1
|
Hilpert K, Munshi T, López-Pérez PM, Sequeira-Garcia J, Bull TJ. Redefining Peptide 14D: Substitutional Analysis for Accelerated TB Diagnosis and Enhanced Activity against Mycobacterium tuberculosis. Microorganisms 2024; 12:177. [PMID: 38258003 PMCID: PMC10819809 DOI: 10.3390/microorganisms12010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a predominant cause of mortality, especially in low- and middle-income nations. Recently, antimicrobial peptides have been discovered that at low concentrations could stimulate the growth of M. tuberculosis (hormetic response). In this study, such a peptide was used to investigate the effects on the time to positivity (TTP). A systematic substitution analysis of peptide 14D was synthesized using Spot synthesis technology, resulting in 171 novel peptides. Our findings revealed a spectrum of interactions, with some peptides accelerating M. tuberculosis growth, potentially aiding in faster diagnostics, while others exhibited inhibitory effects. Notably, peptide NH2-wkivfiwrr-CONH2 significantly reduced the TTP by 25 h compared to the wild-type peptide 14D, highlighting its potential in improving TB diagnostics by culture. Several peptides demonstrated potent antimycobacterial activity, with a minimum inhibitory concentration (MIC) of 20 µg/mL against H37Rv and a multidrug-resistant M. tuberculosis strain. Additionally, for two peptides, a strongly diminished formation of cord-like structures was observed, which is indicative of reduced virulence and transmission potential. This study underscores the multifaceted roles of antimicrobial peptides in TB management, from enhancing diagnostic efficiency to offering therapeutic avenues against M. tuberculosis.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Tulika Munshi
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | - Tim J. Bull
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
2
|
Dwyer R, Witte C, Buss P, Warren R, Miller M, Goosen W. Antemortem detection of Mycobacterium bovis in nasal swabs from African rhinoceros. Sci Rep 2024; 14:357. [PMID: 38172248 PMCID: PMC10764836 DOI: 10.1038/s41598-023-50236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Mycobacterium bovis (M. bovis) infection has been identified in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations in Kruger National Park, South Africa. However, it is unknown whether M. bovis infected rhinoceros, like humans and cattle, can shed mycobacteria in respiratory secretions. Limited studies have suggested that rhinoceros with subclinical M. bovis infection may present minimal risk for transmission. However, recent advances that have improved detection of Mycobacterium tuberculosis complex (MTBC) members in paucibacillary samples warranted further investigation of rhinoceros secretions. In this pilot study, nasal swab samples from 75 rhinoceros with defined infection status based on M. bovis antigen-specific interferon gamma release assay (IGRA) results were analysed by GeneXpert MTB/RIF Ultra, BACTEC MGIT and TiKa-MGIT culture. Following culture, speciation was done using targeted PCRs followed by Sanger sequencing for mycobacterial species identification, and a region of difference (RD) 4 PCR. Using these techniques, MTBC was detected in secretions from 14/64 IGRA positive rhinoceros, with viable M. bovis having been isolated in 11 cases, but not in any IGRA negative rhinoceros (n = 11). This finding suggests the possibility that MTBC/M. bovis-infected rhinoceros may be a source of infection for other susceptible animals sharing the environment.
