1
|
Yue Y, Ren Z, Wang Y, Liu Y, Yang X, Wang T, Bai Y, Zhou H, Chen Q, Li S, Zhang Y. Impact of Microparticle Transarterial Chemoembolization (mTACE) on myeloid-derived suppressor cell subtypes in hepatocellular carcinoma: Clinical correlations and therapeutic implications. Immun Inflamm Dis 2024; 12:e70007. [PMID: 39222024 PMCID: PMC11367920 DOI: 10.1002/iid3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) play a pivotal role in immunosuppression and tumor progression in hepatocellular carcinoma (HCC). While various treatments like surgical resection, ablation, and radiotherapy have been studied for their effects on circulating MDSC frequencies in HCC patients, the findings remain inconclusive. Transarterial Chemoembolization (TACE) stands as the standard care for unresectable HCC, with Microparticle TACE (mTACE) gaining prominence for its capacity to induce significant tumor necrosis. However, the immunological ramifications of such pathological outcomes are scarcely reported. METHODS AND RESULTS This study aims to elucidate the alterations in MDSC subtypes, specifically monocytic MDSCs (mMDSCs) and early-stage MDSCs (eMDSCs), post-mTACE and to investigate their clinical correlations in HCC patients. A cohort comprising 75 HCC patients, 16 liver cirrhosis patients, and 20 healthy controls (HC) was studied. Peripheral blood samples were collected and analyzed for MDSC subtypes. The study also explored the associations between MDSC frequencies and various clinical parameters in HCC patients. The frequency of mMDSCs was significantly elevated in the HCC group compared to liver cirrhosis and HC. Importantly, mMDSC levels were strongly correlated with aggressive clinical features of HCC, including tumor size, vascular invasion, and distant metastasis. Post-mTACE, a marked reduction in mMDSC frequencies was observed, while eMDSC levels remained stable. CONCLUSIONS Our findings underscore the critical role of mMDSCs in HCC pathogenesis and their potential as a therapeutic target. The study also highlights the efficacy of mTACE in modulating the immunosuppressive tumor microenvironment, thereby opening new avenues for combinatorial immunotherapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Yuanxun Yue
- Department of Interventional and Pain, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Zhizhong Ren
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Yaqin Wang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Ying Liu
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Xiaowei Yang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Tianxiao Wang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | | | - He Zhou
- Shanghai Dengding BioAI Co.ShanghaiChina
| | | | - Sujun Li
- Translational Medicine Institute of Jiangxi, The First Affiliated Hospital of Nanchang UniversityNanchangChina
- JiangXi Key Laboratory of Transfusion MedicineNanchangChina
| | - Yuewei Zhang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Lobo-Martins S, Corredeira P, Cavaco A, Rodrigues C, Piairo P, Lopes C, Fraga J, Silva M, Alves P, Wachholz Szeneszi L, Barradas A, Castro Duran C, Antunes M, Nogueira-Costa G, Sousa R, Pinto C, Ribeiro L, Abreu C, Torres S, Quintela A, Mata G, Megías D, Ribot J, Serre K, Casimiro S, Silva-Santos B, Diéguez L, Costa L. Effect of Cyclin-Dependent Kinase 4/6 Inhibitors on Circulating Cells in Patients with Metastatic Breast Cancer. Cells 2024; 13:1391. [PMID: 39195280 PMCID: PMC11487375 DOI: 10.3390/cells13161391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with endocrine therapy (ET) is the standard-of-care for estrogen receptor (ER)-positive, HER2-negative (ER+/HER2- advanced/metastatic breast cancer (mBC). However, the impact of CDK4/6i on circulating immune cells and circulating tumor cells (CTCs) in patients receiving CDK4/6i and ET (CDK4/6i+ET) remains poorly understood. This was a prospective cohort study including 44 patients with ER+/HER2- mBC treated with CDK4/6i+ET in either first or second line. Peripheral blood samples were collected before (baseline) and 3 months (t2) after therapy. Immune cell's subsets were quantified by flow cytometry, and microfluidic-captured CTCs were counted and classified according to the expression of cytokeratin and/or vimentin. Patients were categorized according to response as responders (progression-free survival [PFS] ≥ 6.0 months; 79.1%) and non-responders (PFS < 6.0 months; 20.9%). CDK4/6i+ET resulted in significant changes in the hematological parameters, including decreased hemoglobin levels and increased mean corpuscular volume, as well as reductions in neutrophil, eosinophil, and basophil counts. Specific immune cell subsets, such as early-stage myeloid-derived suppressor cells, central memory CD4+ T cells, and Vδ2+ T cells expressing NKG2D, decreased 3 months after CDK4/6i+ET. Additionally, correlations between the presence of CTCs and immune cell populations were observed, highlighting the interplay between immune dysfunction and tumor dissemination. This study provides insights into the immunomodulatory effects of CDK4/6i+ET, underscoring the importance of considering immune dynamics in the management of ER+/HER2- mBC.
