1
|
Wang C, Zhou Y, Wang Y, Jiao P, Liu S, Guan S, Ma Y. CRISPR-Cas9-mediated editing of ZmPL1 gene improves tolerance to drought stress in maize. GM CROPS & FOOD 2025; 16:1-16. [PMID: 39819332 DOI: 10.1080/21645698.2024.2448869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Maize (Zea mays L.) is a widely grown food crop around the world. Drought stress seriously affects the growth and development process of plants and causes serious damage to maize yield. In the early stage, our research group conducted transcriptome sequencing analysis on the drought-resistant maize inbred line H8186 and screened out a gene with significantly down-regulated expression, Phylloplanin-like (ZmPL1). The ZmPL1 gee expression pattern was analyzed under various abiotic stresses, and the results showed that this gene was greatly affected by drought stress. Subcellular localization analysis showed that the protein was localized on the cell membrane. In order to verify the role of ZmPL1 in drought stress, we overexpressed ZmPL1 in yeast and found that the expression of ZmPL1 could significantly increase the drought sensitivity of yeast. Next, ZmPL1 transgenic plants were obtained by infecting maize callus using Agrobacterium-mediated method. Under drought stress, compared with overexpression lines, gene-edited lines had higher germination rate and seedling survival rate, lower accumulation of MDA, relative conductivity and ROS, higher antioxidant enzyme activity, and the expression levels of stress-related genes and ROS scavenging-related genes were significantly increased. Exogenous application of ABA to each lines under drought stress attenuated the damage caused by drought stress on ZmPL overexpressing plants. In summary, ZmPL1 negatively regulates drought tolerance in maize.
Collapse
Affiliation(s)
- Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yangyang Zhou
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yimeng Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyang Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint Laboratory of International Cooperation in Modem Agricultural Technology of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
He X, Wang H, Wei W, Han Z, Zuo J, He Q. Expression characteristics of CsESA1 in citrus and analysis of its interacting protein. PLANT SIGNALING & BEHAVIOR 2025; 20:2439249. [PMID: 39714922 DOI: 10.1080/15592324.2024.2439249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by 'Candidatus Liberibacter asiaticus' (CaLas). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to CaLas infection induction were screened, and one gene cloned with higher differential expression level was selected and named CsCESA1. we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins. Subcellular localization in tobacco indicated that both CsCESA1 and CsEPS2 proteins are primarily located in the nucleus and cytoplasm. RT-qPCR analysis indicated that the expression levels of CsCESA1 and CsEPS2 were associated with variety tolerance, tissue site, and symptom development. Furthermore, we generated CsCESA1 and CsEPS2 silencing plants and obtained CsCESA1 and CsEPS2 silencing and overexpressing hairy roots. The analysis of hormone content and gene expression also showed that CsCESA1 and CsEPS2 are involved in transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. In conclusion, our results suggested that CsCESA1 and CsEPS2 could serve as potential resistance genes for HLB disease, offering insights into the plant's defense mechanisms against HLB.
Collapse
Affiliation(s)
- Xiao He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China
| | - Huiying Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Wei Wei
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Ziyue Han
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Jiaqi Zuo
- College of Life Science and Food, Inner Mongolia University for Nationalities, Hohhot, China
| | - Qing He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China
| |
Collapse
|
3
|
Li L, Shu L, Li Y, Zhang F, Meng Y, Wang H, Cao Y, Jiang YQ, Yan J. Ectopic Overexpression of Rapeseed BnaNTL1 Transcription Factor Positively Regulates Plant Resistance to Sclerotinia sclerotiorum through Modulating JA Synthesis and ROS Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39979321 DOI: 10.1021/acs.jafc.4c10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2025]
Abstract
Oilseed rape is one of the most important oil crops worldwide. Stem rot disease of rapeseed is caused by Sclerotinia sclerotiorum, posing a threat to oil crop yield. NTL is a small class of membrane-tethered NAC transcription factors, which are stored on the membrane in dormant form, released upon stimuli, and then transported to the nucleus. Here, we identified BnaNTL1 from oilseed rape, and its relocation from the ER to the nucleus is induced by S. sclerotiorum. Plants overexpressing BnaNTL1-ΔTM (a truncated form without the transmembrane domain) are resistant to S. sclerotiorum infection and are accumulated with more JA and ROS. Genes related to the JA pathway and ROS signal were significantly induced by BnaNTL1. Furthermore, the dual-luciferase and EMSA results showed that BnaNTL1-ΔTM directly binds to the promoter regions of AOC3, LOX2, OPCL1, and PDF1.2, and it activates their expression. In summary, we identified that BnaNTL1 positively regulates plant resistance to S. sclerotiorum infection by modulating JA synthesis and ROS production.
Collapse
Affiliation(s)
- Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Fuyan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yan Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
4
|
Bhattacharyya S, Bleker C, Meier B, Giridhar M, Rodriguez EU, Braun AM, Peiter E, Vothknecht UC, Chigri F. Ca 2+-dependent H 2O 2 response in roots and leaves of barley - a transcriptomic investigation. BMC PLANT BIOLOGY 2025; 25:232. [PMID: 39979811 PMCID: PMC11841189 DOI: 10.1186/s12870-025-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Ca2+ and H2O2 are second messengers that regulate a wide range of cellular events in response to different environmental and developmental cues. In plants, stress-induced H2O2 has been shown to initiate characteristic Ca2+ signatures; however, a clear picture of the molecular connection between H2O2-induced Ca2+ signals and H2O2-induced cellular responses is missing, particularly in cereal crops such as barley. Here, we employed RNA-seq analyses to identify transcriptome changes in roots and leaves of barley after H2O2 treatment under conditions that inhibited the formation of cytosolic Ca2+ transients. To that end, plasma membrane Ca2+ channels were blocked by LaCl3 application prior to stimulation of barley tissues with H2O2. RESULTS We examined the expression patterns of 4246 genes that had previously been shown to be differentially expressed upon H2O2 application. Here, we further compared their expression between H2O2 and LaCl3 + H2O2 treatment. Genes showing expression patterns different to the previous study were considered to be Ca2+-dependent H2O2-responsive genes. These genes, numbering 331 in leaves and 1320 in roots, could be classified in five and four clusters, respectively. Expression patterns of several genes from each cluster were confirmed by RT-qPCR. We furthermore performed a network analysis to identify potential regulatory paths from known Ca2+-related genes to the newly identified Ca2+-dependent H2O2 responsive genes, using the recently described Stress Knowledge Map. This analysis indicated several transcription factors as key points of the responses mediated by the cross-talk between H2O2 and Ca2+. CONCLUSION Our study indicates that about 70% of the H2O2-responsive genes in barley roots require a transient increase in cytosolic Ca2+ concentrations for alteration in their transcript abundance, whereas in leaves, the Ca2+ dependency was much lower at about 33%. Targeted gene analysis and pathway modeling identified not only known components of the Ca2+ signaling cascade in plants but also genes that are not yet connected to stimuli-associated signaling. Potential key transcription factors identified in this study can be further analyzed in barley and other crops to ultimately disentangle the underlying mechanisms of H2O2-associated signal transduction mechanisms. This could aid breeding for improved stress resistance to optimize performance and productivity under increasing climate challenges.
Collapse
Affiliation(s)
- Sabarna Bhattacharyya
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Večna pot 111, Ljubljana, SI-1000, Slovenia
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Maya Giridhar
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner- Strasse 34, D-85354, Freising, Germany
| | - Elena Ulland Rodriguez
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Adrian Maximilian Braun
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
5
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Tian J, Yuan P, Gao X, Wang H, Wang M, Jiao J, Zhang K, Hao P, Song C, Zheng X, Bai T. The AP2/ERF transcription factor MhERF113-like positively regulates drought tolerance in transgenic tomato and apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109598. [PMID: 39922023 DOI: 10.1016/j.plaphy.2025.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Drought is a major abiotic stress in agriculture that severely affects crop growth, yield, and quality. The APETALA2/ethylene responsive factor (AP2/ERF) plays a crucial role in maintaining plant growth, development, as well as stress tolerance. Herein, we cloned and characterized the MhERF113-like gene from Malus hupehensis. MhERF113-like is significantly induced by drought and highly expressed in leaves. Overexpression of MhERF113-like positively regulated the drought tolerance of apple calli and plants, as judged by less electrolyte leakage, lower malonaldehyde (MDA) and hydrogen peroxide (H2O2) contents in OE than those of the WT apple calli and plants under drought stress. In addition, ectopic expression of MhERF113-like gene in tomatoes improved the drought tolerance, accompanied by enhanced expression of antioxidant genes (SlAPX1 and SlSOD) and stress responsive genes (SlDREB and SlRD29), and reduced H2O2 and O2- contents in OE tomatoes. Taken together, our study demonstrated that MhERF113-like may play an important role in the regulation of plant drought tolerance, which may provide a key factor for future biotechnology applications to improve drought stress tolerance in plants.