Collapse
Affiliation(s)
- Rebecca Dwyer
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
- The Center for Wildlife Studies, P.O. Box 56, South Freeport, ME, 04078, USA
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Robin Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Wynand Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
3
|
Bull TJ, Munshi T, Lopez-Perez PM, Tran AC, Cosgrove C, Bartolf A, Menichini M, Rindi L, Parigger L, Malanovic N, Lohner K, Wang CJH, Fatima A, Martin LL, Esin S, Batoni G, Hilpert K. Specific Cationic Antimicrobial Peptides Enhance the Recovery of Low-Load Quiescent Mycobacterium tuberculosis in Routine Diagnostics. Int J Mol Sci 2023; 24:17555. [PMID: 38139385 PMCID: PMC10743970 DOI: 10.3390/ijms242417555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The culture confirmation of Mycobacterium tuberculosis (MTB) remains the gold standard for the diagnosis of Tuberculosis (TB) with culture conversion representing proof of cure. However, over 40% of TB samples fail to isolate MTB even though many patients remain infectious due to the presence of viable non-culturable forms. Previously, we have shown that two short cationic peptides, T14D and TB08L, induce a hormetic response at low concentrations, leading to a stimulation of growth in MTB and the related animal pathogen Mycobacterium bovis (bTB). Here, we examine these peptides showing they can influence the mycobacterial membrane integrity and function through membrane potential reduction. We also show this disruption is associated with an abnormal reduction in transcriptomic signalling from specific mycobacterial membrane sensors that normally monitor the immediate cellular environment and maintain the non-growing phenotype. We observe that exposing MTB or bTB to these peptides at optimal concentrations rapidly represses signalling mechanisms maintaining dormancy phenotypes, which leads to the promotion of aerobic metabolism and conversion into a replicative phenotype. We further show a practical application of these peptides as reagents able to enhance conventional routine culture methods by stimulating mycobacterial growth. We evaluated the ability of a peptide-supplemented sample preparation and culture protocol to isolate the MTB against a gold standard routine method tested in parallel on 255 samples from 155 patients with suspected TB. The peptide enhancement increased the sample positivity rate by 46% and decreased the average time to sample positivity of respiratory/faecal sampling by seven days. The most significant improvements in isolation rates were from sputum smear-negative low-load samples and faeces. The peptide enhancement increased sampling test sensitivity by 19%, recovery in samples from patients with a previously culture-confirmed TB by 20%, and those empirically treated for TB by 21%. We conclude that sample decontamination and culture enhancement with D-enantiomer peptides offer good potential for the much-needed improvement of the culture confirmation of TB.
Collapse
Affiliation(s)
- Tim J. Bull
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | - Tulika Munshi
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | | | - Andy C. Tran
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | - Catherine Cosgrove
- St. George’s Hospital NHS Trust, Cranmer Terrace, London SW17 0RE, UK; (C.C.)
| | - Angela Bartolf
- St. George’s Hospital NHS Trust, Cranmer Terrace, London SW17 0RE, UK; (C.C.)
| | - Melissa Menichini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Laura Rindi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Lena Parigger
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Carl J. H. Wang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Anam Fatima
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Lisandra L. Martin
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Kai Hilpert
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| |
Collapse
|
4
|
Ghielmetti G, Loubser J, Kerr TJ, Stuber T, Thacker T, Martin LC, O'Hare MA, Mhlophe SK, Okunola A, Loxton AG, Warren RM, Moseley MH, Miller MA, Goosen WJ. Advancing animal tuberculosis surveillance using culture-independent long-read whole-genome sequencing. Front Microbiol 2023; 14:1307440. [PMID: 38075895 PMCID: PMC10699144 DOI: 10.3389/fmicb.2023.1307440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024] Open
Abstract
Animal tuberculosis is a significant infectious disease affecting both livestock and wildlife populations worldwide. Effective disease surveillance and characterization of Mycobacterium bovis (M. bovis) strains are essential for understanding transmission dynamics and implementing control measures. Currently, sequencing of genomic information has relied on culture-based methods, which are time-consuming, resource-demanding, and concerning in terms of biosafety. This study explores the use of culture-independent long-read whole-genome sequencing (WGS) for a better understanding of M. bovis epidemiology in African buffaloes (Syncerus caffer). By comparing two sequencing approaches, we evaluated the efficacy of Illumina WGS performed on culture extracts and culture-independent Oxford Nanopore adaptive sampling (NAS). Our objective was to assess the potential of NAS to detect genomic variants without sample culture. In addition, culture-independent amplicon sequencing, targeting mycobacterial-specific housekeeping and full-length 16S rRNA genes, was applied to investigate the presence of microorganisms, including nontuberculous mycobacteria. The sequencing quality obtained from DNA extracted directly from tissues using NAS is comparable to the sequencing quality of reads generated from culture-derived DNA using both NAS and Illumina technologies. We present a new approach that provides complete and accurate genome sequence reconstruction, culture independently, and using an economically affordable technique.
