1
|
Bernabéu-Herrero ME, Patel D, Bielowka A, Zhu J, Jain K, Mackay IS, Chaves Guerrero P, Emanuelli G, Jovine L, Noseda M, Marciniak SJ, Aldred MA, Shovlin CL. Mutations causing premature termination codons discriminate and generate cellular and clinical variability in HHT. Blood 2024; 143:2314-2331. [PMID: 38457357 PMCID: PMC11181359 DOI: 10.1182/blood.2023021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.
Collapse
Affiliation(s)
- Maria E. Bernabéu-Herrero
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Dilipkumar Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Adrianna Bielowka
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - JiaYi Zhu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kinshuk Jain
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Ian S. Mackay
- Ear, Nose and Throat Surgery, Charing Cross and Royal Brompton Hospitals, London, United Kingdom
| | | | - Giulia Emanuelli
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Micheala A. Aldred
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
- Specialist Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
2
|
Kuret T, Sodin-Šemrl S, Leskošek B, Ferk P. Single Cell RNA Sequencing in Autoimmune Inflammatory Rheumatic Diseases: Current Applications, Challenges and a Step Toward Precision Medicine. Front Med (Lausanne) 2022; 8:822804. [PMID: 35118101 PMCID: PMC8804286 DOI: 10.3389/fmed.2021.822804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Single cell RNA sequencing (scRNA-seq) represents a new large scale and high throughput technique allowing analysis of the whole transcriptome at the resolution of an individual cell. It has emerged as an imperative method in life science research, uncovering complex cellular networks and providing indices that will eventually lead to the development of more targeted and personalized therapies. The importance of scRNA-seq has been particularly highlighted through the analysis of complex biological systems, in which cellular heterogeneity is a key aspect, such as the immune system. Autoimmune inflammatory rheumatic diseases represent a group of disorders, associated with a dysregulated immune system and high patient heterogeneity in both pathophysiological and clinical aspects. This complicates the complete understanding of underlying pathological mechanisms, associated with limited therapeutic options available and their long-term inefficiency and even toxicity. There is an unmet need to investigate, in depth, the cellular and molecular mechanisms driving the pathogenesis of rheumatic diseases and drug resistance, identify novel therapeutic targets, as well as make a step forward in using stratified and informed therapeutic decisions, which could now be achieved with the use of single cell approaches. This review summarizes the current use of scRNA-seq in studying different rheumatic diseases, based on recent findings from published in vitro, in vivo, and clinical studies, as well as discusses the potential implementation of scRNA-seq in the development of precision medicine in rheumatology.
Collapse
Affiliation(s)
- Tadeja Kuret
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Polonca Ferk
| |
Collapse
|
3
|
Mohenska M, Tan NM, Tokolyi A, Furtado MB, Costa MW, Perry AJ, Hatwell-Humble J, van Duijvenboden K, Nim HT, Ji YMM, Charitakis N, Bienroth D, Bolk F, Vivien C, Knaupp AS, Powell DR, Elliott DA, Porrello ER, Nilsson SK, Del Monte-Nieto G, Rosenthal NA, Rossello FJ, Polo JM, Ramialison M. 3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. J Mol Cell Cardiol 2021; 163:20-32. [PMID: 34624332 DOI: 10.1016/j.yjmcc.2021.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.
Collapse
Affiliation(s)
- Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nathalia M Tan
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Alex Tokolyi
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Mauro W Costa
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andrew J Perry
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Jessica Hatwell-Humble
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | | | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Faculty of Information Technology, Monash University, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia
| | - Yuan M M Ji
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Natalie Charitakis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Denis Bienroth
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Celine Vivien
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David A Elliott
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Susan K Nilsson
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Shi SY, Luo X, Yamawaki TM, Li CM, Ason B, Furtado MB. Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Curr Cardiol Rep 2021; 23:82. [PMID: 34081224 PMCID: PMC8175296 DOI: 10.1007/s11886-021-01517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. RECENT FINDINGS Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously "undruggable" targets, we are entering a new era of precision medicine.