Collapse
Affiliation(s)
- Jianwen Tian
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Penghao Yuan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiang Gao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongtao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China
| | - Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China.
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China.
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Horticultural Plant Biology of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
8
|
Meng X, Feng C, Chen Z, Shah FA, Zhao Y, Fei Y, Zhao H, Ren J. Genome-wide analyses of the NAC transcription factor gene family in Acer palmatum provide valuable insights into the natural process of leaf senescence. PeerJ 2025; 13:e18817. [PMID: 39822972 PMCID: PMC11737331 DOI: 10.7717/peerj.18817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Acer palmatum is a deciduous shrub or small tree. It is a popular ornamental plant because of its beautiful leaves, which change colour in autumn. This study revealed 116 ApNAC genes within the genome of A. palmatum. These genes are unevenly distributed on the 13 chromosomes of A. palmatum. An analysis of the phylogenetic tree of Arabidopsis thaliana NAC family members revealed that ApNAC proteins could be divided into 16 subgroups. A comparison of ApNAC proteins with NAC genes from other species suggested their potential involvement in evolutionary processes. Studies suggest that tandem and segmental duplications may be key drivers of the expansion of the ApNAC gene family. Analysis of the transcriptomic data and qRT‒PCR results revealed significant upregulation of most ApNAC genes during autumn leaf senescence compared with their expression levels in summer leaves. Coexpression network analysis revealed that the expression profiles of 10 ApNAC genes were significantly correlated with those of 200 other genes, most of which are involved in plant senescence processes. In conclusion, this study contributes to elucidating the theoretical foundation of the ApNAC gene family and provides a valuable basis for future investigations into the role of NAC genes in regulating leaf senescence in woody ornamental plants.
Collapse
Affiliation(s)
- Xin Meng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Chun Feng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yue Zhao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuzhi Fei
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Hongfei Zhao
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
9
|
Zhang J, Liu X, Yin Z, Zhao T, Du D, Li J, Zhu M, Sun Y, Pan Y. Genome- and Transcriptome-Wide Characterization and Expression Analyses of bHLH Transcription Factor Family Reveal Their Relevance to Salt Stress Response in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:200. [PMID: 39861553 PMCID: PMC11768425 DOI: 10.3390/plants14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
The bHLH (basic helix-loop-helix) transcription factors function as crucial regulators in numerous biological processes including abiotic stress responses and plant development. According to our RNA-seq analysis of tomato seedlings under salt stress, we found that, although the bHLH gene family in tomato has been studied, there are still so many tomato bHLH genes that have not been identified and named, which will hinder the later study of SlbHLHs. In total, 195 SlbHLHs that were unevenly distributed onto 12 chromosomes were identified from the tomato genome and were classified into 27 subfamilies based on their molecular features. The collinearity between SlbHLHs and interrelated orthologs from 10 plants further revealed evolutionary insights into SlbHLHs. Cis-element investigations of SlbHLHs promotors further suggested the potential roles of SlbHLHs in tomato development and stress responses. A total of 30 SlbHLHs were defined as the differentially expressed genes in response to salt stress by RNA-seq. The expression profiles of selected SlbHLHs were varyingly and markedly induced by multiple abiotic stresses and hormone treatments. These results provide valuable information to further understand the significance and intricacy of the bHLH transcription factor family, and lay a foundation for further exploring functions and possible regulatory mechanisms of SlbHLH members in abiotic stress tolerance, which will be significant for the study of tomato stress resistance and agricultural productivity.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (X.L.); (Z.Y.); (T.Z.); (Y.S.)
| | - Xiaoying Liu
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (X.L.); (Z.Y.); (T.Z.); (Y.S.)
| | - Zuozhen Yin
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (X.L.); (Z.Y.); (T.Z.); (Y.S.)
| | - Tiantian Zhao
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (X.L.); (Z.Y.); (T.Z.); (Y.S.)
| | - Dan Du
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Jing Li
- Chongqing Academy of Agricultural Sciences, Chongqing 850030, China;
| | - Mingku Zhu
- School of Life Sciences, Jiangsu Normal University, 101 Shanghai 16 Road, Xuzhou 221008, China;
| | - Yueying Sun
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (X.L.); (Z.Y.); (T.Z.); (Y.S.)
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| |
Collapse
|
10
|
Akbar S, Hua X, Zhang Y, Liu G, Wang T, Shi H, Li Z, Qi Y, Habiba H, Yao W, Zhang MQ, Zhang J. Genome-wide analysis of sugar transporter gene family in Erianthus rufipilus and Saccharum officinarum, expression profiling and identification of transcription factors. FRONTIERS IN PLANT SCIENCE 2025; 15:1502649. [PMID: 39850208 PMCID: PMC11755103 DOI: 10.3389/fpls.2024.1502649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Sugar, the primary product of photosynthesis, is a vital requirement for cell activities. Allocation of sugar from source to sink tissues is facilitated by sugar transporters (ST). These STs belong to the Major Facilitator Superfamily (MFS), the largest family of STs in plants. In this study, we performed genome wide and gene expression data analysis to identify the putative ST genes in Erianthus rufipilus (E. rufipilus) and in Saccharum officinarum (S. officinarum). We identified 78 ST gene families in E. rufipilus and 86 ST gene families in S. officinarum. Phylogenetic analysis distributed the ST genes into eight distinct subfamilies (INT, MST, VGT, pGlcT, PLT, STP, SFP and SUT). Chromosomal distribution of ST genes clustered them on 10 respective chromosomes. Furthermore, synteny analysis with S. spontaneum and Sorghum bicolor (S. bicolor) revealed highly colinear regions. Synonymous and non-synonymous ratio (Ka/Ks) showed purifying selection in gene evolution. Promoter analysis identified several cis-regulatory elements, mainly associated with light responsiveness. We also examined the expression pattern of ST genes in different developing tissues (mature leaf, pre-mature stem, mature stem and seedling stem). Under sugar stress, we identified the significant ST genes showing differential expression patterns. Moreover, our yeast one-hybrid (Y1H) assays identified NAM, ATAF and CUC (NAC) and Lesion Simulating Disease (LSD) potential transcription factors (TFs) that may bind to the SUT1-T1 promoter in S. officinarum, showing negative correlation pattern with SUT1-T1. Our results deepen our understanding of ST gene evolution in Saccharum species and will facilitate the future investigation of functional analysis of the ST gene family.
Collapse
Affiliation(s)
- Sehrish Akbar
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuiting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Yingying Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Liu
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyou Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Huihong Shi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Habiba Habiba
- Department of Biological Science, Lehman College, City University of New York, Bronx, NY, United States
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Mu-Qing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| |
Collapse
|
11
|
Wu Z, Wang P. PcNAC25, a NAC transcription factor of Pugionium cornutum(L.) Gaertn conferring enhanced drought and salt stress tolerances in Arabidopsis. Sci Rep 2025; 15:1501. [PMID: 39789053 PMCID: PMC11718195 DOI: 10.1038/s41598-025-85615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P. cornutum are largely unknown. In this study, we identified the PcNAC25 transcription factor gene in P. cornutum. Its open reading frame was revealed to comprise 891 bp, encoding a protein consisting of 297 amino acids, with an isoelectric point of 6.61. Phylogenetic analysis showed that PcNAC25 was most closely related to ANAC019. The expression of PcNAC25 was induced by dehydration, mannitol, heat, cold, salt stresses and abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (JA) treatments. A subcellular localization analysis confirmed that PcNAC25 was localized in the nucleus. The overexpressing PcNAC25 lines in Arabidopsis had longer roots than wild-type (WT) lines under drought and salt stress. The overexpression of PcNAC25 improved drought and salt tolerance in transgenic Arabidopsis. Under drought and salt stress, PcNAC25 transgenic lines exhibited higher the CAT, POD and SOD activities and scavenging ability of hydroxyl radical than WT, more proline accumulation than WT and less MDA and H2O2 content and superoxide anion production rate than WT. PcNAC25 transgenic lines also exhibited greater reduced water loss rate of detached leaves than WT. Meanwhile, DAB and NBT staining showed that the accumulation of hydrogen peroxide and superoxide anion in PcNAC25 transgenic lines were also less than WT. In addition, overexpressing PcNAC25 enhanced the expression of drought response genes (DREB2A, SOD4, RD29A, NCED3, POD3, P5CS1, PYR1 and SAG13) and salt response genes NHX, SLAH1, SOS1 and NPF6.3. The mentioned above results indicated that PcNAC25 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation in Arabidopsis, which provided a basis for further research on the molecular mechanism of PCNAC25-mediated regulation of drought and salt stress, and also provided gene resources of drought and salt tolerance.