Collapse
Affiliation(s)
- Giovanni Ghielmetti
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Johannes Loubser
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Tyler Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Lauren C. Martin
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michaela A. O'Hare
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sinegugu K. Mhlophe
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abisola Okunola
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark H. Moseley
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Bharath MN, Gupta S, Vashistha G, Ahmad S, Singh SV. Bioprospective Role of Ocimum sanctum and Solanum xanthocarpum against Emerging Pathogen: Mycobacterium avium Subspecies paratuberculosis: A Review. Molecules 2023; 28:molecules28083490. [PMID: 37110723 PMCID: PMC10145132 DOI: 10.3390/molecules28083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic, contagious, and typically life-threatening enteric disease of ruminants caused by a bacterium of the genus Mycobacterium, but it can also affect non-ruminant animals. MAP transmission occurs through the fecal-oral pathway in neonates and young animals. After infection, animals generate IL-4, IL-5, and IL-10, resulting in a Th2 response. Early detection of the disease is necessary to avoid its spread. Many detection methods, viz., staining, culture, and molecular methods, are available, and numerous vaccines and anti-tuberculosis drugs are used to control the disease. However, the prolonged use of anti-tuberculosis drugs leads to the development of resistance. Whereas vaccines hamper the differentiation between infected and vaccinated animals in an endemic herd. This leads to the identification of plant-based bioactive compounds to treat the disease. Bioactive compounds of Ocimum sanctum and Solanum xanthocarpum have been evaluated for their anti-MAP activity. Based on the MIC50 values, Ursolic acid (12 µg/mL) and Solasodine (60 µg/mL) were found to be suitable for anti-MAP activity.
Collapse
Affiliation(s)
- Manthena Nava Bharath
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Garima Vashistha
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Centre of Excellence in Unani Medicine (Pharmacognosy and Pharma Cology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura 281406, India
| |
Collapse
|
6
|
Goosen WJ, Clarke C, Kleynhans L, Kerr TJ, Buss P, Miller MA. Culture-Independent PCR Detection and Differentiation of Mycobacteria spp. in Antemortem Respiratory Samples from African Elephants ( Loxodonta Africana) and Rhinoceros ( Ceratotherium Simum, Diceros Bicornis) in South Africa. Pathogens 2022; 11:709. [PMID: 35745564 PMCID: PMC9230505 DOI: 10.3390/pathogens11060709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since certain Mycobacterium tuberculosis complex (MTBC) members, such as M. bovis, are endemic in specific South African wildlife reserves and zoos, cases of clinically important nontuberculous mycobacteria (NTM) in wildlife may be neglected. Additionally, due to the inability of tests to differentiate between the host responses to MTBC and NTM, the diagnosis of MTBC may be confounded by the presence of NTMs. This may hinder control efforts. These constraints highlight the need for enhanced rapid detection and differentiation methods for MTBC and NTM, especially in high MTBC burden areas. We evaluated the use of the GeneXpert MTB/RIF Ultra, the Hain CMdirect V1.0 line probe assay, and novel amplicon sequencing PCRs targeting the mycobacterial rpoB and ku gene targets, directly on antemortem African elephant (n = 26) bronchoalveolar lavage fluid (BALF) (n = 22) and trunk washes (n = 21) and rhinoceros (n = 23) BALF (n = 23), with known MTBC culture-positive and NTM culture-positive results. Our findings suggest that the Ultra is the most sensitive diagnostic test for MTBC DNA detection directly in raw antemortem respiratory specimens and that the rpoB PCR is ideal for Mycobacterium genus DNA detection and species identification through amplicon sequencing.
Collapse
Affiliation(s)
- Wynand J. Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa; (C.C.); (L.K.); (T.J.K.); (M.A.M.)
| | - Charlene Clarke
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa; (C.C.); (L.K.); (T.J.K.); (M.A.M.)
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa; (C.C.); (L.K.); (T.J.K.); (M.A.M.)
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa; (C.C.); (L.K.); (T.J.K.); (M.A.M.)
