMID: 29869745 PMCID: PMC6153656 DOI: 10.1007/s11548-018-1800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2017] [Accepted: 05/22/2018] [Indexed: 11/03/2022]
Abstract
PURPOSE Computer-aided navigation is widely used in ENT surgery. The position of a surgical instrument is shown in the CT/MR images of the patient and can thus be a good support for the surgeon. The accuracy is highly dependent on the registration done prior to surgery. A microscope and a probe can both be used for registration and navigation, depending on the surgical intervention. A navigation system typically only reports the fiducial registration error after paired-point registration. However, the target registration error (TRE)-a measurement for the accuracy in the surgical area-is much more relevant. The aim of this work was to compare the performance of a microscope relative to a conventional probe-based approach with different registration methods. METHODS In this study, optical tracking was used to register a plastic skull to its preoperative CT images with paired-point registration. Anatomical landmarks and skin-affixed markers were used as fiducials and targets. With both microscope and probe, four different registration methods were evaluated based on their TREs at 10 targets. For half of the experiments, a surface registration and/or external fiducials were used additionally to paired-point registration to study their influence to accuracy. RESULTS Overall, probe registration leads to a smaller TRE ([Formula: see text]) than registration with a microscope ([Formula: see text]). Additional surface registration does not result in better accuracy of navigation for microscope and probe. The lowest mean TRE for both pointers can be achieved with paired-point registration only and radiolucent markers. CONCLUSION Our experiments showed that a probe used for registration and navigation achieves lower TREs compared using a microscope. Neither additional surface registration nor additional fiducials on an external reference element are necessary for improved accuracy of navigated ENT surgery on a plastic skull.
Collapse
|
17
|
Recent Development of Augmented Reality in Surgery: A Review. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4574172. [PMID: 29065604 PMCID: PMC5585624 DOI: 10.1155/2017/4574172] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/12/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.
Collapse
|
18
|
Abstract
OBJECTIVE The purpose of this study was to investigate the feasibility of a surface-based registration method based on a low-cost, hand-held Sense three-dimensional (3D) scanner in image-guided neurosurgery system. METHODS The scanner was calibrated prior and fixed on a tripod before registration. During registration, a part of the head surface was scanned at first and the spatial position of the adapter was recorded. Then the scanner was taken off from the tripod and the entire head surface was scanned by moving the scanner around the patient's head. All the scan points were aligned to the recorded spatial position to form a unique point cloud of the head by the automatic mosaic function of the scanner. The coordinates of the scan points were transformed from the device space to the adapter space by a calibration matrix, and then to the patient space. A 2-step patient-to-image registration method was then performed to register the patient space to the image space. RESULTS The experimental results showed that the mean target registration error of 15 targets on the surface of the phantom was 1.61±0.09 mm. In a clinical experiment, the mean target registration error of 7 targets on the patient's head surface was 2.50±0.31 mm, which was sufficient to meet clinical requirements. CONCLUSIONS It is feasible to use the Sense 3D scanner for patient-to-image registration, and the low-cost Sense 3D scanner can take the place of the current used scanner in the image-guided neurosurgery system.
Collapse
|
19
|
Chen X, Xu L, Wang H, Wang F, Wang Q, Kikinis R. Development of a surgical navigation system based on 3D Slicer for intraoperative implant placement surgery. Med Eng Phys 2017; 41:81-89. [PMID: 28109564 PMCID: PMC5549678 DOI: 10.1016/j.medengphy.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2016] [Revised: 11/08/2016] [Accepted: 01/01/2017] [Indexed: 11/29/2022]
Abstract
Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module.
Collapse
Affiliation(s)
- Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lu Xu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huixiang Wang
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wang
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiugen Wang
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ron Kikinis
- Surgical Planning Laboratory, Harvard Medical School, Boston, United States
| |
Collapse
|
20
|
Brudfors M, García-Vázquez V, Sesé-Lucio B, Marinetto E, Desco M, Pascau J. ConoSurf: Open-source 3D scanning system based on a conoscopic holography device for acquiring surgical surfaces. Int J Med Robot 2016; 13. [PMID: 27868345 PMCID: PMC5638071 DOI: 10.1002/rcs.1788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
Abstract
Background A difficulty in computer‐assisted interventions is acquiring the patient's anatomy intraoperatively. Standard modalities have several limitations: low image quality (ultrasound), radiation exposure (computed tomography) or high costs (magnetic resonance imaging). An alternative approach uses a tracked pointer; however, the pointer causes tissue deformation and requires sterilizing. Recent proposals, utilizing a tracked conoscopic holography device, have shown promising results without the previously mentioned drawbacks. Methods We have developed an open‐source software system that enables real‐time surface scanning using a conoscopic holography device and a wide variety of tracking systems, integrated into pre‐existing and well‐supported software solutions. Results The mean target registration error of point measurements was 1.46 mm. For a quick guidance scan, surface reconstruction improved the surface registration error compared with point‐set registration. Conclusions We have presented a system enabling real‐time surface scanning using a tracked conoscopic holography device. Results show that it can be useful for acquiring the patient's anatomy during surgery.