Collapse
Affiliation(s)
- Zhaoxin Wu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China.
| |
Collapse
|
12
|
Asad MAU, Guan X, Zhang Y, Zhou L, Bartas M, Ullah N, Zhou W, Cheng F. Nitrogen Deficiency Accelerates Rice Leaf Senescence Through ABA Signaling and Sugar Metabolic Shifts. PHYSIOLOGIA PLANTARUM 2025; 177:e70124. [PMID: 39968837 DOI: 10.1111/ppl.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Nitrogen (N) deficiency is one of the critical factors that induce leaf senescence by integrating with abscisic acid (ABA) metabolism, which results in a shortened leaf photosynthetic period and markedly lowered grain yield. However, the metabolic pathway by which ABA signaling participates in the regulation of senescence-associated change in sugar metabolism and its relationship with N allocation in plant tissues are not well understood. In this paper, the effect of supply level on leaf C/N allocation and its relation to ABA signalling, sugar metabolism, and N assimilation were investigated by using two rice genotypes subjected to four N treatments. Results indicated that N-deficiency markedly induced PYR1-like (PYL) expression and ABA biosynthesis, consequently leading to the activation of ABA signaling. The increased ABA concentration in leaf tissues triggered the catabolic pathways of sugar and N metabolisms, resulting in the reduced photosynthetic pigments and intensified oxidative damage in N-deficient leaves. ABA signaling induced by N-deficiency upregulates the expression of senescence-associated genes (SAGs) and C/N allocation by mediating several senescence-promoting factors, such as NAC, bZIP, and WRKY TFs, along with the suppression of PP2Cs. Therefore, N-deficiency impairs chlorophyll biosynthesis and triggers chlorophyll degradation to accelerate the timing and rate of leaf senescence. This metabolic network could provide helpful information for understanding the regulatory mechanism of leaf senescence in relation to sugar signaling, N-assimilation and N-use efficiency.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Weijun Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| |
Collapse
|
13
|
Chitkara P, Singh A, Gangwar R, Bhardwaj R, Zahra S, Arora S, Hamid F, Arya A, Sahu N, Chakraborty S, Ramesh M, Kumar S. The landscape of fusion transcripts in plants: a new insight into genome complexity. BMC PLANT BIOLOGY 2024; 24:1162. [PMID: 39627690 PMCID: PMC11616359 DOI: 10.1186/s12870-024-05900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Fusion transcripts (FTs), generated by the fusion of genes at the DNA level or RNA-level splicing events significantly contribute to transcriptome diversity. FTs are usually considered unique features of neoplasia and serve as biomarkers and therapeutic targets for multiple cancers. The latest findings show the presence of FTs in normal human physiology. Several discrete reports mentioned the presence of fusion transcripts in planta, has important roles in stress responses, morphological alterations, or traits (e.g. seed size, etc.). RESULTS In this study, we identified 169,197 fusion transcripts in 2795 transcriptome datasets of Arabidopsis thaliana, Cicer arietinum, and Oryza sativa by using a combination of tools, and confirmed the translational activity of 150 fusion transcripts through proteomic datasets. Analysis of the FT junction sequences and their association with epigenetic factors, as revealed by ChIP-Seq datasets, demonstrated an organised process of fusion formation at the DNA level. We investigated the possible impact of three-dimensional chromatin conformation on intra-chromosomal fusion events by leveraging the Hi-C datasets with the incidence of fusion transcripts. We further utilised the long-read RNA-Seq datasets to validate the most reoccurring fusion transcripts in each plant species followed by further authentication through RT-PCR and Sanger sequencing. CONCLUSIONS Our findings suggest that a significant portion of fusion events may be attributed to alternative splicing during transcription, accounting for numerous fusion events without a proportional increase in the number of RNA pairs. Even non-nuclear DNA transcripts from mitochondria and chloroplasts can participate in intra- and inter-chromosomal fusion formation. Genes in close spatial proximity are more prone to undergoing fusion formation, especially in intra-chromosomal FTs. Most of the fusion transcripts may not undergo translation and serve as long non-coding RNAs. The low validation rate of FTs in plants indicated that the fusion transcripts are expressed at very low levels, like in the case of humans. FTs often originate from parental genes involved in essential biological processes, suggesting their relevance across diverse tissues and stress conditions. This study presents a comprehensive repository of fusion transcripts, offering valuable insights into their roles in vital physiological processes and stress responses.
Collapse
Affiliation(s)
- Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Baylor College of Medicine, Houston, TX, USA
| | - Rashmi Gangwar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohan Bhardwaj
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Technical University of Munich, Freising, Germany
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Sahu
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srija Chakraborty
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Madhulika Ramesh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Abdoulaye AH, Yuhua C, Xiaoyan Z, Yiwei Y, Wang H, Yinhua C. Computational analysis and expression profiling of NAC transcription factor family involved in biotic stress response in Manihot esculenta. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1247-1259. [PMID: 39265049 DOI: 10.1111/plb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
The Nascent polypeptide-Associated Complex (NAC) family is among the largest plant-specific TF families and plays an important role in plant growth, development, and stress responses. NAC TFs have been extensively studied in plants such as rice and Arabidopsis; however, their characterization, functions, evolution, and expression patterns in Manihot esculenta (cassava) under environmental stress remain largely unexplored. Here, we used bioinformatic analyses and biotic stress responses to investigate the physicochemical properties, chromosome location, phylogeny, gene structure, expression patterns, and cis-elements in promoter regions of the NAC TFs in cassava. We identified 119 M. esculenta NAC (MeNAC) gene families, unevenly distributed on 16 chromosomes. We investigated expression patterns of all identified MeNAC TFs under Xanthomonas axonopodis pv. manihotis (Xam) infection, strain CHN11, at different time points. Only 20 MeNAC TFs showed expression of significant bacterial resistance. Six MeNACs (MeNAC7, 26, 63, 65, 77, and 113) were selected for functional analysis. qRT-PCR assays revealed that MeNAC7, 26, 63, 65, 77, and 113 were induced in response to XamCHN11 infection and may participate in the molecular interaction of cassava and bacterial blight. Interestingly, MeNAC26, MeNAC63, MeNAC65, and MeNAC113 responded to XamCHN11 infection at 3 h post-inoculation. Furthermore, we identified 13 stress-related cis-elements in promoter regions of the MeNAC genes that are involved in diverse environmental stress responses. Phylogenetic analysis revealed that MeNAC genes with similar structures and motif distributions were grouped. This study provides valuable insights into the evolution, diversity, and characterization of MeNAC TFs. It lays the groundwork for a better understanding of their biological roles and molecular mechanisms in cassava.