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, South African National Parks, Skukuza 1350, South Africa;
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa; (C.C.); (L.K.); (T.J.K.); (M.A.M.)
| |
Collapse
|
7
|
Goosen WJ, Kleynhans L, Kerr TJ, van Helden PD, Buss P, Warren RM, Miller MA. Improved detection of Mycobacterium tuberculosis and M. bovis in African wildlife samples using cationic peptide decontamination and mycobacterial culture supplementation. J Vet Diagn Invest 2021; 34:61-67. [PMID: 34510986 PMCID: PMC8688974 DOI: 10.1177/10406387211044192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In South Africa, mycobacterial culture is regarded as the gold standard for the detection of Mycobacterium tuberculosis complex (MTBC) infection in wildlife even though it is regarded as “imperfect.” We compared a novel decontamination and mycobacterial culture technique (TiKa) to the conventional mycobacterium growth indicator tube (MGIT) system using known amounts of bacilli and clinical samples from MTBC-infected African buffaloes (Syncerus caffer), white rhinoceros (Ceratotherium simum), and African elephants (Loxodonta africana). Use of the TiKa-KiC decontamination agent on samples spiked with 10,000 to 10 colony forming units (cfu) of M. bovis (SB0121) and M. tuberculosis (H37Rv) had no effect on isolate recovery in culture. In contrast, decontamination with MGIT MycoPrep resulted in no growth of M. bovis samples at concentrations < 1,000 cfu and M. tuberculosis samples < 100 cfu. Subsequently, we used the TiKa system with stored clinical samples (various lymphatic tissues) collected from wildlife and paucibacillary bronchoalveolar lavage fluid, trunk washes, and endotracheal tube washes from 3 species with known MTBC infections. Overall, MTBC recovery by culture was improved significantly (p < 0.01) by using TiKa compared to conventional MGIT, with 54 of 57 positive specimens versus 25 of 57 positive specimens, respectively. The TiKa mycobacterial growth system appears to significantly enhance the recovery of MTBC members from tissue and paucibacillary respiratory samples collected from African buffaloes, African elephants, and white rhinoceros. Moreover, the TiKa system may improve success of MTBC culture from various sample types previously deemed unculturable from other species.
Collapse
Affiliation(s)
- Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, South African National Parks, Skukuza, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Ladero-Auñon I, Molina E, Oyanguren M, Barriales D, Fuertes M, Sevilla IA, Luo L, Arrazuria R, De Buck J, Anguita J, Elguezabal N. Oral vaccination stimulates neutrophil functionality and exerts protection in a Mycobacterium avium subsp. paratuberculosis infection model. NPJ Vaccines 2021; 6:102. [PMID: 34385469 PMCID: PMC8361088 DOI: 10.1038/s41541-021-00367-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes paratuberculosis (PTB), a granulomatous enteritis in ruminants that exerts high economic impact on the dairy industry worldwide. Current vaccines have shown to be cost-effective against Map and in some cases confer beneficial non-specific effects against other pathogens suggesting the existence of trained immunity. Although Map infection is mainly transmitted by the fecal-oral route, oral vaccination has not been deeply studied. Therefore, the aim of this study was to compare the oral route with a set of mycobacterial and non-mycobacterial vaccines with a subcutaneously administered commercially available vaccine. Training effects on polymorphonuclear neutrophils (PMNs) and homologous and heterologous in vivo protection against Map were investigated in the rabbit infection model. Oral vaccination with inactivated or live vaccines was able to activate mucosal immunity as seen by elevation of serum IgA and the expression of IL4 in peripheral blood mononuclear cells (PBMCs). In addition, peripheral PMN phagocytosis against Map was enhanced by vaccination and extracellular trap release against Map and non-related pathogens was modified by both, vaccination and Map-challenge, indicating trained immunity. Finally, PBMCs from vaccinated animals stimulated in vitro with Map antigens showed a rapid innate activation cytokine profile. In conclusion, our data show that oral vaccination against PTB can stimulate neutrophil activity and both innate and adaptive immune responses that correlate with protection.