Collapse
Affiliation(s)
- Soraia Lobo-Martins
- Academic Trials Promoting Team, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), 1070 Bruxelles, Belgium;
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Ana Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Carolina Rodrigues
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
| | - Joana Fraga
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Madalena Silva
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Patrícia Alves
- START Lisboa-CHULN Hospital Santa Maria, 1649-028 Lisbon, Portugal;
| | - Lisiana Wachholz Szeneszi
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Ana Barradas
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Camila Castro Duran
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Marília Antunes
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Gonçalo Nogueira-Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Rita Sousa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Conceição Pinto
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Catarina Abreu
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Sofia Torres
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - António Quintela
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Gadea Mata
- Matemáticas y Computación Department, Universidad de La Rioja, 26006 Logroño, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain
| | - Julie Ribot
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- iMM Laço Hub, iMM-CARE, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Luís Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
3
|
Kabore MD, McElrath CC, Ali MAE, Almengo K, Gangaplara A, Fisher C, Barreto MA, Shaikh A, Olkhanud PB, Xu X, Gaskin D, Lopez-Ocasio M, Saxena A, McCoy JP, Fitzhugh CD. Low dose post-transplant cyclophosphamide and sirolimus induce mixed chimerism with CTLA4-Ig or lymphocyte depletion in an MHC-mismatched murine allotransplantation model. Bone Marrow Transplant 2024; 59:615-624. [PMID: 38347187 PMCID: PMC11073977 DOI: 10.1038/s41409-024-02237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) offers a curative option for patients with certain non-malignant hematological diseases. High-dose post-transplant cyclophosphamide (PT-Cy) (200 mg/kg) and sirolimus (3 mg/kg), (HiC) synergistically induce stable mixed chimerism. Further, sirolimus and cytotoxic T lymphocyte-associated antigen-4 immunoglobulin (CTLA4-Ig), also known as Abatacept (Aba), promote immune tolerance and allograft survival. Here, in a major histocompatibility complex (MHC)-mismatched allo-HCT murine model, we combined Aba and/or T-cell depleting anti-Thy1.2 (Thy) with a lower dose of PT-Cy (50 mg/kg) and Sirolimus (3 mg/kg), (LoC). While mice in the LoC group showed graft rejection, the addition of Thy to LoC induced similar donor chimerism levels when compared to the HiC group. However, the addition of Aba to LoC led to graft acceptance only in younger mice. When Thy was added to the LoC+Aba setting, graft acceptance was restored in both age groups. Engrafted groups displayed significantly reduced frequencies of recipient-specific interferon-γ-producing T cells as well as an increased frequency in regulatory T cells (Tregs) except in the LoC+Aba group. Splenocytes from engrafted mice showed no proliferation upon restimulation with Balb/c stimulators. Collectively, in combination with Aba or Thy, LoC may be considered to reduce graft rejection in patients who undergo allo-HCT.