Collapse
Affiliation(s)
- A H Abdoulaye
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yuhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Z Xiaoyan
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Y Yiwei
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - H Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yinhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
15
|
Sun S, Liu D, Luo W, Li Z, Feng J, Guo Y, Chong K, Xu Y. Domestication-selected COG4-OsbZIP23 module regulates chilling tolerance in rice. Cell Rep 2024; 43:114965. [PMID: 39527475 DOI: 10.1016/j.celrep.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Identifying excellent natural variations is the foundation for breeding. Several major genes of quantitative trait loci for chilling tolerance at the seedling stage (qCTS) have been identified. However, less is known about the dual elite modules for the tolerance. Here, we report the major gene of qCTS1-2, Chilling-tolerance in Geng/japonica rice 4 (COG4), encoding the transcription factor ENAC1, coupled with OsbZIP23 to positively regulate chilling tolerance. The haplotype analysis and geographical distribution show that most of the chilling-tolerant japonica varieties carry Var9(CT) at -317 in COG4 (COG4jap). The COG4jap promoter is preferentially bound by cold-induced OsbZIP23 to cause a higher expression of COG4jap compared to COG4ind, which promotes multiple pathways for the tolerance. Both COG4jap and OsbZIP23jap are artificially selected and retained in japonica varieties during domestication. These results not only reveal the regulatory mechanism of OsbZIP23jap-COG4jap module but also provide valuable variations for molecular design breeding.
Collapse
Affiliation(s)
- Shenli Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinglei Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| |
Collapse
|
16
|
Beak HK, Priatama RA, Han SI, Song I, Park SJ, Lee YK. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. FRONTIERS IN PLANT SCIENCE 2024; 15:1488583. [PMID: 39649813 PMCID: PMC11620867 DOI: 10.3389/fpls.2024.1488583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/30/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Introduction Recent advancements in agricultural technology have highlighted the potential of eco-friendly innovations, such as plasma-activated water (PAW), for enhancing seed germination, growth, and biomass production. Methods In this study, we investigated the effects of PAW irrigation on young sorghum seedlings through phenotypic and transcriptional analyses. We measured growth parameters, including seedling height, stem thickness, and biomass, across five sorghum varieties: BTx623, Sodamchal, Noeulchal, Baremae, and Hichal. Additionally, we performed detailed analyses of stem cross-sections to evaluate the structural changes induced by PAW. Whole transcriptome analysis was conducted to identify differentially expressed genes (DEGs) and to perform Gene Ontology (GO) analysis. Results Phenotypic analysis revealed significant growth enhancements in PAW-treated seedlings compared to the control group, with notable increases in seedling height, stem thickness, and biomass. Stem cross-section analysis confirmed that PAW treatment led to the enlargement of primordia tissue, leaf sheath (LS1 and LS2), and overall stem tissue area. Transcriptomic analysis revealed that 78% of the DEGs were upregulated in response to PAW, indicating that PAW acts as a positive regulator of gene expression. Gene Ontology (GO) analysis further showed that PAW treatment predominantly upregulated genes associated with transmembrane transport, response to light stimulus, oxidoreductase activity, and transcriptional regulation. Additionally, an enriched AP2/EREBP transcription binding motif was identified. Conclusion These findings suggest that PAW not only enhances sorghum seedling growth through transcriptional regulation but also has the potential to optimize agricultural practices by increasing crop yield. The upregulation of genes involved in critical biological processes underscores the need for further exploration of PAW's potential in improving the productivity of sorghum and possibly other crops.
Collapse
Affiliation(s)
- Hong Kwan Beak
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea
- Division of Biological Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Ryza A. Priatama
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea
| | - Sang-Ik Han
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Ilchan Song
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea
| | - Soon Ju Park
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea
- Plasma and Nuclear Fusion, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Kim T, Alvarez JC, Rana D, Preciado J, Liu T, Begcy K. Evolution of NAC transcription factors from early land plants to domesticated crops. PLANT & CELL PHYSIOLOGY 2024:pcae133. [PMID: 39720999 DOI: 10.1093/pcp/pcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024]
Abstract
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants. Many of the NAC clades arose later during evolution since we found eudicot- and monocot-specific clades. Cis-elements analysis in NAC promoters showed the presence of abiotic and biotic stress as well as hormonal response elements, which indicate the ancestral function of NAC transcription factor genes in response to environmental stimuli and in plant development. At the transcriptional level, the expression of NAC transcription factors was low or absent in male reproduction, particularly mature pollen, across the plant kingdom. We also identified NAC genes with conserved expression patterns in response to heat stress in Marchantia polymorpha and Oryza sativa. Our study provides further evidence that transcriptional mechanisms associated with stress responses and development emerged early during plant land adaptation and are still conserved in flowering plants and domesticated crops.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Javier C Alvarez
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- School of Applied Sciences and Engineering, EAFIT University, PO Box 98873, Medellin 050022, Colombia
| | - Divya Rana
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Jesus Preciado
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Tie Liu
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Shah FA, Chen Z, Ni F, Kamal KA, Zhang J, Chen J, Ren J. ArNAC148 induces Acer rubrum leaf senescence by activating the transcription of the ABA receptor gene ArPYR13. Int J Biol Macromol 2024; 279:134950. [PMID: 39226982 DOI: 10.1016/j.ijbiomac.2024.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Acer rubrum, an ornamental tree known for its stunning autumn colors, has an elusive molecular mechanism that governs its leaf senescence. We performed the genome-wide analysis of NAC transcription factor genes and PYRABACTIN RESISTANCE1-LIKE (PYLs) and found that ArNAC148 and ArPYL13 were significantly upregulated in senescing leaves as compared to mature leaves. Subcellular localization studies confirmed the nuclear localization of ArNAC148 and the cytoplasmic localization of ArPYL13. Electrophoretic mobility shift assay and yeast one-hybrid assay demonstrated that ArNAC148 directly binds to the promoter of ArPYL13. Luciferase reporter assays further showed that ArNAC148 activates the transcription of ArPYL13. The transient expression of ArNAC148 and ArPYL13 in tobacco leaves promoted chlorophyll degradation, increased H2O2 level, MDA contents, and electrolyte leakage in response to abscisic acid (ABA). Moreover, the virus-induced gene silencing of ArNAC148 and ArPYL13 in A. rubrum produced results that were opposite to those observed in transient expression experiments. Our findings suggest that ArNAC148 induces leaf senescence by directly activating the transcription of ArPYL13, providing insights into the ABA-mediated regulatory mechanisms governing leaf senescence in A. rubrum. This study offers new perspectives for researchers to explore the roles of NAC and PYL genes in regulating leaf senescence in woody ornamental plants.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Fang Ni
- Anhui Wenda University of Information Engineering, Anhui Province, Anhui 230032, China
| | - Khan Arif Kamal
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jimei Zhang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
19
|
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, Patil GB, Puppala N, Janga MR. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1759-1775. [PMID: 39687700 PMCID: PMC11646254 DOI: 10.1007/s12298-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
Collapse
Affiliation(s)
- Sachin Phogat
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Sriharsha V. Lankireddy
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Saikrishna Lekkala
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Varsha C. Anche
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762 USA
| | | | - Gunvant B. Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Naveen Puppala
- New Mexico State University Agricultural Science Center at Clovis, Clovis, 88101 USA
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| |
Collapse
|
20
|
Huang Y, Liang Z, Lu J, Zhang M, Cao X, Hu R, Li D, Grierson D, Chen W, Zhu C, Wu D, Shi Y, Chen K. The transcription factor EjNAC5 regulates loquat fruit chilling lignification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6625-6643. [PMID: 39086268 DOI: 10.1093/jxb/erae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/10/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Changes in both lignin biosynthesis and DNA methylation have been reported to be associated with chilling stress in plants. When stored at low temperatures, red-fleshed loquat is prone to lignification, with increased lignin content and fruit firmness, which has deleterious effects on taste and eating quality. Here, we found that 5 °C storage mitigated the increasing firmness and lignin content of red-fleshed 'Dahongpao' ('DHP') loquat fruit that occurred during 0 °C storage. EjNAC5 was identified by integrating RNA sequencing with whole-genome bisulfite sequencing analysis of 'DHP' loquat fruit. The transcript levels of EjNAC5 were positively correlated with changes in firmness and negatively correlated with changes in DNA methylation level of a differentially methylated region in the EjNAC5 promoter. In white-fleshed 'Baisha' ('BS') loquat fruit, which do not undergo chilling-induced lignification at 0 °C, the transcripts of EjNAC5 remained low and the methylation level of the differentially methylated region in the EjNAC5 promoter was higher, compared with 'DHP' loquat fruit. Transient overexpression of EjNAC5 in loquat fruit and stable overexpression in Arabidopsis and liverwort led to an increase in lignin content. Furthermore, EjNAC5 interacts with EjERF39 and EjHB1 and activates the transcription of Ej4CL1 and EjPRX12 genes involved in lignin biosynthesis. This regulatory network involves different transcription factors from those involved in the lignification pathway. Our study indicates that EjNAC5 promoter methylation modulates EjNAC5 transcript levels and identifies novel EjNAC5-EjERF39-Ej4CL1 and EjNAC5-EjHB1-EjPRX12 regulatory modules involved in chilling induced-lignification.