Collapse
Affiliation(s)
- Iraia Ladero-Auñon
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Food Quality and Safety Department, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria, Araba, Spain
| | - Elena Molina
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Maddi Oyanguren
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Miguel Fuertes
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Iker A Sevilla
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Lucy Luo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rakel Arrazuria
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Natalia Elguezabal
- Animal Health Department, Basque Institute for Agricultural Research and Development, NEIKER- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.
| |
Collapse
|
9
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Presence of Infection by Mycobacterium avium subsp. paratuberculosis in the Blood of Patients with Crohn's Disease and Control Subjects Shown by Multiple Laboratory Culture and Antibody Methods. Microorganisms 2020; 8:microorganisms8122054. [PMID: 33371478 PMCID: PMC7767509 DOI: 10.3390/microorganisms8122054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) has long been suspected to be involved in the etiology of Crohn's disease (CD). An obligate intracellular pathogen, MAP persists and influences host macrophages. The primary goals of this study were to test new rapid culture methods for MAP in human subjects and to assess the degree of viable culturable MAP bacteremia in CD patients compared to controls. A secondary goal was to compare the efficacy of three culture methods plus a phage assay and four antibody assays performed in separate laboratories, to detect MAP from the parallel samples. Culture and serological MAP testing was performed blind on whole blood samples obtained from 201 subjects including 61 CD patients (two of the patients with CD had concurrent ulcerative colitis (UC)) and 140 non-CD controls (14 patients in this group had UC only). Viable MAP bacteremia was detected in a significant number of study subjects across all groups. This included Pozzato culture (124/201 or 62% of all subjects, 35/61 or 57% of CD patients), Phage assay (113/201 or 56% of all subjects, 28/61 or 46% of CD patients), TiKa culture (64/201 or 32% of all subjects, 22/61 or 36% of CD patients) and MGIT culture (36/201 or 18% of all subjects, 15/61 or 25% of CD patients). A link between MAP detection and CD was observed with MGIT culture and one of the antibody methods (Hsp65) confirming previous studies. Other detection methods showed no association between any of the groups tested. Nine subjects with a positive Phage assay (4/9) or MAP culture (5/9) were again positive with the Phage assay one year later. This study highlights viable MAP bacteremia is widespread in the study population including CD patients, those with other autoimmune conditions and asymptomatic healthy subjects.
Collapse
|
11
|
Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS, Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone K, Paolicchi F, Gavey L, Rahman MT, de Marchin E, Van Praet W, Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J, Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S, Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN, Piaggio J, Suanes A, de Waard JH. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res 2019; 15:198. [PMID: 31196162 PMCID: PMC6567393 DOI: 10.1186/s12917-019-1943-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis.
Collapse
Affiliation(s)
- Richard Whittington
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany
- Clinic for Obstetrics, Gynecology and Andrology with Veterinary Ambulance, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | - Norma Arrigoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Ramon Juste
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias Spain
| | - Jose Luis Sáez
- Ministry of Agriculture and Fisheries, Food and Environment, ES-28071 Madrid, Spain
| | - Navneet Dhand
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Anita Michel
- Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110 South Africa
| | - Herman Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Petr Kralik
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | | | - Lorna Citer
- Animal Health Ireland, Carrick on Shannon, Co. Leitrim, N41 WN27 Republic of Ireland
| | - Frank Griffin
- Disease Research Limited, Invermay Agricultural Centre, Mosgiel, 9092 New Zealand
| | - Rob Barwell
- Animal Health Australia, Turner, ACT 2612 Australia
| | | | - Iva Slana
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Heike Koehler
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 07743 Jena, Germany
| | - Shoor Vir Singh
- Deparment of Biotechnology, GLA University, Mathura, Uttar Pradesh 281 406 India
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Gilberto Chávez-Gris
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de México, 76750 Tequisquiapan, Queretaro, Mexico
| | - Amador Goodridge
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama City, 0843-01103 Panama
| | - Matjaz Ocepek
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Joseba Garrido
- Instituto Vasco de Investigacion y Desarrollo Agrario-NEIKER, 48160 Derio, Bizkaia Spain
| | | | - Mike Collins
- School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, 53706-1102 USA
| | | | - Karina Cirone
- Instituto Nacional de Tecnologia Agropecuaria, 7620 Balcarce, Argentina
| | | | - Lawrence Gavey
- Biosecurity Queensland, Department of Agriculture and Fisheries, Toowoomba, Queensland 4350 Australia
