1
|
Lohar P, Pal D, Mondal T, Das S, Das P, Ghosh D. Evaluation of male contraceptive efficacy of Caesalpinia pulcherrima (L.) sw. in human and rat: an ex-vivo study. Syst Biol Reprod Med 2025; 71:43-53. [PMID: 39969117 DOI: 10.1080/19396368.2025.2455059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The study focused on the spermicidal and anti-androgenic effects of aqueous-ethanolic (60:40) extract of Caesalpinia pulcherrima leaves (AEECPL) in human and rat samples from the viewpoint of its contraceptive efficacy through ex-vivo study. Six fertile adult males were selected randomly for semen collection. Parallelly sperm samples were collected by epididymal washing from six rats. Testes, epididymis, and liver were dissected from rats. Biological samples were divided into control, 1, 2, and 4 mg/ml of AEECPL exposed groups. Relevant spermiological, steroidogenic enzymes, oxidative stress, and metabolic toxicity sensors were evaluated. All the spermiological sensors were decreased significantly in dose and duration-dependent manners, and the number of comet positive spermatozoa were increased in dose-dependent mode in AEECPL exposed groups against the control both in human and rat. Activities of Δ5,3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD in testis, kinetics of superoxide dismutase both in testis and epididymis were significantly decreased along with the elevation in the level of thiobarbituric acid reactive substances in AEECPL exposed groups. Activities of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, acid phosphatase, and alkaline phosphatase in above mentioned tissues showed no significant difference among the control and AEECPL exposed groups, indicating its non-toxic effects on reproductive and metabolic tissues. The results presenting the prominent contraceptive preventing potentiality of the said extract both in human and rat. The optimal effect was noted at 2 mg/ml dose. In-depth investigations are required through in-vivo studies on animal model to know the genomic mode of action for the execution of male contraceptive activity.
Collapse
Affiliation(s)
- Pampa Lohar
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Dibya Pal
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Tanusree Mondal
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Shibani Das
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Puja Das
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Debidas Ghosh
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
2
|
Chai S, Kang J, Wu T, Zheng Y, Zhou X, Xu S, Ren W, Yang G. Coevolution and Adaptation of Transition Nuclear Proteins and Protamines in Naturally Ascrotal Mammals Support the Black Queen Hypothesis. Genome Biol Evol 2024; 16:evae260. [PMID: 39688669 DOI: 10.1093/gbe/evae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Protamines (PRMs) and transition nuclear proteins (TNPs) are two key classes of sperm nuclear basic proteins that regulate chromatin reorganization and condensation in the spermatozoon head, playing crucial roles in mammalian spermatogenesis. In scrotal mammals, such as humans, cryptorchidism, the failure of the testes to descend into the scrotal sac is generally associated with higher rates of defective spermatozoon quality and function. However, ascrotal mammals, such as cetaceans, with naturally undescended testes, produce normal spermatozoa similar to their scrotal counterparts. This study investigates the evolutionary pattern and functional changes in PRMs and TNPs to explore the potential molecular mechanisms underlying spermatogenesis in naturally ascrotal mammals. Although we found a conserved genomic arrangement for PRM and TNP genes across mammals, the coevolutionary loss of intact PRM2 and TNP2 was observed in several species, correlating significantly with diverse testicular positions. Notably, in cetaceans, which lack intact PRM2 and TNP2, we detected enhanced thermostability and DNA binding in PRM1, along with superior DNA repair capability in TNP1. These findings suggest that gene loss of PRM2 and TNP2, combined with functional enhancements in PRM1 and TNP1 proteins, evolved in response to physiological challenges posed by natural cryptorchidism in most ascrotal lineages. This evolutionary strategy enhances chromatin condensation efficiency and promotes DNA repair during spermatogenesis in natural cryptorchid mammals, supporting the Black Queen Hypothesis.
Collapse
Affiliation(s)
- Simin Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Jieqiong Kang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Tianzhen Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Zhou Y, Wang J, Zhang F, Pei L, Chang Y, Yan B, Wang H. DNA breakpoints and free DNA fragments as potential predictors of infertility. Sci Rep 2024; 14:29665. [PMID: 39613921 DOI: 10.1038/s41598-024-81252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
The study investigated the impact of varicocele on male infertility by analyzing sperm samples from 42 varicocele patients and 22 healthy individuals. Basic sperm parameters such as concentration and vitality were assessed, along with the DNA Fragmentation Index (DFI) using the SCSA method. Additionally, the mean number of sperm DNA breaks (MDB) and free DNA fragments amount in seminal plasma (fDFA) were analyzed using the TDT-Strand Displacement Probe Technique. Results showed higher levels of DFI, MDB, and fDFA in varicocele-related infertility cases. Combining MDB and fDFA proved more effective in predicting fertility compared to individual assessments or the DFI alone. While these findings suggest a potential role for MDB and fDFA as predictors of male fertility, further rigorous studies are needed to validate their application in varicocele-related male infertility.