Collapse
Affiliation(s)
- Mikael Brudfors
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | | | - Begoña Sesé-Lucio
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eugenio Marinetto
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Javier Pascau
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
21
|
Registration using 3D-printed rigid templates outperforms manually scanned surface matching in image-guided temporal bone surgery. Int J Comput Assist Radiol Surg 2016; 11:2119-2127. [PMID: 27299347 DOI: 10.1007/s11548-016-1441-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Image-guided surgery (IGS) for otological procedures requires minimal invasiveness and a high degree of accuracy. We have recently developed a noninvasive registration method, the Surface Template-Assisted Marker Positioning (STAMP) method, which uses a rigid template of the surface of the temporal bone. However, the STAMP method is not applicable when the bony surface is not exposed, such as in endoscopic surgery. Thus, we extended our research to apply the STAMP method onto the skin and tested its feasibility in this study. METHODS We designed a phantom made of a rigid box and soft material for the study. The target registration error (TRE) was measured at preset measuring points in the phantom. We modified the STAMP method to be applicable for use on the skin around the ears (S-STAMP). The same phantom was also registered using the conventional, manually scanned surface matching method. We compared the TRE after the different registration methods. RESULTS The TRE after the S-STAMP registration method was significantly smaller than that of the conventional surface matching method at all error measurement points in the phantom. However, the TRE after the S-STAMP registration method was significantly larger than that of paired point registration using invasive fiducial markers. CONCLUSIONS The S-STAMP method using a rigid template on the soft surface yields a significantly smaller TRE than that of conventional, manually scanned surface matching registration. This strategy provides an alternative option to improve the accuracy of IGS without loading patients with additional invasive procedures.
Collapse
|
22
|
Soteriou E, Grauvogel J, Laszig R, Grauvogel TD. Prospects and limitations of different registration modalities in electromagnetic ENT navigation. Eur Arch Otorhinolaryngol 2016; 273:3979-3986. [PMID: 27149874 DOI: 10.1007/s00405-016-4063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2015] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
Abstract
The present study examined electromagnetic tracking technology for ENT navigation. Five different registration modalities were compared and navigation accuracy was assessed. Four skull models were individually fabricated with a three-dimensional printer, based on patients' computer tomography datasets. Individual silicone masks were fitted for skin and soft tissue simulation. Five registration modalities were examined: (1) invasive marker, (2) automatic, (3) surface matching (AccuMatch), (4) anatomic landmarks, and (5) oral splint registration. Overall navigation accuracy and accuracy on selected anatomic locations were assessed by targeting 26 titanium screws previously placed over the skull. Overall navigation accuracy differed significantly between all registration modalities. The target registration error was 0.94 ± 0.06 mm (quadratic mean ± standard deviation) for the invasive marker registration, 1.41 ± 0.04 mm for the automatic registration, 1.59 ± 0.14 mm for the surface matching registration, and 5.15 ± 0.66 mm (four landmarks) and 4.37 ± 0.73 mm (five landmarks) for the anatomic landmark registration. Oral splint registration proved itself to be inapplicable to this navigation system. Invasive marker registration was superior on most selected anatomic locations. However, on the ethmoid and sphenoid sinus the automatic registration process revealed significantly lower target registration error values. Only automatic and surface registration met the accuracy requirements for noninvasive registration. Particularly, the automatic image-to-world registration reaches target registration error values on the anterior skull base which are comparable with the gold standard of invasive screw registration.
Collapse
Affiliation(s)
- Eric Soteriou
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert-Ludwigs-University Medical School Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Juergen Grauvogel
- Department of Neurosurgery, Albert-Ludwigs-University Medical School Freiburg, Freiburg, Germany
| | - Roland Laszig
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert-Ludwigs-University Medical School Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Tanja Daniela Grauvogel
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert-Ludwigs-University Medical School Freiburg, Killianstr. 5, 79106, Freiburg, Germany.