| | - Md Tanvir Rahman
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | | | | | - Cathy Bauman
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Gilles Fecteau
- Faculté de Médecine Vétérinaire, University of Montreal, Quebec, J2S 6Z9 Canada
| | - Shawn McKenna
- Atlantic Veterinary College, Charlottetown, Prince Edward Island C1A 4P3 Canada
| | - Miguel Salgado
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jorge Fernández-Silva
- Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Antioquia 050034076 Colombia
| | | | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis, Universidad Central del Ecuador, 17-03-100 Quito, Ecuador
| | - Jaana Seppänen
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Virginie Thibault
- ANSES Laboratoire de Ploufragan-Plouzané-Niort and GDS France, CS 28440, 79024 Niort Cedex, France
| | - Vala Fridriksdottir
- Institute for Experimental Pathology at Keldur, University of Iceland, IS-112 Reykjavík, Iceland
| | | | - Masoud Haghkhah
- School of Veterinary Medicine, Shiraz University, Shiraz, 71441-69155 Iran
| | - Luigi Ruocco
- Ministry of Health, General Directorate of Animal Health and Veterinary Medicines, 00144 Rome, Italy
| | - Satoko Kawaji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba, Ibaraki 305-0856 Japan
| | - Cord Heuer
- School of Veterinary Sciences, Massey University, Palmerston North, 4441 New Zealand
| | | | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Joanna Szteyn
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | | | - Ebba Schwan
- Swedish Farm and Animal Health, 62254 Romakloster, Sweden
| | | | - Sam Strain
- Animal Health and Welfare Northern Ireland, Dungannon Enterprise Centre, Dungannon, BT71 6JT UK
| | - Mike Carter
- USDA-APHIS-Veterinary Services, Riverdale, MD 20737 USA
| | - Scott Wells
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Musso Munyeme
- School of Veterinary Medicine, The University of Zambia, 10101 Lusaka, Zambia
| | - Robert Wolf
- Fachabteilung Gesundheit und Pflegemanagement, 8010 Graz, Austria
| | - Ratna Gurung
- National Centre for Animal Health, Serbithang, Bhutan
| | - Cristobal Verdugo
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Christine Fourichon
- Oniris – INRA, Department Farm Animal Health and Public Health, 44307 Nantes cedex 3, France
| | - Takehisa Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Sharada Thapaliya
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan Nepal
| | - Elena Di Labio
- Federal Food Safety and Veterinary Office, 3003 Bern, Switzerland
| | - Monaya Ekgatat
- National Institute of Animal Health, Chatuchak, Bangkok, 10900 Thailand
| | - Andres Gil
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | | | - José Piaggio
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | - Alejandra Suanes
- Ministry of Livestock Agriculture and Fisheries of Uruguay, CP 11300 Montevideo, Uruguay
| | - Jacobus H. de Waard
- Servicio Autonomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
12
|
Schwalm AK, Obiegala A, Pfeffer M, Sting R. Enhanced sensitivity and fast turnaround time in laboratory diagnosis for bovine paratuberculosis in faecal samples. J Microbiol Methods 2018; 152:39-47. [PMID: 30031012 DOI: 10.1016/j.mimet.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
Bovine paratuberculosis (Johne's disease in cattle) is caused by the pathogen Mycobacterium avium subsp. paratuberculosis (MAP) and is a widespread chronic bacterial infectious disease in cattle. Due to the peculiarities of the pathogen, detection of MAP in faeces remains difficult. DNA extraction and real-time PCR for detection of MAP in bovine faeces (direct PCR) have been refined and feasible procedures for rapid, sensitive and automatable detection of the pathogen agent have been developed. Accordingly, in a first step we tested 20 faecal samples using two MAP complete kits (DNA extraction kits based on magnetic beads combined with real-time PCR assays) and six other DNA extraction kits for faeces. MAP-specific DNA was detected by real-time PCR assays. Cultivation of MAP on the solid medium HEYM and in the liquid medium M7H9C served as reference standards. The two complete kits detected significantly more MAP-DNA positive samples than the other procedures applied (p < 0.04). Ct values of 37 and 38 served as cut-off for the respective real-time PCR assays calculated on the basis of standard curves and droplet digital PCR (ddPCR). In a second step, the two MAP complete kits were employed for a comprehensive study including 107 positive and 50 negative faecal samples which had been previously tested on HEYM cultivation. The MAP complete kits yielded sensitivity values of 86% and 89% and specificity values of 100% compared to cultivation of MAP in the liquid medium M7H9C. In detail, cultivation of MAP in M7H9C detected the pathogen in 97% and 100% of the samples tested after an incubation period of six and twelve weeks, respectively. However, the cultivation of MAP on HEYM succeeded in only 74% after twelve weeks of incubation. In all these solid culture positive samples, MAP was also detected using the two complete kits. Additionally, the impact of repeated freezing and thawing of samples on re-cultivation of MAP was tested using 20 faecal samples and resulted in a reduction to 75% and 25% of bacterial growth when using liquid medium M7H9C and solid medium HEYM, respectively. The results of this study show that complete kits with refined automatable protocols for DNA extraction in combination with real-time PCR assays for detection of MAP can compete with sensitive cultivation of the pathogen in liquid medium.
