1
|
Vendrell JA, Cabello-Aguilar S, Senal R, Heckendorn E, Henry S, Godreuil S, Solassol J. Dysbiosis in Human Urinary Microbiota May Differentiate Patients with a Bladder Cancer. Int J Mol Sci 2024; 25:10159. [PMID: 39337643 PMCID: PMC11432408 DOI: 10.3390/ijms251810159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Recent interest in noninvasive diagnostic approaches has highlighted the potential of urinary microbiota as a novel biomarker for bladder cancer. This study investigated the urinary microbiota of 30 bladder cancer patients and 32 healthy controls using a specific NGS protocol that sequences eight hypervariable regions of the 16S rRNA gene, providing detailed insights into urinary microbiota composition. The relative abundance of microbial compositions in urine samples from cancer patients and healthy controls was analyzed across various taxonomic levels. No notable differences were highlighted at the phylum, class, order, and family levels. At the genus level, 53% of detected genera were represented in either cancer patients or healthy controls. Microbial diversity was significantly lower in cancer patients. The differential analysis identified five genera, Rhodanobacter, Cutibacterium, Alloscardovia, Moryella, and Anaeroglobus, that were significantly more abundant in cancer patients. Notably, Rhodanobacter was present in 20 cancer samples but absent in healthy controls. Conversely, 40 genera, including Lactobacillus, Propionibacterium, and Bifidobacterium, exhibited reduced abundance in cancer patients. These findings suggest that some genera may serve as potential biomarkers for bladder cancer, highlighting the need for further research to explore their roles in disease pathogenesis and their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Julie A Vendrell
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Simon Cabello-Aguilar
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Montpellier BioInformatique pour le Diagnostic Clinique (MoBiDiC), Plateau de Médecine Moléculaire et Génomique (PMMG), CHU Montpellier, 34295 Montpellier, France
| | - Romain Senal
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Institut du Cancer de Montpellier (ICM), Département de Biopathologie, 34295 Montpellier, France
| | - Elise Heckendorn
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Steven Henry
- Laboratoire de Bactériologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Jérôme Solassol
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Institut Régional du Cancer de Montpellier (IRCM), Université de Montpellier, ICM, Inserm, 34298 Montpellier, France
| |
Collapse
|
2
|
Pallares-Mendez R, Brassetti A, Bove AM, Simone G. Insights into the Interplay between the Urinary Microbiome and Bladder Cancer: A Comprehensive Review. J Clin Med 2024; 13:4927. [PMID: 39201069 PMCID: PMC11355659 DOI: 10.3390/jcm13164927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
New insights in the urinary microbiome have led to a better understanding being built of the shifts in bacterial representations from health to disease; these hold promise as markers for diagnosis and therapeutic responses. Although several efforts have been made to identify a "core urinary microbiome", different fingerprints have been identified in men and women that shift with age. The main bacterial groups overall include Firmicutes, Actinobacteria, Fusobacteria, and Bacteroidetes. Although patients with bladder cancer have a microbiome that is similar to that of healthy individuals, differences have been observed at the species level with Fusobacterium nucleatum and Ralstonia, and at the genus level with Cutibacterium. Different bacterial representations may influence extracellular matrix composition, affecting tumor metastatic spreading and tumorigenic metalloproteinase expression. Furthermore, gene expression affecting targets of immune therapy, such as PD-L1, has been associated with changes in bacterial representations and therapeutic response to BCG. This comprehensive review aims to examine the influence of the urinary microbiome in bladder cancer.
Collapse
Affiliation(s)
| | - Aldo Brassetti
- Department of Urology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00128 Rome, Italy; (R.P.-M.)
| | | | | |
Collapse
|
3
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2024:S1078-1439(24)00541-6. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
4
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Lou K, Chi J, Wu J, Ma J, Liu S, Cui Y. Research progress on the microbiota in bladder cancer tumors. Front Cell Infect Microbiol 2024; 14:1374944. [PMID: 38650736 PMCID: PMC11033431 DOI: 10.3389/fcimb.2024.1374944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.
Collapse
Affiliation(s)
- Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shu Liu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
6
|
Liu Z, Du D, Zhang S. Integrated bioinformatics analysis identifies a Ferroptosis-related gene signature as prognosis model and potential therapeutic target of bladder cancer. Toxicol Res (Camb) 2024; 13:tfae010. [PMID: 38292893 PMCID: PMC10822837 DOI: 10.1093/toxres/tfae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Background Bladder cancer (BLCA) is one of the most prevalent cancers worldwide. Ferroptosis is a newly discovered form of non-apoptotic cell death that plays an important role in tumors. However, the prognostic value of ferroptosis-related genes (FRGs) in BLCA has not yet been well studied. Method and materials In this study, we performed consensus clustering based on FRGS and categorized BLCA patients into 2 clusters (C1 and C2). Immune cell infiltration score and immune score for each sample were computed using the CIBERSORT and ESTIMATE methods. Functional annotation of differentially expressed genes were performed by Gene Ontology (GO) and KEGG pathway enrichment analysis. Protein expression validation were confirmed in Human Protein Atlas. Gene expression validation were performed by qPCR in human bladder cancer cell lines lysis samples. Result C2 had a significant survival advantage and higher immune infiltration levels than C1. Additionally, C2 showed substantially higher expression levels of immune checkpoint markers than C1. According to the Cox and LASSO regression analyses, a novel ferroptosis-related prognostic signature was developed to predict the prognosis of BLCA effectively. High-risk and low-risk groups were divided according to risk scores. Kaplan-Meier survival analyses showed that the high-risk group had a shorter overall survival than the low-risk group throughout the cohort. Furthermore, a nomogram combining risk score and clinical features was developed. Finally, SLC39A7 was identified as a potential target in bladder cancer. Discussion In conclusion, we identified two ferroptosis-clusters with different prognoses using consensus clustering in BLCA. We also developed a ferroptosis-related prognostic signature and nomogram, which could indicate the outcome.
Collapse
Affiliation(s)
- Zonglai Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, No. 8, University Avenue, Yichang 443002, Hubei Province, China
- Medical College, China Three Gorges University, No. 8, University Avenue, Yichang 443002, Hubei Province, China
- Department of Urology, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, No. 21, Xiling 1st Road, Yichang 443008, Hubei Province, China
| | - Dan Du
- Department of Urology, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, No. 21, Xiling 1st Road, Yichang 443008, Hubei Province, China
| | - Shizhong Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, No. 8, University Avenue, Yichang 443002, Hubei Province, China
- Medical College, China Three Gorges University, No. 8, University Avenue, Yichang 443002, Hubei Province, China
| |
Collapse
|