| |
Collapse
|
23
|
Chan B, Auyeung J, Rudan JF, Ellis RE, Kunz M. Intraoperative application of hand-held structured light scanning: a feasibility study. Int J Comput Assist Radiol Surg 2016; 11:1101-8. [PMID: 27017498 DOI: 10.1007/s11548-016-1381-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Structured light scanning is an emerging technology that shows potential in the field of medical imaging and image-guided surgery. The purpose of this study was to investigate the feasibility of applying a hand-held structured light scanner in the operating theatre as an intraoperative image modality and registration tool. METHODS We performed an in vitro study with three fresh frozen knee specimens and a clinical pilot study with three patients (one total knee arthroplasty and two hip replacements). Before the procedure, a CT scan of the affected joint was obtained and isosurface models of the anatomies were created. A conventional surgical exposure was performed, and a hand-held structured light scanner (Artec Group, Palo Alto, USA) was used to scan the exposed anatomy. Using the texture information of the scanned model, bony anatomy was selected and registered to the CT models. Registration RMS errors were documented, and distance maps between the scanned model and the CT model were created. RESULTS For the in vitro trial, the average RMS error was 1.00 mm for the femur and 1.17 mm for the tibia registration. We found comparable results during clinical trials, with an average RMS error of 1.3 mm. CONCLUSIONS The results of this preliminary study indicate that structured light scanning could be applied accurately and safely in a surgical environment. This could result in a variety of applications for these scanners in image-guided interventions as intraoperative imaging and registration tools.
Collapse
Affiliation(s)
- Brandon Chan
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada
| | - Jason Auyeung
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - John F Rudan
- Department of Surgery, Queen's University, Kingston General Hospital, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - Randy E Ellis
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.,Department of Surgery, Queen's University, Kingston General Hospital, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada.,Department of Mechanical and Materials Engineering, Queen's University, McLaughlin Hall, Kingston, ON, K7L 3N6, Canada
| | - Manuela Kunz
- School of Computing, Queen's University, 557 Goodwin Hall, Kingston, ON, K7L 2N8, Canada. .,Human Mobility Research Centre, Queen's University and Kingston General Hospital, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
24
|
Fan Y, Jiang D, Wang M, Song Z. A new markerless patient-to-image registration method using a portable 3D scanner. Med Phys 2015; 41:101910. [PMID: 25281962 DOI: 10.1118/1.4895847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. METHODS A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. RESULTS In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. CONCLUSIONS The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.
Collapse
Affiliation(s)
- Yifeng Fan
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, and Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, 200032, China
| | - Dongsheng Jiang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, and Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, 200032, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, and Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, 200032, China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, and Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, 200032, China
| |
Collapse
|
25
|
Chen X, Xu L, Wang Y, Wang H, Wang F, Zeng X, Wang Q, Egger J. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inform 2015; 55:124-31. [PMID: 25882923 DOI: 10.1016/j.jbi.2015.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2014] [Revised: 03/20/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements.
Collapse
Affiliation(s)
- Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lu Xu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping Wang
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huixiang Wang
- Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wang
- Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangsen Zeng
- Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiugen Wang
- Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jan Egger
- Faculty of Computer Science and Biomedical Engineering, Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| |
Collapse
|
26
|
Phan CB, Koo S. Predicting anatomical landmarks and bone morphology of the femur using local region matching. Int J Comput Assist Radiol Surg 2015; 10:1711-9. [PMID: 25673075 DOI: 10.1007/s11548-015-1155-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Anatomical landmarks and bony features are frequently used in biomechanical and surgical applications. The purpose of this study was to develop a local region matching-based anatomical landmark prediction method. METHODS A reference femur model with anatomical landmarks and a surface division map was prepared. Initial registration between the reference femur model and a target femur model was performed in three-dimensional Cartesian space, and closest point pairs were determined by the initial surface correspondence. The models were mapped to unit spheres through spherical parameterization. Spherical registration using the closest point pairs in the spherical parametric space enabled the application of a division map from the reference model to the target model. The reference and target models were divided into local regions defined in the division map, and the corresponding regions were again registered in Cartesian space. Anatomical landmarks in the local regions were identified in the target model. RESULTS The accuracy of the proposed method was tested for anatomical landmarks marked by a clinician on 35 femoral models. The effectiveness of local region matching was demonstrated by automatic measurements of the femoral neck-shaft angle. The average prediction error for all eight anatomical landmarks of the femur was 2.74 (±1.78) mm. The average of the predicted neck-shaft angle for our Korean subjects was 126.41° (±4.92°), which was comparable to previous studies in Japanese and Chinese populations. CONCLUSION Anatomical landmarks and features could be accurately predicted using the proposed local region matching method. This method offers robustness and accuracy in determining anatomical bony landmarks and bone morphology for clinical and biomechanical applications.