Collapse
Affiliation(s)
- Yiqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zihao Liang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiao Lu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xizhi Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ruoqian Hu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Dongdong Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Wenbo Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
21
|
Liu T, Wang Y, Li X, Che H, Zhang Y. LpNAC5 positively regulates drought, salt and alkalinity tolerance of Lilium pumilum. Gene 2024; 924:148550. [PMID: 38777109 DOI: 10.1016/j.gene.2024.148550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
NACs (NAM、ATAF1/2、CUC1/2), as a large family of plant transcription factors, are widely involved in abiotic stress responses. This study aimed to isolate and clone a novel stress-responsive transcription factor LpNAC5 from Lilium pumilum bulbs. Drought, salt, alkali, and ABA stresses induced the expression of LpNAC5. Transgenic tobacco plants overexpressing LpNAC5 were generated using the Agrobacterium-mediated method to understand the role of this factor in stress response. These plants exhibited increased tolerance to drought, salt, and alkali stresses. The tobacco plants overexpressing LpNAC5 showed strong drought, salt, and alkaline tolerance. Under the three abiotic stresses, the activities of antioxidant enzymes were enhanced, the contents of proline and chlorophyll increased, and the contents of malondialdehyde decreased. The functional analysis revealed that LpNAC5 enabled plants to positively regulate drought and salt stresses. These findings not only provided valuable insights into stress tolerance mechanisms in L. pumilum but also offered a potential genetic resource for breedi.
Collapse
Affiliation(s)
- Tongfei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xufei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
22
|
Jia G, Thinn KSZ, Kim SH, Min J, Oh SK. Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses. THE PLANT PATHOLOGY JOURNAL 2024; 40:512-524. [PMID: 39397305 PMCID: PMC11471929 DOI: 10.5423/ppj.oa.07.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.
Collapse
Affiliation(s)
| | | | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
23
|
Liu Y, Zhu Q, Wang Z, Zheng H, Zheng X, Ling P, Tang M. Integrative Analysis of Transcriptome and Metabolome Reveals the Pivotal Role of the NAM Family Genes in Oncidium hybridum Lodd. Pseudobulb Growth. Int J Mol Sci 2024; 25:10355. [PMID: 39408686 PMCID: PMC11476975 DOI: 10.3390/ijms251910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Oncidium hybridum Lodd. is an important ornamental flower that is used as both a cut flower and a potted plant around the world; additionally, its pseudobulbs serve as essential carriers for floral organs and flower development. The NAM gene family is crucial for managing responses to various stresses as well as regulating growth in plants. However, the mechanisms by which NAM genes regulate the development of pseudobulbs remain unclear. In this study, a total of 144 NAM genes harboring complete structural domains were identified in O. hybridum. The 144 NAM genes were systematically classified into 14 distinct subfamilies via phylogenetic analysis. Delving deeper into the conserved motifs revealed that motifs 1-6 exhibited remarkable conservation, while motifs 7-10 presented in a few NAM genes only. Notably, NAM genes sharing identical specific motifs were classified into the same subfamily, indicating functional relatedness. Furthermore, the examination of occurrences of gene duplication indicated that the NAM genes display 16 pairs of tandem duplications along with five pairs of segmental duplications, suggesting their role in genetic diversity and potential adaptive evolution. By conducting a correlation analysis integrating transcriptomics and metabolomics at four stages of pseudobulb development, we found that OhNAM023, OhNAM030, OhNAM007, OhNAM019, OhNAM083, OhNAM047, OhNAM089, and OhNAM025 exhibited significant relationships with the endogenous plant hormones jasmonates (JAs), hinting at their potential involvement in hormonal signaling. Additionally, OhNAM089, OhNAM025, OhNAM119, OhNAM055, and OhNAM136 showed strong links with abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE), suggesting the possible regulatory function of these NAM genes in plant growth and stress responses. The 144 NAM genes identified in this study provide a basis for subsequent research and contribute to elucidating the intricate molecular mechanisms of NAM genes in Oncidium and potentially in other species.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Ling
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.L.); (Q.Z.); (Z.W.); (H.Z.); (X.Z.)
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Collaborative Innovation Center, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.L.); (Q.Z.); (Z.W.); (H.Z.); (X.Z.)
| |
Collapse
|
24
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
25
|
Zhang Y, Zhang Z, Ai Y, Zhang H, Chen Y, Ye R, Sun L, Shen H, Cheng Q. CaAOS as a hub gene based on physiological and transcriptomic analyses of cold-resistant and cold-sensitive pepper cultivars. Int J Biol Macromol 2024; 276:133961. [PMID: 39029820 DOI: 10.1016/j.ijbiomac.2024.133961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The yield and quality of pepper are considerably influenced by the cold conditions. Herein, we performed morphological, physiological and transcriptomic analyses by using two pepper seedlings, '2379' (cold-resistant) and '2380' (cold-sensitive). Briefly, 60 samples from each cultivar were analyzed at four distinct time points (0, 6, 24 and 48 h) at 5 °C in darkness. The physiological indices and activities of enzymes exhibited marked differences between the two cultivars. Transcriptomic analysis indicated that, compared to the control group, 11,415 DEGs were identified in '2379' and '2380' at 24 h. In the early stage, the number of DEGs in '2379' was 5.68 times higher than that in '2380', potentially explaining the observed differences in tolerance to colds. Processes such as protein targeting to membranes, jasmonic acid (JA)-mediated signalling, cold response and abscisic acid-activated signalling were involved. Subsequently, we identified a hub gene, CaAOS, that is involved in JA biosynthesis, positively influences cold tolerance and is a target of CaMYC2. Variations in the GC-motif of the CaAOS's promoter may influence the expression levels of CaAOS under cold treatment. The result of this study may lead to the development of more effective strategies for enhancing cold tolerance, potentially benefitting pepper breeding in cold regions.
Collapse
Affiliation(s)
- Yingxue Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zongpeng Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yixin Ai
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Haizhou Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ruiquan Ye
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Li Q, Zhang H, Yang Y, Tang K, Yang Y, Ouyang W, Du G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. Int J Mol Sci 2024; 25:9466. [PMID: 39273412 PMCID: PMC11394811 DOI: 10.3390/ijms25179466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.
Collapse
Affiliation(s)
- Qi Li
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Hanxue Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yulei Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Wenjing Ouyang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
27
|
Li Q, Zhu P, Yu X, Xu J, Liu G. Physiological and Molecular Mechanisms of Rice Tolerance to Salt and Drought Stress: Advances and Future Directions. Int J Mol Sci 2024; 25:9404. [PMID: 39273349 PMCID: PMC11394906 DOI: 10.3390/ijms25179404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Rice, a globally important food crop, faces significant challenges due to salt and drought stress. These abiotic stresses severely impact rice growth and yield, manifesting as reduced plant height, decreased tillering, reduced biomass, and poor leaf development. Recent advances in molecular biology and genomics have uncovered key physiological and molecular mechanisms that rice employs to cope with these stresses, including osmotic regulation, ion balance, antioxidant responses, signal transduction, and gene expression regulation. Transcription factors such as DREB, NAC, and bZIP, as well as plant hormones like ABA and GA, have been identified as crucial regulators. Utilizing CRISPR/Cas9 technology for gene editing holds promise for significantly enhancing rice stress tolerance. Future research should integrate multi-omics approaches and smart agriculture technologies to develop rice varieties with enhanced stress resistance, ensuring food security and sustainable agriculture in the face of global environmental changes.