Collapse
Affiliation(s)
- Yue Zhou
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750004, China
| | - Liguo Pei
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yue Chang
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, China.
| | - Bei Yan
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
- Institute of Reproductive Health, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Hongyan Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Yang Y, Yang L, Han X, Wu K, Mei G, Wu B, Cheng Y. The regulation role of calcium channels in mammalian sperm function: a narrative review with a focus on humans and mice. PeerJ 2024; 12:e18429. [PMID: 39469589 PMCID: PMC11514763 DOI: 10.7717/peerj.18429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Mammalian sperm are characterized as specialized cells, as their transcriptional and translational processes are largely inactive. Emerging researches indicate that Ca2+ serves as a crucial second messenger in the modulation of various sperm physiological processes, such as capacitation, hyperactivation, and the acrosome reaction. Specifically, sperm-specific calcium channels, including CatSper, voltage-gated calcium channels (VGCCs), store-operated calcium channels (SOCCs), and cyclic nucleotide-gated (CNG) channels, are implicated in the regulation of calcium signaling in mammalian sperm. Calcium stores located in the sperm acrosomes, along with the IP3 receptors in the neck of the redundant nuclear envelope and the mitochondria in the tail, play significant roles in modulating intracellular Ca2+ levels in sperm. However, the functions and mechanisms of these calcium channels in modulating mammalian sperm physiological functions have not yet been well elucidated. Therefore, by focusing on humans and mice, this study aims to provide a comprehensive review of the current advancements in research regarding the roles of calcium signaling and associated calcium channels in regulating sperm function. This endeavor seeks to enhance the understanding of calcium signaling in sperm regulation and to facilitate the development of drugs for the treatment of infertility or as non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Yebin Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Liu Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Xiaoqun Han
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Kuaiying Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Baojian Wu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Ribas-Maynou J, Muiño R, Tamargo C, Yeste M. Cryopreservation of bovine sperm causes single-strand DNA breaks that are localized in the toroidal regions of chromatin. J Anim Sci Biotechnol 2024; 15:140. [PMID: 39394604 PMCID: PMC11470689 DOI: 10.1186/s40104-024-01099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Sperm cryopreservation is widely used in the cattle industry, as it allows for disassociating the localization of sires and the collection of semen from the timing of artificial insemination. While freeze-thawing is known to impair sperm DNA integrity, whether the damage induced consists of single- (SSB) or double-strand breaks (DSB) has not been determined. In addition, no previous study has addressed if DNA breaks preferentially reside in specific genome regions such as those forming the toroid linker regions, or are rather spread throughout the regions linked to protamines. The main aim of the present work, therefore, was to elucidate the type and localization of the DNA damage generated by cryopreservation and to evaluate its impact on artificial insemination outcomes in cattle. RESULTS The incidence of SSB and DSB was evaluated in 12 ejaculates before and after cryopreservation with the Comet assay, and the localization of the DNA breaks was assessed using pulsed-field gel electrophoresis (PFGE). Before cryopreservation, the incidence of SSB was 10.99% ± 4.62% and involved 20.56% ± 3.04% of sperm cells, whereas these figures significantly (P < 0.0001) increased up to 34.11% ± 3.48% and 53.36% ± 11.00% in frozen-thawed sperm. In contrast, no significant differences in the incidence of DSB were observed (P > 0.990) before and after cryopreservation (before: incidence of 13.91% ± 1.75% of sperm DNA affecting 56.04% ± 12.49% of sperm cells; after: incidence of 13.55% ± 1.55% of sperm DNA involving 53.36% ± 11.00% of sperm cells). Moreover, PFGE revealed that the percentage of sperm DNA fragments whose length was shorter than a toroid (< 31.5 kb) was greater (P < 0.0001) after (27.00% ± 4.26%) than before freeze-thawing (15.57% ± 4.53%). These differences indicated that the DNA breaks induced by cryopreservation affect the regions condensed in protamines, which are structured in toroids. On the other hand, in vivo fertility rates were associated to the incidence of SSB and DSB in frozen-thawed sperm (P = 0.032 and P = 0.005), but not with the size of the DNA fragments resulting from these breaks (P > 0.05). CONCLUSION Cryopreservation of bovine sperm generates single-strand DNA breaks, which are mainly located in protamine-condensed toroidal regions. The incidence of DNA breaks in cryopreserved sperm has an impact on cattle fertility, regardless of the size of generated fragments.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology and Medical Genetics; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, S08193, Bellaterra, Spain.
| | - Rodrigo Muiño
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Santiago de Compostela, S15705, Lugo, Spain
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), S33394, Gijón, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain
| |
Collapse
|
6
|
Delgado-Bermúdez A. Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. Anim Reprod Sci 2024; 269:107547. [PMID: 38981798 DOI: 10.1016/j.anireprosci.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain.
| |
Collapse
|
7
|
Byeun DG, Kim D, Park JH, Lee M, Choi JK. Embryonic development through in vitro fertilization using high-quality bovine sperm separated in a biomimetic cervix environment. Analyst 2024; 149:3078-3084. [PMID: 38717228 DOI: 10.1039/d4an00166d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.