Collapse
Affiliation(s)
- A K Schwalm
- Chemical and Veterinary Investigations Office (CVUA) Stuttgart, Fellbach D 70736, Germany.
| | - A Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig D 04103, Germany
| | - M Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig D 04103, Germany
| | - R Sting
- Chemical and Veterinary Investigations Office (CVUA) Stuttgart, Fellbach D 70736, Germany
| |
Collapse
|
13
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
14
|
Kuenstner JT, Naser S, Chamberlin W, Borody T, Graham DY, McNees A, Hermon-Taylor J, Hermon-Taylor A, Dow CT, Thayer W, Biesecker J, Collins MT, Sechi LA, Singh SV, Zhang P, Shafran I, Weg S, Telega G, Rothstein R, Oken H, Schimpff S, Bach H, Bull T, Grant I, Ellingson J, Dahmen H, Lipton J, Gupta S, Chaubey K, Singh M, Agarwal P, Kumar A, Misri J, Sohal J, Dhama K, Hemati Z, Davis W, Hier M, Aitken J, Pierce E, Parrish N, Goldberg N, Kali M, Bendre S, Agrawal G, Baldassano R, Linn P, Sweeney RW, Fecteau M, Hofstaedter C, Potula R, Timofeeva O, Geier S, John K, Zayanni N, Malaty HM, Kahlenborn C, Kravitz A, Bulfon A, Daskalopoulos G, Mitchell H, Neilan B, Timms V, Cossu D, Mameli G, Angermeier P, Jelic T, Goethe R, Juste RA, Kuenstner L. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP) Conference 2017. Front Public Health 2017; 5:208. [PMID: 29021977 PMCID: PMC5623710 DOI: 10.3389/fpubh.2017.00208] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 01/29/2023] Open
Abstract
On March 24 and 25, 2017 researchers and clinicians from around the world met at Temple University in Philadelphia to discuss the current knowledge of Mycobacterium avium ssp. paratuberculosis (MAP) and its relationship to human disease. The conference was held because of shared concern that MAP is a zoonotic bacterium that poses a threat not only to animal health but also human health. In order to further study this problem, the conferees discussed ways to improve MAP diagnostic tests and discussed potential future anti-MAP clinical trials. The conference proceedings may be viewed on the www.Humanpara.org website. A summary of the salient work in this field is followed by recommendations from a majority of the conferees.
Collapse
Affiliation(s)
- J Todd Kuenstner
- Temple University Health System, Philadelphia, PA, United States
| | - Saleh Naser
- Temple University Health System, Philadelphia, PA, United States
| | | | - Thomas Borody
- Temple University Health System, Philadelphia, PA, United States
| | - David Y Graham
- Temple University Health System, Philadelphia, PA, United States
| | - Adrienne McNees
- Temple University Health System, Philadelphia, PA, United States
| | | | | | - C Thomas Dow
- Temple University Health System, Philadelphia, PA, United States
| | - Walter Thayer
- Temple University Health System, Philadelphia, PA, United States
| | - James Biesecker
- Temple University Health System, Philadelphia, PA, United States
| | | | - Leonardo A Sechi
- Temple University Health System, Philadelphia, PA, United States
| | - