1
|
Liu D, Chen C, Chen Q, Wang S, Li Z, Rong J, Zhang Y, Hou Z, Tao J, Xu J. Identification and Characterization of α-Actinin 1 of Histomonas meleagridis and Its Potential Vaccine Candidates against Histomonosis. Animals (Basel) 2023; 13:2330. [PMID: 37508107 PMCID: PMC10376378 DOI: 10.3390/ani13142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Histomonas meleagridis is a protozoan parasite that causes histomonosis in gallinaceous birds such as turkeys and chickens. Since the banning and restricted usage of effective drugs such as nitarsone, 80-100% morbidity and mortality occur in turkeys and 20-30% mortality in chickens. New ideas are needed to resolve the re-emergence of histomonosis in poultry. In this study, the α-actinin encoding gene from H. meleagridis was cloned. The 1839-bp gene encoding 612 amnio acids showed close phylogenetic relationships with Trichomonas vaginalis and Tritrichomonas foetus. It was then inserted into the prokaryotic expression vector pET28a(+) and induced with isopropyl-β-D-thiogalactopyranoside. A 73 kDa recombinant protein rHmα-actinin 1 was obtained and purified with a Ni-NTA chromatography column. rHmα-actinin 1 was recognized by mouse anti-rHmα-actinin 1 polyclonal antibody, mouse anti-rHmα-actinin 1 monoclonal antibody, and rehabilitation sera from H. meleagridis infected chickens. Native α-actinin 1 in the total proteins of H. meleagridis can also be detected with mouse anti-rHmα-actinin monoclonal antibody. Immunolocalization assays showed that Hmα-actinin 1 was mainly distributed in the cytoplasm of virulent histomonads JSYZ-D9 and in the peripheral regions (near the plasma membrane) of attenuated histomonads JSYZ-D195. Based on in vivo experiment, when chickens were subcutaneously immunized with rHmα-actinin 1 at 5 and 12 days old and then challenged with H. meleagridis at 19 days old, rHmα-actinin 1 reduced the lesion scores 12 days after infection (31 days old) and increased the body weight gain during the challenged period (19-31 days old). Furthermore, it also strengthened the cellular and humoral immune responses 7 days after the second immunization (19 days old). In conclusion, Hmα-actinin 1 could be used as a candidate antigen to develop vaccines against chicken histomonosis.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200366, China
| | - Qiaoguang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zaifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Rong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yuming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
3
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Guan L, Yu D, Wu GH, Ning HJ, He SD, Li SS, Hu TY, Yang G, Liu ZQ, Yu HQ, Sun XZ, Liu ZG, Yang PC. Vasoactive intestinal peptide is required in the maintenance of immune regulatory competency of immune regulatory monocytes. Clin Exp Immunol 2019; 196:276-286. [PMID: 30636174 DOI: 10.1111/cei.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of the immune regulatory system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Vasoactive intestinal peptide (VIP) has multiple bioactivities. This study aims to investigate the role of VIP in the maintenance of the immune regulatory capacity of monocytes (Mos). Human peripheral blood samples were collected from RA patients and healthy control (HC) subjects. Mos and CD14+ CD71- CD73+ CD25+ regulatory Mos (RegMos) were isolated from the blood samples and characterized by flow cytometry. A rat RA model was developed to test the role of VIP in the maintenance of the immune regulatory function of Mos. The results showed that RegMos of HC subjects had immune suppressive functions. RegMos of RA patients expressed less interleukin (IL)-10 and showed an incompetent immune regulatory capacity. Serum levels of VIP were lower in RA patients, which were positively correlated with the expression of IL-10 in RegMos. In-vitro experiments showed that the IL-10 mRNA decayed spontaneously in RegMos, which could be prevented by the presence of VIP in the culture. VIP suppressed the effects of tristetraprolin (TTP) on inducing IL-10 mRNA decay in RegMos. Administration of VIP inhibited experimental RA in rats through restoring the IL-10 expression in RegMos. RegMos have immune suppressive functions. VIP is required in maintaining IL-10 expression in RegMos. The data suggest that VIP has translational potential in the treatment of immune disorders such as RA.
Collapse
Affiliation(s)
- L Guan
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - D Yu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - G-H Wu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - H-J Ning
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-D He
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-S Li
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - T-Y Hu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - G Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Z-Q Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - H-Q Yu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - X-Z Sun
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Z-G Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - P-C Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|