Collapse
Affiliation(s)
- Do Gyeung Byeun
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea.
| | - Dongwon Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Jin Hee Park
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea.
| | - Manhee Lee
- Department of Physics, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
8
|
Buranaamnuay K. Male reproductive phenotypes of genetically altered laboratory mice ( Mus musculus): a review based on pertinent literature from the last three decades. Front Vet Sci 2024; 11:1272757. [PMID: 38500604 PMCID: PMC10944935 DOI: 10.3389/fvets.2024.1272757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Laboratory mice (Mus musculus) are preferred animals for biomedical research due to the close relationship with humans in several aspects. Therefore, mice with diverse genetic traits have been generated to mimic human characteristics of interest. Some genetically altered mouse strains, on purpose or by accident, have reproductive phenotypes and/or fertility deviating from wild-type mice. The distinct reproductive phenotypes of genetically altered male mice mentioned in this paper are grouped based on reproductive organs, beginning with the brain (i.e., the hypothalamus and anterior pituitary) that regulates sexual maturity and development, the testis where male gametes and sex steroid hormones are produced, the epididymis, the accessory sex glands, and the penis which involve in sperm maturation, storage, and ejaculation. Also, distinct characteristics of mature sperm from genetically altered mice are described here. This repository will hopefully be a valuable resource for both humans, in terms of future biomedical research, and mice, in the aspect of the establishment of optimal sperm preservation protocols for individual mouse strains.
Collapse
Affiliation(s)
- Kakanang Buranaamnuay
- Molecular Agricultural Biosciences Cluster, Institute of Molecular Biosciences (MB), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
9
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
10
|
Das P, Mitra D, Jana K, Ghosh D. In Vitro Study on Spermicidal Action of Hydro-methanol Extract of Tinospora cordifolia (Willd.) Stem in Rat and Human Sperm: a Comparative Analysis. Reprod Sci 2023; 30:3480-3494. [PMID: 37640890 DOI: 10.1007/s43032-023-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Human fertility regulation is a major way to control overpopulation. In this perspective, this study emphasized the in vitro effect of hydro-methanol extract of Tinospora cordifolia (TCHME) stem for spermicidal and reproductive hypo-functions using human and rat samples. Control, 0.5-, 1-, and 2-mg TCHME-charged groups were considered to assess the relevant parameters. Levels of spermiological parameters like sperm motility, viability, the integrity of plasma and acrosomal membrane, and nuclear chromatin decondensation were significantly reduced (p < 0.05) in the dose- and duration-dependent TCHME-charged groups compared to the control. The inhibitory concentration 50 (IC50) of TCHME on motile human and rat sperms were 0.8 and 0.4 mg/ml, respectively. Testicular androgenic key enzymes and antioxidant enzymes (human sperm pellet, testes, and epididymis of rat)' activities were significantly diminished (p < 0.05), while antioxidant enzymes' activities were significantly elevated (p < 0.05) in renal and insignificantly (p > 0.05) elevated in hepatic tissues of rat in TCHME-charged groups compared to the control. Significant elevation (p < 0.05) of thiobarbituric acid reactive substances (TBARS)' level in human sperm pellet, testes, and epididymis of rats and significant diminution (p < 0.05) in TBARS levels of liver and kidney were observed in TCHME-charged groups. It focused that TCHME is more potent for stress imposition on reproductive tissues and sperm compared to the other tested tissues. Non-significant alterations (p > 0.05) in glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the said organs of rat indicated its non-toxic effect. It highlighted that TCHME possesses spermicidal and reproductive tissue-specific effects which strengthen the possibilities of male contraceptive development from it.