Collapse
Affiliation(s)
- Cong-Bo Phan
- Biomechanics Lab, School of Mechanical Engineering, Chung-Ang University, 84 Heukseokro, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Seungbum Koo
- Biomechanics Lab, School of Mechanical Engineering, Chung-Ang University, 84 Heukseokro, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
27
|
Matsumoto N. [Recent progress in computer-supported surgery--technology to apply navigation surgery to the otological field]. NIHON JIBIINKOKA GAKKAI KAIHO 2014; 117:10-4. [PMID: 24627939 DOI: 10.3950/jibiinkoka.117.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
28
|
Lefranc M, Capel C, Pruvot AS, Fichten A, Desenclos C, Toussaint P, Le Gars D, Peltier J. The Impact of the Reference Imaging Modality, Registration Method and Intraoperative Flat-Panel Computed Tomography on the Accuracy of the ROSA® Stereotactic Robot. Stereotact Funct Neurosurg 2014; 92:242-50. [DOI: 10.1159/000362936] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|
29
|
Burgner J, Simpson AL, Fitzpatrick JM, Lathrop RA, Herrell SD, Miga MI, Webster RJ. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery. Int J Med Robot 2013; 9:190-203. [PMID: 22761086 PMCID: PMC3819208 DOI: 10.1002/rcs.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. METHODS We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. RESULTS Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. CONCLUSIONS Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery.
Collapse
Affiliation(s)
- J Burgner
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Widmann G, Zangerl A, Schullian P, Fasser M, Puelacher W, Bale R. Do Image Modality and Registration Method Influence the Accuracy of Craniofacial Navigation? J Oral Maxillofac Surg 2012; 70:2165-73. [DOI: 10.1016/j.joms.2011.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022]
|
32
|
Gempt J, Buchmann N, Ryang YM, Krieg S, Kreutzer J, Meyer B, Ringel F. Frameless image-guided stereotaxy with real-time visual feedback for brain biopsy. Acta Neurochir (Wien) 2012; 154:1663-7. [PMID: 22847726 DOI: 10.1007/s00701-012-1425-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2012] [Accepted: 06/08/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Frame-based stereotaxy remains the "gold standard" for cerebral biopsies and functional neurosurgery though new frameless stereotactic systems are evolving continually. As the technique of frameless stereotaxy gains increasing acceptance among neurosurgeons, this study assesses the feasibility of a system for frameless image-guided stereotaxy. METHODS All patients biopsied for intracranial lesions between February 2007 and August 2010 using the BrainLAB VarioGuide frameless stereotactic system were evaluated prospectively. Prior to surgery, patients underwent magnetic resonance (MR) imaging; additionally, fluoroethyl-tyrosine (FET)-positron emission tomography (PET) images were acquired and fused to MR images in selected cases. Biopsy trajectory length, lesion volume, procedure duration, and diagnostic yield were assessed. RESULTS Ninety-six diagnostic biopsies in 91 patients were evaluated. Lesion volume ranged from 0.17 to 121.8 cm(3); trajectory length from 25.3 to 101.9 mm. Diagnostic yield was 93.8%. Mean operation time from skin incision to wound closure was 42 min; in the operating room, it was 99 min. CONCLUSIONS Clinical experience indicates VarioGuide to be safe and accurate. Reachable range of lesion localisation appears to be comparable to a frame-based stereotaxy system. Operation times are brief. The unique design of this frameless stereotactic system allows real-time visual feedback of needle positioning.
Collapse
Affiliation(s)
- Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Simpson AL, Burgner J, Glisson CL, Herrell SD, Ma B, Pheiffer TS, Webster RJ, Miga MI. Comparison study of intraoperative surface acquisition methods for surgical navigation. IEEE Trans Biomed Eng 2012; 60:1090-9. [PMID: 22929367 DOI: 10.1109/tbme.2012.2215033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
Soft-tissue image-guided interventions often require the digitization of organ surfaces for providing correspondence from medical images to the physical patient in the operating room. In this paper, the effect of several inexpensive surface acquisition techniques on target registration error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is provided to compare image-to-physical registrations using three different methods of organ spatial digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of phantoms and biological tissues were acquired and registered to CT image volume counterparts. A comparison among these alignments demonstrated that registration errors were statistically smaller with the conoprobe than the tracked pointer and LRS (p<0.01). In all acquisitions, the conoprobe outperformed the LRS and tracked pointer: for example, the arithmetic means of the SRE over all data acquisitions with a porcine liver were 1.73 ± 0.77 mm, 3.25 ± 0.78 mm, and 4.44 ± 1.19 mm for the conoprobe, LRS, and tracked pointer, respectively. In a cadaveric kidney specimen, the arithmetic means of the SRE over all trials of the conoprobe and tracked pointer were 1.50 ± 0.50 mm and 3.51 ± 0.82 mm, respectively. Our results suggest that tissue displacements due to contact force and attempts to maintain contact with tissue, compromise registrations that are dependent on data acquired from a tracked surgical instrument and we provide an alternative method (tracked conoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic holography device outperforms LRS acquisitions with respect to registration accuracy.
Collapse
Affiliation(s)
- Amber L Simpson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Salma A, Makiese O, Sammet S, Ammirati M. Effect of registration mode on neuronavigation precision: an exploration of the role of random error. ACTA ACUST UNITED AC 2012; 17:172-8. [PMID: 22681460 DOI: 10.3109/10929088.2012.691992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
The aim of this paper is to analyze the variations in registration accuracy for computer-assisted surgical navigation using three different modes of registration, in order to explore the behavior of random error, and to highlight the precision of neuronavigation as a concept distinct from accuracy. The operational accuracy of three different registration modes (bone fiducials, scalp adhesive fiducials and an auto-registration mask) was evaluated in a total of 20 fresh cadaveric heads. The precision of the neuronavigation system was then assessed by evaluating the variation in the accuracy measurements associated with each registration mode. The coefficient of variation was employed to quantify the degree of variation in the attained accuracy using the following formula: Coefficient of variation = standard deviation/mean * 100. For external targets, the precision of the neuronavigation system was greatest with mask registration (43.75 and 51.41 for anterior and posterior external targets, respectively) and lowest with bone registration (65.30 and 67.17 for anterior and posterior external targets, respectively). For internal targets, the precision of the neuronavigation system was greatest with bone registration (47.69 and 42.6 for anterior and posterior internal targets, respectively) and lowest with mask registration (62.9 and 58.67 for anterior and posterior internal targets, respectively). The precision (reproducibility) of the neuronavigation system is another important quantity besides accuracy that characterizes the performance of the system. Understanding both of these quantities for a given registration mode enhances the use of a neuronavigation system in neurosurgery.
Collapse
Affiliation(s)
- Asem Salma
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, USA
| | | | | | | |
Collapse
|
35
|
Grauvogel TD, Grauvogel J, Arndt S, Berlis A, Maier W. Is there an equivalence of non-invasive to invasive referenciation in computer-aided surgery? Eur Arch Otorhinolaryngol 2012; 269:2285-90. [DOI: 10.1007/s00405-012-2023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
|
36
|
Splint Sterilization—A Potential Registration Hazard in Computer-Assisted Surgery. J Oral Maxillofac Surg 2012; 70:966-71. [DOI: 10.1016/j.joms.2011.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/23/2022]
|
37
|
Wang MN, Song ZJ. Properties of the target registration error for surface matching in neuronavigation. ACTA ACUST UNITED AC 2011; 16:161-9. [PMID: 21631164 DOI: 10.3109/10929088.2011.579791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Surface matching is a relatively new method of spatial registration in neuronavigation. Compared to the traditional point matching method, surface matching does not use fiducial markers that must be fixed to the surface of the head before image scanning, and therefore does not require an image acquisition specifically dedicated for navigation purposes. However, surface matching is not widely used clinically, mainly because there is still insufficient knowledge about its application accuracy. This study aimed to explore the properties of the Target Registration Error (TRE) of surface matching in neuronavigation. MATERIALS AND METHODS The surface matching process was simulated in the image space of a neuronavigation system so that the TRE could be calculated at any point in that space. For each registration, two point clouds were generated to represent the surface extracted from preoperative images (PC(image)) and the surface obtained intraoperatively by laser scanning (PC(laser)). The properties of the TRE were studied by performing multiple registrations with PC(laser) point clouds at different positions and generated by adding different types of error. RESULTS For each registration, the TRE had a minimal value at a point in the image space, and the iso-valued surface of the TRE was approximately ellipsoid with smaller TRE on the inner surfaces. The position of the point with minimal TRE and the shape of the iso-valued surface were highly random across different registrations, and the surface registration error between the two point clouds was irrelevant to the TRE at a specific point. The overall TRE tended to increase with the increase in errors in PC(laser), and a larger PC(laser) made it less sensitive to these errors. With the introduction of errors in PC(laser), the points with minimal TRE tended to be concentrated in the anterior and inferior part of the head. CONCLUSION The results indicate that the alignment between the two surfaces could not provide reliable information about the registration accuracy at an arbitrary target point. However, according to the spatial distribution of the target registration error of a single registration, enough application accuracy could be guaranteed by proper visual verification after registration. In addition, surface matching tends to achieve high accuracy in the inferior and anterior part of the head, and a relatively large scanning area is preferable.