Collapse
Affiliation(s)
- Sally Yu Shi
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Xin Luo
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Tracy M. Yamawaki
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Brandon Ason
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Milena B. Furtado
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| |
Collapse
|
5
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
6
|
Cao Y, Qiu Y, Tu G, Yang C. Single-cell RNA Sequencing in Immunology. Curr Genomics 2020; 21:564-575. [PMID: 33414678 PMCID: PMC7770633 DOI: 10.2174/1389202921999201020203249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The complex immune system is involved in multiple pathological processes. Single-cell RNA sequencing (scRNA-seq) is able to analyze complex cell mixtures correct to a single cell and single molecule, thus is qualified to analyze immune reactions in several diseases. In recent years, scRNA-seq has been applied in many researching fields and has presented many innovative results. In this review, we intend to provide an overview of single-cell RNA sequencing applications in immunology and a prospect of future directions.
Collapse
Affiliation(s)
| | | | - Guowei Tu
- Address correspondence to these authors at the Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990; E-mails: ; and Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990;, E-mail:
| | - Cheng Yang
- Address correspondence to these authors at the Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990; E-mails: ; and Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990;, E-mail:
| |
Collapse
|
7
|
Galow AM, Wolfien M, Müller P, Bartsch M, Brunner RM, Hoeflich A, Wolkenhauer O, David R, Goldammer T. Integrative Cluster Analysis of Whole Hearts Reveals Proliferative Cardiomyocytes in Adult Mice. Cells 2020; 9:cells9051144. [PMID: 32384695 PMCID: PMC7291011 DOI: 10.3390/cells9051144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023] Open
Abstract
The recent development and broad application of sequencing techniques at the single-cell level is generating an unprecedented amount of data. The different techniques have their individual limits, but the datasets also offer unexpected possibilities when utilized collectively. Here, we applied snRNA-seq in whole adult murine hearts from an inbred (C57BL/6NRj) and an outbred (Fzt:DU) mouse strain to directly compare the data with the publicly available scRNA-seq data of the tabula muris project. Explicitly choosing a single-nucleus approach allowed us to pin down the typical heart tissue-specific technical bias, coming up with novel insights on the mammalian heart cell composition. For our integrated dataset, cardiomyocytes, fibroblasts, and endothelial cells constituted the three main cell populations accounting for about 75% of all cells. However, their numbers severely differed between the individual datasets, with cardiomyocyte proportions ranging from about 9% in the tabula muris data to around 23% for our BL6 data, representing the prime example for cell capture technique related bias when using a conventional single-cell approach for these large cells. Most strikingly in our comparison was the discovery of a minor population of cardiomyocytes characterized by proliferation markers that could not be identified by analyzing the datasets individually. It is now widely accepted that the heart has an, albeit very restricted, regenerative potential. However there is still an ongoing debate where new cardiomyocytes arise from. Our findings support the idea that the renewal of the cardiomyocyte pool is driven by cytokinesis of resident cardiomyocytes rather than differentiation of progenitor cells. We thus provide data that can contribute to an understanding of heart cell regeneration, which is a prerequisite for future applications to enhance the process of heart repair.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany;
| | - Paula Müller
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Madeleine Bartsch
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Ronald M. Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany;
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, 7602 Stellenbosch, South Africa
- Correspondence: (O.W.); (R.D.); (T.G.)
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (P.M.); (M.B.)
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
- Correspondence: (O.W.); (R.D.); (T.G.)
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (A.-M.G.); (R.M.B.); (A.H.)
- Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence: (O.W.); (R.D.); (T.G.)
| |
Collapse
|
8
|
Visualization of cardiovascular development, physiology and disease at the single-cell level: Opportunities and future challenges. J Mol Cell Cardiol 2020; 142:80-92. [PMID: 32205182 DOI: 10.1016/j.yjmcc.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq), a method of transcriptome sequencing at the single-cell level, has recently emerged as a revolutionary technology in the field of biomedical research. Compared to conventional gene expression profiling in bulk, scRNA-seq resolves biological differences among individual cells and enables the identification of rare cell populations that are easily overlooked. This review introduces the method of scRNA-seq, summarizes its applications in the field of cardiovascular disease research, and discusses existing limitations and prospects for future applications.