Collapse
Affiliation(s)
- Puja Das
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Dipanwita Mitra
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN 80, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Debidas Ghosh
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
11
|
Pendina AA, Krapivin MI, Sagurova YM, Mekina ID, Komarova EM, Tikhonov AV, Golubeva AV, Gzgzyan AM, Kogan IY, Efimova OA. Telomere Length in Human Spermatogenic Cells as a New Potential Predictor of Clinical Outcomes in ART Treatment with Intracytoplasmic Injection of Testicular Spermatozoa. Int J Mol Sci 2023; 24:10427. [PMID: 37445605 DOI: 10.3390/ijms241310427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Predicting the clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles that use the testicular spermatozoa of azoospermic patients presents a challenge. Thus, the development of additional approaches to assessing the competence of a testicular-sperm-derived embryo without causing damage to gametes or the embryo is necessary. One of the key parameters in determining such developmental competence is telomere length (TL). We aimed to analyze TLs in spermatogenic cells from the testicular biopsy samples of azoospermic patients and determine how this parameter influences embryo competence for pre- and post-implantation development. Using Q-FISH, we studied the TL of the chromosomes in spermatogonia and spermatocytes I from the TESE biopsy samples of 30 azoospermic patients. An increase in TL was detected during the differentiation from spermatogonia to spermatocytes I. The patients' testicular spermatozoa were used in 37 ICSI cycles that resulted in 22 embryo transfers. Nine pregnancies resulted, of which, one was ectopic and eight ended in birth. The analysis of embryological outcomes revealed a dependence between embryo competence for development to the blastocyst stage and the TL in spermatogenic cells. The TLs in spermatogonia and spermatocytes I in the testicular biopsy samples were found to be higher in patients whose testicular sperm ICSI cycles resulted in a birth. Therefore, the length of telomeres in spermatogenic cells can be considered as a potential prognostic criterion in assessing the competence of testicular-sperm-derived embryos for pre- and post-implantation development. The results of this study provide the basis for the development of a laboratory test for the prediction of testicular sperm ICSI cycle outcomes.
Collapse
Affiliation(s)
- Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Mikhail I Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Yanina M Sagurova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Irina D Mekina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Evgeniia M Komarova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Arina V Golubeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Alexander M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| |
Collapse
|
12
|
Riveros JAN, Pereira IC, Teixeira ACB, Diniz JHW, Borges AM, Díaz JFG, Beletti ME, Oliveira LZ. Sperm head morphometry and chromatin alterations in bulls with different conception rates. Anim Reprod Sci 2023; 255:107275. [PMID: 37311270 DOI: 10.1016/j.anireprosci.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The objective of this investigation was to analyze timed-AI conception rates (CRs) of different sires in light of their conventional semen quality parameters, sperm head morphometry, and chromatin alterations. Semen was collected in the field from six Angus bulls and used for the timed-AI of 890 suckled multiparous Nellore cows at a single farm. Semen batches were evaluated on the following in vitro parameters: sperm motility, concentration, and morphology, sperm head morphometry, and chromatin alteration types. The overall CR was 49% and Bulls 1 (43%) and 2 (40%) presented reduced (P < 0.05) pregnancies per AI compared to Bull 6 (61%), even though no differences were observed between their conventional semen quality parameters. Bull 1, however, presented higher (P = 0.0001) shape factor, smaller (P = 0.0025) antero-posterior symmetry, and elevated (P = 0.0141) Fourier 1 parameter, whereas Bull 2 exhibited a higher (P = 0.0023) percentage of chromatin alteration along the central axis of the sperm head. In conclusion, bulls with varying CRs may present sperm head morphometric differences and/or chromatin alterations while not presenting differences in conventional in vitro semen quality parameters. Although further studies are needed to elucidate the concrete implications of chromatin alterations on field fertility, sperm morphometric differences and chromatin alterations may be at least partially causative of the lower pregnancies per timed-AI of certain sires.
Collapse
Affiliation(s)
- José Andrés Nivia Riveros
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Isabelle Cristina Pereira
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Ana Carolina Bahia Teixeira
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Juliana Horta Wilke Diniz
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Alan Maia Borges
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Juan Felipe García Díaz
- Faculty of Veterinary Medicine and Animal Science, National University of Colombia, Bogotá 111321, Colombia
| | - Marcelo Emílio Beletti
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlândia, MG 38400-902, Brazil
| | - Leticia Zoccolaro Oliveira
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
13
|
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr Issues Mol Biol 2023; 45:4716-4734. [PMID: 37367049 DOI: 10.3390/cimb45060300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Collapse
Affiliation(s)
- Sanja Ozimic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Ban-Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Maside C, Recuero S, Salas-Huetos A, Ribas-Maynou J, Yeste M. Animal board invited review: An update on the methods for semen quality evaluation in swine - from farm to the lab. Animal 2023; 17:100720. [PMID: 36801527 DOI: 10.1016/j.animal.2023.100720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Pig breeding is mainly conducted through artificial insemination with liquid-stored semen. It is, therefore, crucial to ensure that sperm quality is over the standard thresholds, as reduced sperm motility, morphology or plasma membrane integrity are associated with reduced farrowing rates and litter sizes. This work aims to summarise the methods utilised in farms and research laboratories to evaluate sperm quality in pigs. The conventional spermiogram consists in the assessment of sperm concentration, motility and morphology, which are the most estimated variables in farms. Yet, while the determination of these sperm parameters is enough for farms to prepare seminal doses, other tests, usually carried out in specialised laboratories, may be required when boar studs exhibit a decreased reproductive performance. These methods include the evaluation of functional sperm parameters, such as plasma membrane integrity and fluidity, intracellular levels of calcium and reactive oxygen species, mitochondrial activity, and acrosome integrity, using fluorescent probes and flow cytometry. Furthermore, sperm chromatin condensation and DNA integrity, despite not being routinely assessed, may also help determine the causes of reduced fertilising capacity. Sperm DNA integrity can be evaluated through direct (Comet, transferase deoxynucleotide nick end labelling (TUNEL) and its in situ nick variant) or indirect tests (Sperm Chromatin Structure Assay, Sperm Chromatin Dispersion Test), whereas chromatin condensation can be determined with Chromomycin A3. Considering the high degree of chromatin packaging in pig sperm, which only have protamine 1, growing evidence suggests that complete decondensation of that chromatin is needed before DNA fragmentation through TUNEL or Comet can be examined.
