1
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
2
|
Pugazhendhi AS, Neal CJ, Ta KM, Molinari M, Kumar U, Wei F, Kolanthai E, Ady A, Drake C, Hughes M, Yooseph S, Seal S, Coathup MJ. A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces. Biomaterials 2024; 307:122527. [PMID: 38518591 DOI: 10.1016/j.biomaterials.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.
Collapse
Affiliation(s)
- Abinaya Sindu Pugazhendhi
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Craig J Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Khoa Minh Ta
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Fei Wei
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Andrew Ady
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Christina Drake
- Kismet Technologies, 7101 TPC Drive, Suite 130, Orlando, FL, 32822, United States
| | - Megan Hughes
- University of Cardiff, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shibu Yooseph
- Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, CA 91711, United States
| | - Sudipta Seal
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Melanie J Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
3
|
Modrzejewska J, Grzelakowska A, Szala M, Michalski R, Zakłos-Szyda M, Podsiadły R. Pro-fluorescent probe with morpholine moiety and its reactivity towards selected biological oxidants. LUMINESCENCE 2024; 39:e4685. [PMID: 38332465 DOI: 10.1002/bio.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/10/2024]
Abstract
Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO- ), hypochlorous acid (HOCl), hydrogen peroxide (H2 O2 ), and peroxymonocarbonate (HOOCO2 - ) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid (MpC-BA) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO- or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO- to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one (MpC-OH). However, peroxynitrite-specific product (MpC-H) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl (MpC-OHCl). H2 O2 slowly oxidizes MpC-BA. However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.
Collapse
Affiliation(s)
- Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, Poland
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz, Poland
| |
Collapse
|
4
|
Ahmadi M, Singer D, Potlitz F, Nasri Z, von Woedtke T, Link A, Bekeschus S, Wende K. Cold Physical Plasma-Mediated Fenretinide Prodrug Activation Confers Additive Cytotoxicity in Epithelial Cells. Antioxidants (Basel) 2023; 12:1271. [PMID: 37372001 DOI: 10.3390/antiox12061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Cold physical plasma is a partially ionized gas operated at body temperature and utilized for heat-sensitive technical and medical purposes. Physical plasma is a multi-component system consisting of, e.g., reactive species, ions and electrons, electric fields, and UV light. Therefore, cold plasma technology is an interesting tool for introducing biomolecule oxidative modifications. This concept can be extended to anticancer drugs, including prodrugs, which could be activated in situ to enhance local anticancer effects. To this end, we performed a proof-of-concept study on the oxidative prodrug activation of a tailor-made boronic pinacol ester fenretinide treated with the atmospheric pressure argon plasma jet kINPen operated with either argon, argon-hydrogen, or argon-oxygen feed gas. Fenretinide release from the prodrug was triggered via Baeyer-Villiger-type oxidation of the boron-carbon bond based on hydrogen peroxide and peroxynitrite, which were generated by plasma processes and chemical addition using mass spectrometry. Fenretinide activation led to additive cytotoxic effects in three epithelial cell lines in vitro compared to the effects of cold plasma treatment alone regarding metabolic activity reduction and an increase in terminal cell death, suggesting that cold physical plasma-mediated prodrug activation is a new direction for combination cancer treatment studies.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Felix Potlitz
- Institute of Pharmacy, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Zahra Nasri
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|