Collapse
|
9
|
Locatelli P, Belaich MN, López AE, Olea FD, Uranga Vega M, Giménez CS, Simonin JA, Bauzá MDR, Castillo MG, Cuniberti LA, Crottogini A, Cerrudo CS, Ghiringhelli PD. Novel insights into cardiac regeneration based on differential fetal and adult ovine heart transcriptomic analysis. Am J Physiol Heart Circ Physiol 2020; 318:H994-H1007. [PMID: 32167779 DOI: 10.1152/ajpheart.00610.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as meis1, p16, and sav1, tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes fam64a, cdc20, and cdk1, and the metabolism-related genes pitx and adipoq showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies.NEW & NOTEWORTHY We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.
Collapse
Affiliation(s)
- Paola Locatelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Mariano N Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Ayelén E López
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Fernanda D Olea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Carlos S Giménez
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Del Rosario Bauzá
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Marta G Castillo
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Luis A Cuniberti
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Alberto Crottogini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Carolina S Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Pablo D Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
10
|
Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12030161. [PMID: 32150864 PMCID: PMC7150902 DOI: 10.3390/toxins12030161] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac remodeling occurs frequently in chronic kidney disease patients and affects quality of life and survival. Current treatment options are highly inadequate. As kidney function declines, numerous metabolic pathways are disturbed. Kidney and heart functions are highly connected by organ crosstalk. Among others, altered volume and pressure status, ischemia, accelerated atherosclerosis and arteriosclerosis, disturbed mineral metabolism, renal anemia, activation of the renin-angiotensin system, uremic toxins, oxidative stress and upregulation of cytokines stress the sensitive interplay between different cardiac cell types. The fatal consequences are left-ventricular hypertrophy, fibrosis and capillary rarefaction, which lead to systolic and/or diastolic left-ventricular failure. Furthermore, fibrosis triggers electric instability and sudden cardiac death. This review focuses on established and potential pathophysiological cardiorenal crosstalk mechanisms that drive uremia-induced senescence and disease progression, including potential known targets and animal models that might help us to better understand the disease and to identify novel therapeutics.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Anne Babler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
11
|
Velecela V, Torres-Cano A, García-Melero A, Ramiro-Pareta M, Müller-Sánchez C, Segarra-Mondejar M, Chau YY, Campos-Bonilla B, Reina M, Soriano FX, Hastie ND, Martínez FO, Martínez-Estrada OM. Epicardial cell shape and maturation are regulated by Wt1 via transcriptional control of Bmp4. Development 2019; 146:146/20/dev178723. [PMID: 31624071 DOI: 10.1242/dev.178723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
The epicardium plays a crucial role in embryonic heart development and adult heart repair; however, the molecular events underlying its maturation remain unknown. Wt1, one of the main markers of the embryonic epicardium, is essential for epicardial development and function. Here, we analyse the transcriptomic profile of epicardial-enriched cells at different stages of development and from control and epicardial-specific Wt1 knockout (Wt1KO) mice. Transcriptomic and cell morphology analyses of epicardial cells from epicardial-specific Wt1KO mice revealed a defect in the maturation process of the mutant epicardium, including sustained upregulation of Bmp4 expression and the inability of mutant epicardial cells to transition into a mature squamous phenotype. We identified Bmp4 as a transcriptional target of Wt1, thus providing a molecular basis for the retention of the cuboidal cell shape observed in the Wt1KO epicardium. Accordingly, inhibition of the Bmp4 signalling pathway both ex vivo and in vivo rescued the cuboidal phenotype of the mutant epicardium. Our findings indicate the importance of the cuboidal-to-squamous transition in epicardial maturation, a process regulated by Wt1.
Collapse
Affiliation(s)
- Víctor Velecela
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Alejo Torres-Cano
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| | - Ana García-Melero
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Marc Segarra-Mondejar
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08028, Spain
| | - You-Ying Chau
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Begoña Campos-Bonilla
- Department of Basic Clinical Practice, University of Barcelona, Barcelona 08036, Spain
| | - Manuel Reina
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Francesc X Soriano
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08028, Spain
| | - Nicholas D Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Fernando O Martínez
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Ofelia M Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain .,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|