Collapse
Affiliation(s)
- Carolina Maside
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Sandra Recuero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain.
| |
Collapse
|
15
|
Ruiz-Díaz S, Mazzarella R, Navarrete-López P, Fernández-González R, de Frutos C, Maroto M, Cucala C, Beltrán-Breña P, Lombó M, Rizos D, Gutiérrez-Adán A. Bull spermatozoa selected by thermotaxis exhibit high DNA integrity, specific head morphometry, and improve ICSI outcome. J Anim Sci Biotechnol 2023; 14:11. [PMID: 36627704 PMCID: PMC9832681 DOI: 10.1186/s40104-022-00810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sperm migration by thermotaxis is a guidance mechanism that operates along the oviduct and it has proved to be a valid method for selecting spermatozoa with low DNA fragmentation (SDF) in mice, humans, and stallions. This study aimed to analyse if bull spermatozoa could be selected by thermotaxis and to assess their quality in terms of SDF as well as determine the presence of a specific sperm subpopulation based on sperm morphometry and assess their fertilizing capacity by ICSI. METHODS We used frozen-thawed sperm from 6 bulls and sperm selection by thermotaxis was performed with TALP medium supplemented with 25 mmol/L of HEPES and 5 mmol/L of caffeine. In these conditions, sperm selection was achieved, obtaining a net thermotaxis of 3.6%. Subsequently, we analysed the SDF of the migrated and not-migrated spermatozoa using the neutral COMET assay, and we evaluated the size of the sperm head using Hemacolor® staining with Motic Images Plus 3 software. Additionally, migrated and not-migrated spermatozoa by thermotaxis were used to fertilize bovine in vitro matured (IVM) oocytes by ICSI, a very inefficient procedure in cattle that is only successful when the oocyte is artificially activated. RESULTS The results showed lower SDF (χ², P < 0.001, 13.3% reduction, n = 8) and lower head size parameters (length and width, P < 0.01; and perimeter and area, P < 0.001; n = 4) in those spermatozoa migrated in comparison to those not-migrated. The distribution of sperm subpopulations structure varied between groups, highlighting cluster 2, characterized by spermatozoa with small head size, and high ellipticity and elongated heads, as the most abundant in the thermotaxis migrated group. When performed ICSI (without oocyte artificial activation) with the thermotactic sperm, the blastocyst rate was 32.2% ± 9.3% in the group microinjected with the thermotactic spermatozoa vs. 8.3% ± 7.8% in the group of not-migrated sperm (χ², P < 0.05). CONCLUSION Our results showed that bull sperm selection by thermotaxis has a much higher DNA integrity, small and elongated head size parameters, and different sperm subpopulation structure than the not-selected spermatozoa. Additionally, we evidenced that thermotactic spermatozoa improve ICSI success rates.
Collapse
Affiliation(s)
- Sara Ruiz-Díaz
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
- Mistral Fertility Clinics S.L, Clínica Tambre, Calle Tambre, 8, 28002, Madrid, Spain
| | | | | | | | - Celia de Frutos
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - Claudia Cucala
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | | | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | | |
Collapse
|
16
|
Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim Reprod Sci 2022; 246:106904. [PMID: 34887155 DOI: 10.1016/j.anireprosci.2021.106904] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Sperm cryopreservation is one of the most important procedures in the development of biotechnologies for assisted reproduction. In some farm animals, the use of cryopreserved sperm has so many benefits for which relevance has become more evident in recent decades. Values for post-thaw sperm quality, however, are variable among species and within individuals of the same species. There is no standardized methodology for each of the stages of the cryopreservation procedure (andrological examination, semen collection, dilution, centrifugation, resuspension of the pellet with the freezing medium, packaging, freezing and post-thaw sperm evaluation), which also contributes to differences among studies. Cryotolerance markers of sperm and seminal plasma (SP) have been evaluated for prediction of ejaculate freezability. In addition, in previous research, there has been a focus on supplementing cryopreservation media with different substances, such as enzymatic and non-enzymatic antioxidants. In most studies, inclusion of these substances have led to improved post-thaw sperm quality and fertilizing capacity as a result of minimizing the adverse effects on sperm structure and function. Another approach is the use of different cryoprotectants. The aim with this review article is to provide an update on sperm cryopreservation in farm animals. The main detrimental effects of cryopreservation are described, including the negative repercussion on reproductive performance. Furthermore, the potential use of molecular biomarkers to predict sperm cryotolerance is discussed, as well as the addition of substances that can mitigate the harmful impact of freezing and thawing on sperm.