Collapse
Affiliation(s)
- Qingyang Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Peiwen Zhu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Junying Xu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| |
Collapse
|
28
|
Wang Q, Zhou L, Yuan M, Peng F, Zhu X, Wang Y. Genome-Wide Identification of NAC Gene Family Members of Tree Peony ( Paeonia suffruticosa Andrews) and Their Expression under Heat and Waterlogging Stress. Int J Mol Sci 2024; 25:9312. [PMID: 39273263 PMCID: PMC11395581 DOI: 10.3390/ijms25179312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
An important family of transcription factors (TFs) in plants known as NAC (NAM, ATAF1/2, and CUC2) is crucial for the responses of plants to environmental stressors. In this study, we mined the NAC TF family members of tree peony (Paeonia suffruticosa Andrews) from genome-wide data and analyzed their response to heat and waterlogging stresses in conjunction with transcriptome data. Based on tree peony's genomic information, a total of 48 PsNAC genes were discovered. Based on how similar their protein sequences were, these PsNAC genes were divided into 14 branches. While the gene structures and conserved protein motifs of the PsNAC genes within each branch were largely the same, the cis-acting elements in the promoter region varied significantly. Transcriptome data revealed the presence of five PsNAC genes (PsNAC06, PsNAC23, PsNAC38, PsNAC41, PsNAC47) and one PsNAC gene (PsNAC37) in response to heat and waterlogging stresses, respectively. qRT-PCR analysis reconfirmed the response of these five PsNAC genes to heat stress and one PsNAC gene to waterlogging stress. This study lays a foundation for the study of the functions and regulatory mechanisms of NAC TFs in tree peony. Meanwhile, the NAC TFs of tree peony in response to heat and waterlogging stress were excavated, which is of great significance for the selection and breeding of new tree peony varieties with strong heat and waterlogging tolerance.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
29
|
Yang K, Zhou G, Chen C, Liu X, Wei L, Zhu F, Liang Z, Chen H. Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1447860. [PMID: 39170788 PMCID: PMC11335689 DOI: 10.3389/fpls.2024.1447860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Introduction Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease in cucumber (Cucumis sativus. L). However, there remains limited knowledge on the molecular mechanisms underlying FW resistance-mediated defense responses in cucumber. Methods In this study, metabolome and transcriptome profiling were carried out for two FW resistant (NR) and susceptible (NS), near isogenic lines (NILs) before and after Foc inoculation. NILs have shown consistent and stable resistance in multiple resistance tests conducted in the greenhouse and in the laboratory. A widely targeted metabolomic analysis identified differentially accumulated metabolites (DAMs) with significantly greater NR accumulation in response to Foc infection, including many phenolic acid and flavonoid compounds from the flavonoid biosynthesis pathway. Results Transcriptome analysis identified differentially expressed genes (DEGs) between the NILs upon Foc inoculation including genes for secondary metabolite biosynthesis and transcription factor genes regulating the flavonoid biosynthesis pathway. Joint analysis of the metabolomic and transcriptomic data identified DAMs and DEGs closely associated with the biosynthesis of phenolic acid and flavonoid DAMs. The association of these compounds with NR-conferred FW resistance was exemplified by in vivo assays. These assays found two phenolic acid compounds, bis (2-ethylhexyl) phthalate and diisooctyl phthalate, as well as the flavonoid compound gallocatechin 3-O-gallate to have significant inhibitory effects on Foc growth. The antifungal effects of these three compounds represent a novel finding. Discussion Therefore, phenolic acids and flavonoids play important roles in NR mediated FW resistance breeding in cucumber.
Collapse
Affiliation(s)
- Kankan Yang
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chen Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lin Wei
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feiying Zhu
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihuai Liang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huiming Chen
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
30
|
Wu W, Wang L, Huang W, Zhang X, Li Y, Guo W. A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus. DNA Res 2024; 31:dsae024. [PMID: 39101533 PMCID: PMC11347754 DOI: 10.1093/dnares/dsae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024] Open
Abstract
With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90, and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Weicheng Huang
- Plant Science Center, South China Botanical Garden, Chinese Academy of Science, , Guangzhou, 510650, Guangzhou, China
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
31
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Delen Y, Palali-Delen S, Xu G, Neji M, Yang J, Dweikat I. Dissecting the Genetic Architecture of Morphological Traits in Sunflower ( Helianthus annuus L.). Genes (Basel) 2024; 15:950. [PMID: 39062729 PMCID: PMC11275413 DOI: 10.3390/genes15070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The sunflower (Helianthus annuus L.) is one of the most essential oil crops in the world. Several component traits, including flowering time, plant height, stem diameter, seed weight, and kernel weight, determine sunflower seed and oil yield. Although the genetic mechanisms governing the variation of these yield-related traits have been studied using various approaches, genome-wide association studies (GWAS) have not been widely applied to sunflowers. In this study, a set of 342 sunflower accessions was evaluated in 2019 and 2020 using an incomplete randomized block design, and GWAS was conducted utilizing two complementary approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU) model by fitting 226,779 high-quality SNPs. As a result, GWAS identified a number of trait-associated SNPs. Those SNPs were located close to several genes that may serve as a basis for further molecular characterization and provide promising targets for sunflower yield improvement.
Collapse
Affiliation(s)
- Yavuz Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| | - Semra Palali-Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Gen Xu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Mohamed Neji
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| |
Collapse
|
33
|
Talukdar S, Mal S, Kundu P. Physico-chemical features and functional relevance of tomato rhomboid proteases. Int J Biol Macromol 2024; 272:132681. [PMID: 38806088 DOI: 10.1016/j.ijbiomac.2024.132681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In plants, regulated intramembrane proteolysis (RIP) is crucial for proper growth, development, and stress management. Rhomboid proteases (RPs) residing in the membrane play a vital role in orchestrating RIP. Although RPs can be found in most sequenced genomes, tomato rhomboids (SlRPs) have not yet been studied. Using alternative and comprehensive strategies, we found ten SlRPs encoded in the tomato genome. These SlRPs possess signature motifs and transmembrane domains, showing structural similarity to other members of the RP family. Also, SlRPs are genetically related to other known RPs of the Solanaceae family. Seven of the SlRPs retain serine-histidine catalytic dyads, making them proteolytically active, while three iRhoms lack the dyad and other structural motifs. Although SlRPs could have functional redundancy, their distribution and expression pattern indicate tissue specificity and responsiveness to specific external stimuli. The presence of development and stress-response-related cis-elements in the promoters of SlRPs supports this view. Furthermore, our strategically designed substrate-reporter assay shows that SlRPs have proteolytic activity similar to that of known RPs. This study provides a detailed understanding of all SlRPs and their physico-chemical features, shedding light on their involvement in physiological processes.
Collapse
Affiliation(s)
- Sushmita Talukdar
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Sayan Mal
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India.
| |
Collapse
|
34
|
Wang D, Coleman HD. The transcriptional regulation of a putative hemicellulose gene, PtrPARVUS2 in poplar. Sci Rep 2024; 14:12592. [PMID: 38824196 PMCID: PMC11144201 DOI: 10.1038/s41598-024-63408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
35
|
Cortés AJ. Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants. Int J Mol Sci 2024; 25:5367. [PMID: 38791404 PMCID: PMC11121514 DOI: 10.3390/ijms25105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024] Open
Abstract
Plant breeding [...].
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 vía Rionegro—Las Palmas, Rionegro 054048, Colombia;
- Facultad de Ciencias Agrarias—de Ciencias Forestales, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma 23436, Sweden
| |
Collapse
|
36
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Comparative transcriptomics analysis reveals defense mechanisms of Manihot esculenta Crantz against Sri Lanka Cassava MosaicVirus. BMC Genomics 2024; 25:436. [PMID: 38698332 PMCID: PMC11067156 DOI: 10.1186/s12864-024-10315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
37
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
38
|
Zhang Z, Xia Z, Zhou C, Wang G, Meng X, Yin P. Insights into Salinity Tolerance in Wheat. Genes (Basel) 2024; 15:573. [PMID: 38790202 PMCID: PMC11121000 DOI: 10.3390/genes15050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Salt stress has a detrimental impact on food crop production, with its severity escalating due to both natural and man-made factors. As one of the most important food crops, wheat is susceptible to salt stress, resulting in abnormal plant growth and reduced yields; therefore, damage from salt stress should be of great concern. Additionally, the utilization of land in coastal areas warrants increased attention, given diminishing supplies of fresh water and arable land, and the escalating demand for wheat. A comprehensive understanding of the physiological and molecular changes in wheat under salt stress can offer insights into mitigating the adverse effects of salt stress on wheat. In this review, we summarized the genes and molecular mechanisms involved in ion transport, signal transduction, and enzyme and hormone regulation, in response to salt stress based on the physiological processes in wheat. Then, we surveyed the latest progress in improving the salt tolerance of wheat through breeding, exogenous applications, and microbial pathways. Breeding efficiency can be improved through a combination of gene editing and multiple omics techniques, which is the fundamental strategy for dealing with salt stress. Possible challenges and prospects in this process were also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Z.Z.); (Z.X.); (C.Z.); (G.W.); (X.M.)
| |
Collapse
|
39
|
Song K, Li B, Li H, Zhang R, Zhang X, Luan R, Liu Y, Yang L. The Characterization of G-Quadruplexes in Tobacco Genome and Their Function under Abiotic Stress. Int J Mol Sci 2024; 25:4331. [PMID: 38673916 PMCID: PMC11050182 DOI: 10.3390/ijms25084331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.