Collapse
Affiliation(s)
- Man Ning Wang
- Digital Medical Research Center of Shanghai Medical College, Fudan University, China
| | | |
Collapse
|
38
|
Makiese O, Pillai P, Salma A, Sammet S, Ammirati M. Accuracy Validation in a Cadaver Model of Cranial Neuronavigation Using a Surface Autoregistration Mask. Oper Neurosurg (Hagerstown) 2010; 67:ons85-90; discussion ons90. [DOI: 10.1227/01.neu.0000383751.63835.2f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
|
39
|
Lathrop RA, Hackworth DM, Webster RJ. Minimally invasive holographic surface scanning for soft-tissue image registration. IEEE Trans Biomed Eng 2010; 57:1497-506. [PMID: 20659823 PMCID: PMC4104132 DOI: 10.1109/tbme.2010.2040736] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Recent advances in registration have extended intrasurgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm.
Collapse
|
40
|
Grauvogel TD, Soteriou E, Metzger MC, Berlis A, Maier W. Influence of different registration modalities on navigation accuracy in ear, nose, and throat surgery depending on the surgical field. Laryngoscope 2010; 120:881-8. [PMID: 20422680 DOI: 10.1002/lary.20867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Various invasive and noninvasive registration methods have been established in the past for intraoperative navigation. The present study compared the registration and navigation accuracy of three different registration modalities in anatomical locations of special interest for ear, nose, and throat surgery. STUDY DESIGN Prospective experimental phantom study. METHODS Four skull models were individually fabricated with a three-dimensional printer based on the patient's computed tomography data sets and fitted with an individual customized silicone skin. Three different registration modalities were examined: 1) invasive marker (IM), 2) oral splint (OS), and 3) laser scan (L). Accuracy measurements were assessed by targeting 26 titanium screws placed over the skull. The overall accuracy and the target registration error for eight selected anatomical locations were measured. RESULTS Mean accuracy was 0.67 + or - 0.1 mm (quadratic mean + or - standard deviation) for IM, 0.98 + or - 0.16 mm for OS, and 1.3 + or - 0.12 mm for L. The greatest differences in accuracy were found on the mastoid with best accuracy for IM (0.59 + or - 0.2 mm; P < .05 vs. OS and L), followed by OS (1.23 + or - 0.41 mm; P < .05 vs. L), and L (1.88 + or - 0.45 mm). In contrast, only small differences in accuracy were detected in the anterior skull base between the registration modalities (IM 0.75 + or - 0.21 mm, OS 0.71 + or - 0.27 mm, L 0.93 + or - 0.34 mm). CONCLUSIONS L and OS meet accuracy requirements in the midface and anterior skull base. OS is superior to L with navigation accuracies comparable to marker registration. However, neither method meets the high precision requirements for lateral skull base surgery. Laryngoscope, 2010.
Collapse
Affiliation(s)
- Tanja D Grauvogel
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert-Ludwigs-University, Killianstrasse 5, 79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Shamir RR, Freiman M, Joskowicz L, Spektor S, Shoshan Y. Surface-based facial scan registration in neuronavigation procedures: a clinical study. J Neurosurg 2010; 111:1201-6. [PMID: 19392604 DOI: 10.3171/2009.3.jns081457] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
OBJECT Surface-based registration (SBR) with facial surface scans has been proposed as an alternative for the commonly used fiducial-based registration in image-guided neurosurgery. Recent studies comparing the accuracy of SBR and fiducial-based registration have been based on a few targets located on the head surface rather than inside the brain and have yielded contradictory conclusions. Moreover, no visual feedback is provided with either method to inform the surgeon about the estimated target registration error (TRE) at various target locations. The goals in the present study were: 1) to quantify the SBR error in a clinical setup, 2) to estimate the targeting error for many target locations inside the brain, and 3) to create a map of the estimated TRE values superimposed on a patient's head image. METHODS The authors randomly selected 12 patients (8 supine and 4 in a lateral position) who underwent neurosurgery with a commercial navigation system. Intraoperatively, scans of the patients' faces were acquired using a fast 3D surface scanner and aligned with their preoperative MR or CT head image. In the laboratory, the SBR accuracy was measured on the facial zone and estimated at various intracranial target locations. Contours related to different TREs were superimposed on the patient's head image and informed the surgeon about the expected anisotropic error distribution. RESULTS The mean surface registration error in the face zone was 0.9 +/- 0.35 mm. The mean estimated TREs for targets located 60, 105, and 150 mm from the facial surface were 2.0, 3.2, and 4.5 mm, respectively. There was no difference in the estimated TRE between the lateral and supine positions. The entire registration procedure, including positioning of the scanner, surface data acquisition, and the registration computation usually required < 5 minutes. CONCLUSIONS Surface-based registration accuracy is better in the face and frontal zones, and error increases as the target location lies further from the face. Visualization of the anisotropic TRE distribution may help the surgeon to make clinical decisions. The observed and estimated accuracies and the intraoperative registration time show that SBR using the fast surface scanner is practical and feasible in a clinical setup.