Collapse
|
17
|
Ribas-Maynou J, Delgado-Bermúdez A, Mateo-Otero Y, Viñolas E, Hidalgo CO, Ward WS, Yeste M. Determination of double- and single-stranded DNA breaks in bovine sperm is predictive of their fertilizing capacity. J Anim Sci Biotechnol 2022; 13:105. [PMID: 36114517 PMCID: PMC9482281 DOI: 10.1186/s40104-022-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The analysis of chromatin integrity has become an important determinant of sperm quality. In frozen-thawed bovine sperm, neither the sequence of post-thaw injury events nor the dynamics of different types of sperm DNA breaks are well understood. The aim of the present work was to describe such sperm degradation aftermath focusing on DNA damage dynamics, and to assess if this parameter can predict pregnancy rates in cattle. RESULTS A total of 75 cryopreserved ejaculates from 25 Holstein bulls were evaluated at two post-thawing periods (0-2 h and 2-4 h), analyzing global and double-stranded DNA damage through alkaline and neutral Comet assays, chromatin deprotamination and decondensation, sperm motility, viability, acrosomal status, and intracellular levels of total ROS, superoxides and calcium. Insemination of 59,605 females was conducted using sperm from the same bulls, thus obtaining the non-return to estrus rates after 90 d (NRR). Results showed an increased rate of double-stranded breaks in the first period (0-2 h: 1.29 ± 1.01%/h vs. 2-4 h: 0.13 ± 1.37%/h; P < 0.01), whereas the rate of sperm with moderate + high single-stranded breaks was higher in the second period (0-2 h: 3.52 ± 7.77 %/h vs. 2-4h: 21.06 ± 11.69 %/h; P < 0.0001). Regarding sperm physiology, viability decrease rate was different between the two periods (0-2 h: - 4.49 ± 1.79%/h vs. 2-4 h: - 2.50 ± 3.39%/h; P = 0.032), but the progressive motility decrease rate was constant throughout post-thawing incubation (0-2 h: - 4.70 ± 3.42%/h vs. 2-4 h: - 1.89 ± 2.97%/h; P > 0.05). Finally, whereas no correlations between bull fertility and any dynamic parameter were found, there were correlations between the NRR and the basal percentage of highly-damaged sperm assessed with the alkaline Comet (Rs = - 0.563, P = 0.003), between NRR and basal progressive motility (Rs = 0.511, P = 0.009), and between NRR and sperm with high ROS at 4 h post-thaw (Rs = 0.564, P = 0.003). CONCLUSION The statistically significant correlations found between intracellular ROS, sperm viability, sperm motility, DNA damage and chromatin deprotamination suggested a sequence of events all driven by oxidative stress, where viability and motility would be affected first and sperm chromatin would be altered at a later stage, thus suggesting that bovine sperm should be used for fertilization within 2 h post-thaw. Fertility correlations supported that the assessment of global DNA damage through the Comet assay may help predict bull fertility.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain. .,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain. .,Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Carlos O Hidalgo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), ES-33394, Gijón, Spain
| | - W Steven Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/ Maria Aurèlia Campany, 69, ES-17003, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), ES-08010, Barcelona, Spain
| |
Collapse
|
18
|
Akhtar MF, Ma Q, Li Y, Chai W, Zhang Z, Li L, Wang C. Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals (Basel) 2022; 12:ani12172277. [PMID: 36077996 PMCID: PMC9454492 DOI: 10.3390/ani12172277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Sperm cryopreservation is one of the sublime biotechnologies for assisted reproduction. In recent decades, there has been an increasing trend in the use of preserved semen. Post-thaw semen quality and values vary among animals of the same species. Similarly, there are species-specific variations in sperm morphology, i.e., sperm head, kinetic properties, plasma membrane integrity, and freezability. Similarly, the viability of sperm varies in the female reproductive tract, i.e., from a few hours (in cattle) to several days (in chicken). Various steps of sperm cryopreservation, i.e., male health examination, semen collection, dilution, semen centrifugation, pre- and post-thaw semen quality evaluation, lack standardized methodology, that result in differences in opinions. Assisted reproductive technologies (ART), including sperm preservation, are not applied to the same extent in commercial poultry species as in mammalian species for management and economic reasons. Sperm preservation requires a reduction in physiological metabolism by extending the viable duration of the gametes. Physiologically and morphologically, spermatozoa are unique in structure and function to deliver paternal DNA and activate oocytes after fertilization. Variations in semen and sperm composition account for better handling of semen, which can aid in improved fertility. This review aims to provide an update on sperm cryopreservation in farm animals.