Collapse
Affiliation(s)
- Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Ruiwei Luan
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| |
Collapse
|
40
|
Xu Y, Cheng J, Hu H, Yan L, Jia J, Wu B. Genome-Wide Identification of NAC Family Genes in Oat and Functional Characterization of AsNAC109 in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1017. [PMID: 38611546 PMCID: PMC11013824 DOI: 10.3390/plants13071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The plant-specific NAC gene family is one of the largest transcription factor families, participating in plant growth regulation and stress response. Despite extensive characterization in various plants, our knowledge of the NAC family in oat is lacking. Herein, we identified 333 NAC genes from the latest release of the common oat genome. We provide a comprehensive overview of the oat NAC gene family, covering gene structure, chromosomal localization, phylogenetic characteristics, conserved motif compositions, and gene duplications. AsNAC gene expression in different tissues and the response to various abiotic stresses were characterized using RT-qPCR. The main driver of oat NAC gene family expansion was identified as segmental duplication using collinearity analysis. In addition, the functions of AsNAC109 in regulating abiotic stress tolerance in Arabidopsis were clarified. This is the first genome-wide investigation of the NAC gene family in cultivated oat, which provided a unique resource for subsequent research to elucidate the mechanisms responsible for oat stress tolerance and provides valuable clues for the improvement of stress resistance in cultivated oat.
Collapse
Affiliation(s)
- Yahui Xu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Jialong Cheng
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| | - Juqing Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Bin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| |
Collapse
|
41
|
Evans KV, Ransom E, Nayakoti S, Wilding B, Mohd Salleh F, Gržina I, Erber L, Tse C, Hill C, Polanski K, Holland A, Bukhat S, Herbert RJ, de Graaf BHJ, Denby K, Buchanan-Wollaston V, Rogers HJ. Expression of the Arabidopsis redox-related LEA protein, SAG21 is regulated by ERF, NAC and WRKY transcription factors. Sci Rep 2024; 14:7756. [PMID: 38565965 PMCID: PMC10987515 DOI: 10.1038/s41598-024-58161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.
Collapse
Affiliation(s)
- Kelly V Evans
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Elspeth Ransom
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Swapna Nayakoti
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Ben Wilding
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Faezah Mohd Salleh
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
- Investigative and Forensic Sciences Research Group, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Irena Gržina
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Lieselotte Erber
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Carmen Tse
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Claire Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alistair Holland
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Sherien Bukhat
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Robert J Herbert
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK
| | - Barend H J de Graaf
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Katherine Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Heslington, York, YO10 5DD, UK
| | | | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK.
| |
Collapse
|
42
|
Wang Z, He Z, Gao C, Wang C, Song X, Wang Y. Phosphorylation of birch BpNAC90 improves the activation of gene expression to confer drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae061. [PMID: 38659443 PMCID: PMC11040210 DOI: 10.1093/hr/uhae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/16/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
The NAC transcription factors (TFs) play important roles in mediating abiotic stress tolerance; however, the mechanism is still not fully known. Here, an NAC gene (BpNAC90) from a gene regulatory network of Betula platyphylla (birch) that responded to drought was characterized. Overexpression and knockout of BpNAC90 displayed increased and reduced drought tolerance, respectively, relative to wild-type (WT) birch. BpNAC90 binds to different DNA motifs to regulate target genes in conferring drought tolerance, such as Eomes2, ABRE and Tgif2. BpNAC90 is phosphorylated by drought stress at Ser 205 by birch SNF1-related protein kinase 2 (BpSRK2A). Mutated BpNAC90 (termed S205A) with abolished phosphorylation, was transformed into birch for overexpression. The transgenic S205A plants displayed significantly reduced drought tolerance compared with plants overexpressing BpNAC90, but still showed increased drought tolerance relative to WT birch. At the same time, S205A showed a decreased capability to bind to motifs and reduced activation of target gene expression, which contributed to the reduced drought tolerance. Additionally, BpSRK2A and BpNAC90 can be induced by drought stress and form a complex to phosphorylate BpNAC90. The results together indicated that phosphorylation of BpNAC90 is necessary in conferring drought tolerance in birch.
Collapse
Affiliation(s)
- Zhibo Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
43
|
Kumar R, Kumar C, Roy Choudhury D, Ranjan A, Raipuria RK, Dubey KKD, Mishra A, Kumar C, Manzoor MM, Kumar A, Kumari A, Singh K, Singh GP, Singh R. Isolation, Characterization, and Expression Analysis of NAC Transcription Factor from Andrographis paniculata (Burm. f.) Nees and Their Role in Andrographolide Production. Genes (Basel) 2024; 15:422. [PMID: 38674357 PMCID: PMC11049156 DOI: 10.3390/genes15040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Andrographis paniculata (Burm. f.) Nees is an important medicinal plant known for its bioactive compound andrographolide. NAC transcription factors (NAM, ATAF1/2, and CUC2) play a crucial role in secondary metabolite production, stress responses, and plant development through hormonal signaling. In this study, a putative partial transcript of three NAC family genes (ApNAC83, ApNAC21 22 and ApNAC02) was used to isolate full length genes using RACE. Bioinformatics analyses such as protein structure prediction, cis-acting regulatory elements, and gene ontology analysis were performed. Based on in silico predictions, the diterpenoid profiling of the plant's leaves (five-week-old) and the real-time PCR-based expression analysis of isolated NAC genes under abscisic acid (ABA) treatment were performed. Additionally, the expression analysis of isolated NAC genes under MeJA treatment and transient expression in Nicotiana tabacum was performed. Full-length sequences of three members of the NAC transcription factor family, ApNAC83 (1102 bp), ApNAC21 22 (996 bp), and ApNAC02 (1011 bp), were isolated and subjected to the promoter and gene ontology analysis, which indicated their role in transcriptional regulation, DNA binding, ABA-activated signaling, and stress management. It was observed that ABA treatment leads to a higher accumulation of andrographolide and 14-deoxyandrographolide content, along with the upregulation of ApNAC02 (9.6-fold) and the downregulation of ApNAC83 and ApNAC21 22 in the leaves. With methyl jasmonate treatment, ApNAC21 22 expression decreased, while ApNAC02 increased (1.9-fold), with no significant change being observed in ApNAC83. The transient expression of the isolated NAC genes in a heterologous system (Nicotiana benthamiana) demonstrated their functional transcriptional activity, leading to the upregulation of the NtHMGR gene, which is related to the terpene pathway in tobacco. The expression analysis and heterologous expression of ApNAC21 22 and ApNAC02 indicated their role in andrographolide biosynthesis.
Collapse
Affiliation(s)
- Ramesh Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India; (R.K.); (D.R.C.)
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India; (K.K.D.D.); (A.K.)
| | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, Delhi, India;
| | - Debjani Roy Choudhury
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India; (R.K.); (D.R.C.)
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India; (A.R.); (R.K.R.)
| | - Ritesh Kumar Raipuria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India; (A.R.); (R.K.R.)
| | - Kaushik Kumar Dhar Dubey
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India; (K.K.D.D.); (A.K.)
| | - Ayushi Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India;
| | - Chetan Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir, India; (C.K.); (M.M.M.)