Collapse
Affiliation(s)
- Mariama D Kabore
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corbin C McElrath
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mohamed A E Ali
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine Almengo
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Miltenyi Biotec, Gaithersburg, MD, 20878, USA
| | - Cameron Fisher
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mauricio A Barreto
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Xu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deanna Gaskin
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Non-relapse cytopenias following allogeneic stem cell transplantation, a case based review. Bone Marrow Transplant 2022; 57:1489-1499. [DOI: 10.1038/s41409-022-01761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
|
5
|
Shaikh A, Olkhanud PB, Gangaplara A, Kone A, Patel S, Gucek M, Fitzhugh CD. Thrombospondin-1, Platelet Factor 4, and Galectin-1 are Associated with Engraftment in Patients with Sickle Cell Disease Who Underwent Haploidentical HSCT. Transplant Cell Ther 2022; 28:249.e1-249.e13. [PMID: 35131485 PMCID: PMC9176382 DOI: 10.1016/j.jtct.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is an inherited red blood cell disorder that leads to significant morbidity and early mortality. The most widely available curative approach remains allogeneic hematopoietic stem cell transplantation (HSCT). HLA-haploidentical (haplo) HSCT expands the donor pool considerably and is a practical alternative for these patients, but traditionally with an increased risk of allograft rejection. Biomarkers in patient plasma could potentially help predict HSCT outcome and allow treatment at an early stage to reverse or prevent graft rejection. Reliable, noninvasive methods to predict engraftment or rejection early after HSCT are needed. We sought to detect variations in the plasma proteomes of patients who engrafted compared with those who rejected their grafts. We used a mass spectrometry-based proteomics approach to identify candidate biomarkers associated with engraftment and rejection by comparing plasma samples obtained from 9 engrafted patients and 10 patients who experienced graft rejection. A total of 1378 proteins were identified, 45 of which were differentially expressed in the engrafted group compared with the rejected group. Based on bioinformatics analysis results, information from the literature, and immunoassay availability, 7 proteins-thrombospondin-1 (Tsp-1), platelet factor 4 (Pf-4), talin-1, moesin, cell division control protein 42 homolog (CDC42), galectin-1 (Gal-1), and CD9-were selected for further analysis. We compared these protein concentrations among 35 plasma samples (engrafted, n = 9; rejected, n = 10; healthy volunteers, n = 8; nontransplanted SCD, n = 8). ELISA analysis confirmed the significant up-regulation of Tsp-1, Pf-4, and Gal-1 in plasma samples from engrafted patients compared with rejected patients, healthy African American volunteers, and the nontransplanted SCD group (P < .01). By receiver operating characteristic analysis, these 3 proteins distinguished engrafted patients from the other groups (area under the curve, >0.8; P < .05). We then evaluated the concentration of these 3 proteins in samples collected pre-HSCT and at days +30, +60, +100, and +180 post-HSCT. The results demonstrate that Tsp-1 and Pf-4 stratified engrafted patients as early as day 60 post-HSCT (P < .01), and that Gal-1 was significantly higher in engrafted patients as early as day 30 post-HSCT (P < .01). We also divided the rejected group into those who experienced primary (n = 5) and secondary graft rejection (n = 5) and found that engrafted patients had significantly higher Tsp-1 levels compared with patients who developed primary graft rejection at days +60 and +100 (P < .05), as well as higher Pf-4 levels compared with patients who developed primary graft rejection at post-transplantation (PT) day 100. Furthermore, Tsp-1 levels were significantly higher at PT days 60 and 100 and Pf-4 levels were higher at PT day 100 in engrafted patients compared with those who experienced secondary graft rejection. Increased concentrations of plasma Gal-1, Tsp-1, and Pf-4 could reflect increased T regulatory cells, IL-10, and TGF-β, which are essential players in the initiation of immunologic tolerance. These biomarkers may provide opportunities for preemptive intervention to minimize the incidence of graft rejection.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biology, The Catholic University of America, Washington, DC; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Abdoul Kone
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sajni Patel
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|