Collapse
|
19
|
Daigneault BW. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Front Genet 2022; 13:909804. [PMID: 36061209 PMCID: PMC9437210 DOI: 10.3389/fgene.2022.909804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
This mini-review focuses on current knowledge regarding maternal regulation of the paternal genome in early embryos of mammalian livestock species. Emphasis has been placed on regulatory events described for maternally imprinted genes and further highlights transcriptional regulation of the post-fertilization paternal genome by maternal factors. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation by the maternal embryo environment, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include molecular and genomic studies across large domestic animals and humans with reference to founding experimental animal models.
Collapse
|
20
|
Ribas-Maynou J, Llavanera M, Mateo-Otero Y, Ruiz N, Muiño R, Bonet S, Yeste M. Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology 2022; 189:290-300. [DOI: 10.1016/j.theriogenology.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
21
|
Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes. Animals (Basel) 2022; 12:ani12020204. [PMID: 35049825 PMCID: PMC8773156 DOI: 10.3390/ani12020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Understanding how gamete chromatin influences fertilization is highly important not only to improve animal production, but also to develop new biomarkers helping in the selection of those animals with higher fertility potential. In this regard, sperm telomere length has been pointed out as a putative biomarker in human infertility, but no studies have been conducted into its influence in pig fertility. Here, we determined that sperm telomere length is independent from the conventional sperm quality parameters and, through the production of in vitro embryos, we showed that it is indicative of the percentage of morulae and blastocysts, thus becoming useful to be used as biomarker in this species. Abstract Telomere length has attracted much interest as a topic of study in human reproduction; furthermore, the link between sperm telomere length and fertility outcomes has been investigated in other species. This biomarker, however, has not been much explored in other animals, such as pigs, and whether it is related to sperm quality and fertility outcomes remains unknown. The present work aimed to determine the absolute value of telomere length in pig sperm, as well as its relationship to sperm quality parameters and embryo development. Telomere length was determined through quantitative fluorescence in situ hybridization (qFISH) in 23 pig sperm samples and data were correlated to quality parameters (motility, morphology, and viability) and in vitro fertilization outcomes. We found that the mean telomere length in pig sperm was 22.1 ± 3.6 kb, which is longer than that previously described in humans. Whilst telomere length was not observed to be correlated to sperm quality variables (p > 0.05), a significant correlation between telomere length and the percentage of morulae 6 days after in vitro fertilization was observed (rs = 0.559; 95% C.I. = (−0.007 to 0.854); p = 0.047). Interestingly, this correlation was not found when percentages of early blastocysts/blastocysts (rs = 0.410; 95% C.I. = (−0.200 to 0.791); p = 0.164) and of hatching/hatched blastocysts (rs = 0.356; 95% C.I. = (− 0.260 to 0.766); p = 0.233) were considered. Through the separation of the samples into two groups by the median value, statistically significant differences between samples with shorter telomeres than the median and samples with longer telomeres than the median were found regarding development to morula (11.5 ± 3.6 vs. 21.8 ± 6.9, respectively) and to early blastocyst/blastocysts (7.6 ± 1.4 vs. 17.9 ± 12.2, respectively) (p < 0.05). In the light of these results, sperm telomere length may be a useful biomarker for embryo development in pigs, as sperm with longer telomeres lead to higher rates of morulae and blastocysts.
