1
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Xia X, Huang Z, Xu C, Fu H, Wang S, Tian J, Rui K. Regulation of intestinal tissue‑resident memory T cells: a potential target for inflammatory bowel disease. Cell Commun Signal 2024; 22:610. [PMID: 39695803 DOI: 10.1186/s12964-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue-resident memory T (TRM) cells are populations which settle down in non-lymphoid tissues instead of returning to secondary lymph organs after the antigen presentation. These cells can provide rapid on-site immune protection as well as long-term tissue damage. It is reported that TRM cells from small intestine and colon exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional and functional heterogeneity. In this review, we focus on the reason why they lodge in intestinal tract, their developmental plasticity of going back to to circulation, as well as their regulators associated with retention, maintenance, exhaustion and metabolism. We also elaborate their role in the inflammatory bowel disease (IBD) and discuss the potential therapeutic strategies targeting TRM cells.
Collapse
Affiliation(s)
- Xin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhanjun Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hailong Fu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Engesser J, Wang H, Kapffer S, Kaffke A, Peters A, Paust HJ, Geissen M, Krebs CF, Panzer U, Asada N. S1PR1 mediates Th17 cell migration from the thymus to the skin in health and disease. Front Immunol 2024; 15:1473130. [PMID: 39380990 PMCID: PMC11459589 DOI: 10.3389/fimmu.2024.1473130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Th17 cells play crucial roles in host defense and the pathogenesis of autoimmune diseases in the skin. While their differentiation mechanisms have been extensively studied, the origin of skin Th17 cells remains unclear. In this study, we analyzed single-cell RNA-sequencing data and identify the presence of Th17 cells in the human thymus. Thymic Th17 cells were characterized by high expression levels of Sphingosine-1-Phosphate Receptor 1 (S1PR1), a receptor crucial for T cell egress from lymphoid tissues. In mice, Th17 cell-specific knockout of S1pr1 resulted in the accumulation of Th17 cells in the thymus and a corresponding decrease in their numbers in the skin. Th17 cells that accumulated in the thymus exhibited a lower IL-17A production capacity compared to those in the skin, indicating that the local environment in the skin is important for maintaining the Th17 cell phenotype. Additionally, using a murine psoriasis model, we demonstrated that Th17 cell-specific knockout of S1pr1 reduced their migration to the inflamed skin, thereby ameliorating disease progression. Collectively, our data suggest that S1PR1 mediates Th17 cell migration from the thymus to the skin, thereby modulating their functional engagement in both homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Huiying Wang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sonja Kapffer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anett Peters
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Markus Geissen
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
6
|
Shu X, Shao Y, Chen Y, Zeng C, Huang X, Wei R. Immune checkpoints: new insights into the pathogenesis of thyroid eye disease. Front Immunol 2024; 15:1392956. [PMID: 38817600 PMCID: PMC11137266 DOI: 10.3389/fimmu.2024.1392956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Thyroid eye disease (TED) is a disfiguring autoimmune disease characterized by changes in the orbital tissues and is caused by abnormal thyroid function or thyroid-related antibodies. It is the ocular manifestation of Graves' disease. The expression of thyroid-stimulating hormone receptor (TSHR) and the insulin-like growth factor-1 receptor (IGF-1 R) on the cell membrane of orbital fibroblasts (OFs) is responsible for TED pathology. Excessive inflammation is caused when these receptors in the orbit are stimulated by autoantibodies. CD34+ fibrocytes, found in the peripheral blood and orbital tissues of patients with TED, express immune checkpoints (ICs) like MHC II, B7, and PD-L1, indicating their potential role in presenting antigens and regulating the immune response in TED pathogenesis. Immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, it can also lead to the occurrence of TED in some instances, suggesting the abnormality of ICs in TED. This review will examine the overall pathogenic mechanism linked to the immune cells of TED and then discuss the latest research findings on the immunomodulatory role of ICs in the development and pathogenesis of TED. This will offer fresh perspectives on the study of pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| |
Collapse
|
7
|
Amo L, Kole HK, Scott B, Borrego F, Qi CF, Wang H, Bolland S. Purification and analysis of kidney-infiltrating leukocytes in a mouse model of lupus nephritis. Methods Cell Biol 2024; 188:131-152. [PMID: 38880521 DOI: 10.1016/bs.mcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.
Collapse
Affiliation(s)
- Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Hemanta K Kole
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Bethany Scott
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Hongsheng Wang
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Silvia Bolland
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| |
Collapse
|
8
|
Liang CL, Wei YY, Chen Y, Luo Y, Qin F, Chen Y, Liu H, Qiu F, Wu J, Yang B, Liu Y, Dai Z. Zhen-Wu-Tang ameliorates lupus nephritis by diminishing renal tissue-resident memory CD8 + T cells via suppressing IL-15/STAT3 pathway. Biomed Pharmacother 2024; 174:116597. [PMID: 38643544 DOI: 10.1016/j.biopha.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Zhen-Wu-Tang (ZWT), a conventional herbal mixture, has been recommended for treating lupus nephritis (LN) in clinic. However, its mechanisms of action remain unknown. Here we aimed to define the immunological mechanisms underlying the effects of ZWT on LN and to determine whether it affects renal tissue-resident memory T (TRM) cells. Murine LN was induced by a single injection of pristane, while in vitro TRM cells differentiated with IL-15/TGF-β. We found that ZWT or mycophenolate mofetil treatment significantly ameliorated kidney injury in LN mice by decreasing 24-h urine protein, Scr and anti-dsDNA Ab. ZWT also improved renal pathology and decreased IgG and C3 depositions. In addition, ZWT down-regulated renal Desmin expression. Moreover, it lowered the numbers of CD8+ TRM cells in kidney of mice with LN while decreasing their expression of TNF-α and IFN-γ. Consistent with in vivo results, ZWT-containing serum inhibited TRM cell differentiation induced by IL-15/TGF-β in vitro. Mechanistically, it suppressed phosphorylation of STAT3 and CD122 (IL2/IL-15Rβ)expression in CD8+ TRM cells. Importantly, ZWT reduced the number of total F4/80+CD11b+ and CD86+, but not CD206+, macrophages in the kidney of LN mice. Interestingly, ZWT suppressed IL-15 protein expression in macrophages in vivo and in vitro. Thus, we have provided the first evidence that ZWT decoction can be used to improve the outcome of LN by reducing CD8+ TRM cells via inhibition of IL-15/IL-15R /STAT3 signaling.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yu-Yan Wei
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yi Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Nephrology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yini Luo
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fenglian Qin
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junbiao Wu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester LE1 9HN, UK; Nantong-Leicester Joint Institute of Kidney Science & Nephrology, Afiliated Hospital of Nantong University,. Nantong, Jiangsu, China
| | - Yuntao Liu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|