- School of Pharmaceutical & Populations Health Informatics, DIP University Mussoorie-Dehradun, Dehradun 248009, Uttrakhand, India
| | - Malik Muzafar Manzoor
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir, India; (C.K.); (M.M.M.)
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India;
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India; (K.K.D.D.); (A.K.)
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India; (K.S.); (G.P.S.)
- International Crops Research Institute for Semi-Arid Tropics, Hyderabad 502324, Telangana, India
| | - Gyanendra Pratap Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India; (K.S.); (G.P.S.)
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, Delhi, India; (R.K.); (D.R.C.)
| |
Collapse
|
44
|
Rocher F, Dou S, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Integrative systems biology of wheat susceptibility to Fusarium graminearum uncovers a conserved gene regulatory network and identifies master regulators targeted by fungal core effectors. BMC Biol 2024; 22:53. [PMID: 38443953 PMCID: PMC10916188 DOI: 10.1186/s12915-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Plant diseases are driven by an intricate set of defense mechanisms counterbalanced by the expression of host susceptibility factors promoted through the action of pathogen effectors. In spite of their central role in the establishment of the pathology, the primary components of plant susceptibility are still poorly understood and challenging to trace especially in plant-fungal interactions such as in Fusarium head blight (FHB) of bread wheat. Designing a system-level transcriptomics approach, we leveraged the analysis of wheat responses from a susceptible cultivar facing Fusarium graminearum strains of different aggressiveness and examined their constancy in four other wheat cultivars also developing FHB. RESULTS In this study, we describe unexpected differential expression of a conserved set of transcription factors and an original subset of master regulators were evidenced using a regulation network approach. The dual-integration with the expression data of pathogen effector genes combined with database mining, demonstrated robust connections with the plant molecular regulators and identified relevant candidate genes involved in plant susceptibility, mostly able to suppress plant defense mechanisms. Furthermore, taking advantage of wheat cultivars of contrasting susceptibility levels, a refined list of 142 conserved susceptibility gene candidates was proposed to be necessary host's determinants for the establishment of a compatible interaction. CONCLUSIONS Our findings emphasized major FHB determinants potentially controlling a set of conserved responses associated with susceptibility in bread wheat. They provide new clues for improving FHB control in wheat and also could conceivably leverage further original researches dealing with a broader spectrum of plant pathogens.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Samir Dou
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Marie-Laure Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif Sur Yvette, 91190, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif Sur Yvette, 91190, France
- UMR MIA Paris-Saclay, AgroParisTech, INRAE, Université Paris-Saclay, Gif Sur Yvette, France
| | - Philippe Label
- Physique Et Physiologie Intégratives de L'Arbre en Environnement Fluctuant, Université Clermont Auvergne, INRAE, UMR 547, Aubière, Cedex, France
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France.
| |
Collapse
|
45
|
Krępski T, Piasecka A, Święcicka M, Kańczurzewska M, Sawikowska A, Dmochowska-Boguta M, Rakoczy-Trojanowska M, Matuszkiewicz M. Leaf rust (Puccinia recondita f. sp. secalis) triggers substantial changes in rye (Secale cereale L.) at the transcriptome and metabolome levels. BMC PLANT BIOLOGY 2024; 24:107. [PMID: 38347436 PMCID: PMC10863301 DOI: 10.1186/s12870-024-04726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. RESULTS An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. CONCLUSION Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.
Collapse
Affiliation(s)
- T Krępski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, 61-704, Poland
| | - M Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Kańczurzewska
- Institute of Mathematics, Poznan University of Technology, Poznań, 60-965, Poland
| | - A Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, 60-637, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, 61-704, Poland
| | - M Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, Blonie, 05-870, Poland
| | - M Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
46
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
47
|
Liu X, Zhou G, Chen S, Jia Z, Zhang S, He F, Ren M. Genome-wide analysis of the Tritipyrum NAC gene family and the response of TtNAC477 in salt tolerance. BMC PLANT BIOLOGY 2024; 24:40. [PMID: 38195389 PMCID: PMC10775630 DOI: 10.1186/s12870-023-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
NAC transcription factors are widely distributed in the plant kingdom and play an important role in the response to various abiotic stresses in plant species. Tritipyrum, an octoploid derived from hybridization of Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is an important genetic resource for integrating the desirable traits of Th. elongatum into wheat. In this study, we investigated the tissue distribution and expression of Tritipyrum NAC genes in the whole genomes of T. aestivum and Th. elongatum after obtaining their complete genome sequences. Based on phylogenetic relationships, conserved motifs, gene synthesis, evolutionary analysis, and expression patterns, we identified and characterized 732 Tritipyrum NAC genes. These genes were divided into six main groups (A, B, C, D, E, and G) based on phylogenetic relationships and evolutionary studies, with members of these groups sharing the same motif composition. The 732 TtNAC genes are widely distributed across 28 chromosomes and include 110 duplicated genes. Gene synthesis analysis indicated that the NAC gene family may have a common ancestor. Transcriptome data and quantitative polymerase chain reaction (qPCR) expression profiles showed 68 TtNAC genes to be highly expressed in response to various salt stress and recovery treatments. Tel3E01T644900 (TtNAC477) was particularly sensitive to salt stress and belongs to the same clade as the salt tolerance genes ANAC019 and ANAC055 in Arabidopsis. Pearson correlation analysis identified 751 genes that correlated positively with expression of TtNAC477, and these genes are enriched in metabolic activities, cellular processes, stimulus responses, and biological regulation. TtNAC477 was found to be highly expressed in roots, stems, and leaves in response to salt stress, as confirmed by real-time PCR. These findings suggest that TtNAC477 is associated with salt tolerance in plants and might serve as a valuable exogenous gene for enhancing salt tolerance in wheat.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
48
|
Zheng K, Lu J, He X, Lan S, Zhai T, Cao S, Lin Y. Genome-Wide Identification and Expression Analysis of GATA Family Genes in Dimocarpus longan Lour. Int J Mol Sci 2024; 25:731. [PMID: 38255805 PMCID: PMC10815313 DOI: 10.3390/ijms25020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 μmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiayue Lu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinyu He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shuoxian Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
49
|
Naresh R, Srivastava R, Gunapati S, Sane AP, Sane VA. Functional characterization of GhNAC2 promoter conferring hormone- and stress-induced expression: a potential tool to improve growth and stress tolerance in cotton. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:17-32. [PMID: 38435854 PMCID: PMC10901759 DOI: 10.1007/s12298-024-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
The GhNAC2 transcription factor identified from G. herbaceum improves root growth and drought tolerance through transcriptional reprogramming of phytohormone signaling. The promoter of such a versatile gene could serve as an important genetic engineering tool for biotechnological application. In this study, we identified and characterized the promoter of GhNAC2 to understand its regulatory mechanism. GhNAC2 transcription factor increased in root tissues in response to GA, ethylene, auxin, ABA, mannitol, and NaCl. In silico analysis revealed an overrepresentation of cis-regulatory elements associated with hormone signaling, stress responses and root-, pollen-, and seed-specific promoter activity. To validate their role in GhNAC2 function/regulation, an 870-bp upstream regulatory sequence was fused with the GUS reporter gene (uidA) and expressed in Arabidopsis and cotton hairy roots for in planta characterization. Histochemical GUS staining indicated localized expression in root tips, root elongation zone, root primordia, and reproductive tissues under optimal growth conditions. Mannitol, NaCl, auxin, GA, and ABA, induced the promoter-driven GUS expression in all tissues while ethylene suppressed the promoter activity. The results show that the 870 nt fragment of the GhNAC2 promoter drives root-preferential expression and responds to phytohormonal and stress signals. In corroboration with promoter regulation, GA and ethylene pathways differentially regulated root growth in GhNAC2-expressing Arabidopsis. The findings suggest that differential promoter activity governs the expression of GhNAC2 in root growth and stress-related functions independently through specific promoter elements. This multifarious promoter can be utilized to develop yield and climate resilience in cotton by expanding the options to control gene regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01411-2.
Collapse
Affiliation(s)
- Ram Naresh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Richa Srivastava
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Samatha Gunapati
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Present Address: Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108 USA
| | - Aniruddha P. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
50
|
Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int J Mol Sci 2023; 24:17384. [PMID: 38139213 PMCID: PMC10744133 DOI: 10.3390/ijms242417384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Zeng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|