Collapse
|
22
|
Ribas-Maynou J, Llavanera M, Mateo-Otero Y, Garcia-Bonavila E, Delgado-Bermúdez A, Yeste M. Direct but Not Indirect Methods Correlate the Percentages of Sperm With Altered Chromatin to the Intensity of Chromatin Damage. Front Vet Sci 2021; 8:719319. [PMID: 34746276 PMCID: PMC8570191 DOI: 10.3389/fvets.2021.719319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Although sperm chromatin damage, understood as damage to DNA or affectations in sperm protamination, has been proposed as a biomarker for sperm quality in both humans and livestock, the low incidence found in some animals raises concerns about its potential value. In this context, as separate methods measure different facets of chromatin damage, their comparison is of vital importance. This work aims at analyzing eight techniques assessing chromatin damage in pig sperm. With this purpose, cryopreserved sperm samples from 16 boars were evaluated through the following assays: TUNEL, TUNEL with decondensation, SCSA, alkaline and neutral sperm chromatin dispersion (SCD) tests, alkaline and neutral Comet assays, and chromomycin A3 test (CMA3). In all cases, the extent of chromatin damage and the percentage of sperm with fragmented DNA were determined. The degree of chromatin damage and the percentage of sperm with fragmented DNA were significantly correlated (p < 0.05) in direct methods (TUNEL, TUNEL with decondensation, and alkaline and neutral Comet) and CMA3, but not in the indirect ones (SCD and SCSA). Percentages of sperm with fragmented DNA determined by alkaline Comet were significantly (p < 0.05) correlated with TUNEL following decondensation and CMA3; those determined by neutral Comet were correlated with the percentage of High DNA Stainability (SCSA); those determined by SCSA were correlated with neutral and alkaline SCD; and those determined by neutral SCD were correlated with alkaline SCD. While, in pigs, percentages of sperm with fragmented DNA are directly related to the extent of chromatin damage when direct methods are used, this is not the case for indirect techniques. Thus, the results obtained herein differ from those reported for humans in which TUNEL, SCSA, alkaline SCD, and alkaline Comet were found to be correlated. These findings may shed some light on the interpretation of these tests and provide some clues for the standardization of chromatin damage methods.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
23
|
Ribas-Maynou J, Garcia-Bonavila E, Bonet S, Catalán J, Salas-Huetos A, Yeste M. The TUNEL assay underestimates the incidence of DNA damage in pig sperm due to chromatin condensation. Theriogenology 2021; 174:94-101. [PMID: 34425305 DOI: 10.1016/j.theriogenology.2021.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Inconsistencies in the relationship between sperm DNA fragmentation and reproductive outcomes as well as the low incidence in farm animals raise concerns on its actual value as a sperm quality parameter. Previous studies suggested that the different sensitivity of techniques evaluating DNA fragmentation could explain variations in the correlation with reproductive outcomes. While the TUNEL assay is one of the most standardized methods to detect DNA damage and cell death, the steric impediment for the terminal nucleotidyl transferase enzyme to access the highly condensed sperm nucleus may decrease the ability of this test to detect internal DNA breaks. In the present study, we sought to determine whether increasing chromatin decondensation makes the TUNEL assay more sensitive to detect DNA damage in pig sperm. We compared three chromatin decondensation treatments (2 mM DTT for 45 min; 5 mM DTT for 8 min and further 45 min; and 5 mM DTT+ 1 M NaCl for 8 min) through the Chromomycin A3 test (CMA3). While incubation with DTT increased the percentages of sperm with decondensed chromatin, regardless of concentration and time of incubation (P < 0.05), the extent of that decondensation was higher when 5 mM DTT was combined with 1 M NaCl. In addition, the TUNEL assay detected a higher number of DNA breaks in sperm with decondensed chromatin (1.89% ± 1.63% vs 8.74% ± 6.05%; P = 0.003). This study shows, for the first time, that previous chromatin decondensation increases the sensitivity of the TUNEL assay to detect DNA damage in pig sperm. These findings also support that larger chromatin decondensation is needed in order for DNA damage to be evaluated properly in species containing protamine P1 only.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Jaime Catalán
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Albert Salas-Huetos
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| |
Collapse
|
24
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
25
|
Ribas-Maynou J, Delgado-Bermúdez A, Garcia-Bonavila E, Pinart E, Yeste M, Bonet S. Complete Chromatin Decondensation of Pig Sperm Is Required to Analyze Sperm DNA Breaks With the Comet Assay. Front Cell Dev Biol 2021; 9:675973. [PMID: 34195195 PMCID: PMC8236647 DOI: 10.3389/fcell.2021.675973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Sperm quality is usually evaluated prior to artificial insemination in farm animals. In addition to conventional semen analysis, other biomarkers, such as mitochondrial activity, integrity and lipid disorder of plasma membrane, generation of reactive oxygen species (ROS) and sperm DNA integrity, have been found to be related to fertility rates in different species. While mounting evidence indicates that the Comet assay is a sensitive method for the detection of DNA breaks, complete sperm chromatin decondensation is required in order to properly analyze the presence of single- and double-strand DNA breaks. In this sense, a previous study showed that longer lysis treatment with proteinase K is needed to achieve complete chromatin decondensation. The current work sought to determine which specific lysis treatment leads to complete chromatin decondensation in pig sperm, as this is needed for the measurement of DNA damage in this species. With this purpose, incubation with a lysis solution containing proteinase K for 0, 30, and 180 min was added to the conventional protocol. The impact of the DNA damage induced by hydrogen peroxide (H2O2; 0.01 and 0.1%) and DNAse I (1U and 4U) was also evaluated. Complete chromatin decondensation was only achieved when a long additional lysis treatment (180 min) was included. Furthermore, olive tail moment (OTM) and percentage of tail DNA (TD) indicated that a higher amount of DNA breaks was detected when hydrogen peroxide and DNAse I treatments were applied (P < 0.05). The comparison of treated and control sperm allowed defining the thresholds for OTM; these thresholds revealed that the percentage of sperm with fragmented DNA determined by the alkaline Comet does not depend on chromatin decondensation (P > 0.05). In conclusion, complete chromatin decondensation prior to alkaline and neutral Comet assays is needed to analyze DNA breaks in pig sperm.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|