Collapse
Affiliation(s)
- Reuben R Shamir
- School of Engineering and Computer Science, Hebrew University, Givat Ram Campus, Jerusalem, Israel 91904.
| | | | | | | | | |
Collapse
|
42
|
Hong J, Hashizume M. An effective point-based registration tool for surgical navigation. Surg Endosc 2009; 24:944-8. [PMID: 19779940 DOI: 10.1007/s00464-009-0568-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2008] [Revised: 04/21/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Surgical navigation assists in endoscopic surgeries by enabling surgeons to see concealed lesions and surrounding organs. Successful surgical navigation depends on accurate registration between a medical image and a patient. For accurate point-based registration, it is important to determine the matching order and positions of the markers correctly. It is particularly difficult to determine the order and positions when part of the markers cannot be located on the patient's body or when they cannot be identified in the images. METHODS By using the automatic marker-matching option of the proposed tool, an optimum registration result can be obtained even with the partial loss of markers. In addition, this tool provides an intuitive marker selection interface that displays the registration error of each marker pair in different colors. RESULTS The efficiency of the described tool in terms of the registration accuracy and time has been confirmed in more than 70 clinical applications. The fiducial registration errors were 1.28 + or - 1.09 mm in ear, nose, and throat surgery and 3.55 + or - 1.30 mm in liver tumor ablation therapy. CONCLUSIONS The proposed automatic matching scheme with marker selection interface was particularly effective where the markers were partly lost or incorrectly identified.
Collapse
Affiliation(s)
- Jaesung Hong
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi Higashiku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
43
|
Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. ACTA ACUST UNITED AC 2009; 107:701-15. [DOI: 10.1016/j.tripleo.2009.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/15/2022]
|
44
|
Ringel F, Ingerl D, Ott S, Meyer B. VARIOGUIDE: A NEW FRAMELESS IMAGE‐GUIDED STEREOTACTIC SYSTEM—ACCURACY STUDY AND CLINICAL ASSESSMENT. Oper Neurosurg (Hagerstown) 2009; 64:365-71; discussion 371-3. [DOI: 10.1227/01.neu.0000341532.15867.1c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
VarioGuide (BrainLAB AG, Feldkirchen, Germany) is a new system for frameless image-guided stereotaxy. In the present study, we aimed to assess target point accuracy in a laboratory setting and the clinical feasibility of the system.
METHODS
Using the phantom of our frame-based stereotactic system (Riechert-Mundinger; Inomed Medizintechnik GmbH, Teningen, Germany), target points were approached from different angles with the frameless system. Target point deviation in the x, y, and z planes was assessed. Furthermore, patients harboring intracranial lesions were diagnostically biopsied using VarioGuide.
RESULTS
Phantom-based accuracy measurements yielded a mean target point deviation of 0.7 mm. Between February 2007 and April 2008, 27 patients were diagnostically biopsied. Lesion volumes ranged from 0.2 to 117.6 cm3, trajectory length ranged from 25.3 to 64.1 mm, and the diagnostic yield was 93%.
CONCLUSION
Concluding from the phantom measurements with ideal image-object registration, assumed spherical lesions with a volume of 0.524 cm3 can be biopsied with 100% target localization. Early clinical data revealed VarioGuide to be safe and accurate for lesions of 0.2 cm3 and larger. Thereby, the system seems feasible for the biopsy of most intracranial lesions.
Collapse
Affiliation(s)
- Florian Ringel
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
| | - Dominik Ingerl
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
| | - Stephanie Ott
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
| |
Collapse
|
45
|
Grayeli AB, Esquia-Medina G, Nguyen Y, Mazalaigue S, Vellin JF, Lombard B, Kalamarides M, Ferrary E, Sterkers O. Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol 2009; 129:405-10. [PMID: 19153848 DOI: 10.1080/00016480802579025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION The use of an invasive marker in the ipsilateral temporal bone with mid-facial skin contouring for registration improved the position accuracy (PA) to levels required for otological and neuro-otological procedures. OBJECTIVE The aim of this study was to compare the PA after skin contouring with the combination of anatomic landmarks or a local invasive marker and skin surface registration for intratemporal computer-assisted navigation. PATIENTS AND METHODS Thirty-three patients undergoing a lateral skull base procedure with the Digipointeur system (Collin, Bagneux, France) based on CT scan were included in this study. Registration was obtained by a mid-facial skin contouring. In the first protocol (n=8), PA was evaluated and the position corrected for three intratemporal landmarks before evaluation of the target (round window). In a second protocol (n=25), a titanium screw was placed in the ipsilateral mastoid region before imaging. PA was measured before and after screw registration for five intratemporal landmarks. RESULTS In the first protocol, PA did not improve after the registration of the landmarks, and PA of the target was evaluated as 4.9+/-0.64 mm. In the second protocol, PA was reduced after screw registration for all landmarks with a mean PA ranging from 0 to 2.3 mm.
Collapse
|
46
|
Matsumoto N, Hong J, Hashizume M, Komune S. A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol Head Neck Surg 2009; 140:96-102. [PMID: 19130970 DOI: 10.1016/j.otohns.2008.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE A new, minimally invasive registration method was developed for image-guided otologic surgery. We utilized laser-sintered template of the patient's bone surface to transfer the virtual markers to the patient's bone intraoperatively and eliminated the necessity for preoperative marker positioning or additional CT scan. STUDY DESIGN Simulation surgeries and clinical application. SUBJECTS AND METHODS We measured registration errors in 10 trials using replicas and six ear surgeries (two cochlear implant insertions, four translabyrinthine acoustic tumor removals). RESULTS The target registration errors varied among the surgical targets. Errors were less than 1 mm near the cochlear implant insertion target both in phantom study and in actual surgeries. CONCLUSION Our newly developed method reduced the preoperative procedures for patients but did not reduce the accuracy in cochlear implant surgery. Our method would be a useful image-guided surgery method in the field of otology, where both accuracy and noninvasiveness are required.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
47
|
Nakamura N, Sugano N, Nishii T, Miki H, Kakimoto A, Yamamura M. Robot-assisted primary cementless total hip arthroplasty using surface registration techniques: a short-term clinical report. Int J Comput Assist Radiol Surg 2009; 4:157-62. [DOI: 10.1007/s11548-009-0286-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2008] [Accepted: 12/29/2008] [Indexed: 11/28/2022]
|
48
|
Hong J, Matsumoto N, Ouchida R, Komune S, Hashizume M. Medical navigation system for otologic surgery based on hybrid registration and virtual intraoperative computed tomography. IEEE Trans Biomed Eng 2008; 56:426-32. [PMID: 19272886 DOI: 10.1109/tbme.2008.2008168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
An image-guided surgical system for otologic surgery was developed and clinically evaluated. With reliable hybrid registration, real-time patient movement compensation and virtual intraoperative computed tomography imaging have been originally proposed. In contrast to the commercially available systems that mainly use 2-D images for pointing probes, in this system, the surgical drill position is navigated and displayed in the 3-D space with real-time surface rendering. In a temporal bone model study, the navigation accuracy was 1.12 +/- 0.09 mm with regard to the target registration error. Initial clinical evaluation of the proposed method was performed in five cochlea implantation surgeries. Accurate insertion of the electrodes into the cochlea was achieved, and the facial nerve was protected from injury in all surgeries. The proposed method could be applied to various surgeries for accurate targeting and protection of critical organs.
Collapse
Affiliation(s)
- Jaesung Hong
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
49
|
Schicho K, Seemann R, Cohen V, Traxler H, Weinstein U, Shohat M, Slovin Z, Figl M, Czerny C, Ewers R, Tal H. Evaluation of bone surface registration applying a micro-needle array. J Clin Periodontol 2007; 34:991-7. [PMID: 17877743 DOI: 10.1111/j.1600-051x.2007.01143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
AIM In this study we present and evaluated a new registration technology for the jaw-bone surface. It is based on a micromechatronic device for the generation of a "mechanical image" of the bone surface by means of an array of micro-needles that are penetrating the soft tissue until they touch the surface of the bone. This "mechanical impression image" is aligned with the CT data set. MATERIAL AND METHODS Based on laboratory measurements on 10 specially prepared jawbone models we evaluate the accuracy of this new registration method. RESULTS Our measurements of the 10 specimens revealed a maximum overall location error of 0.97 mm (range: 0.35-0.97 mm). CONCLUSIONS From the technical point of view the presented registration technology has the potential to improve the performance (i.e. accuracy and avoidance of errors) of the registration process for bony structures in selected applications of image-guided surgery.
Collapse
Affiliation(s)
- Kurt Schicho
- University Hospital of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|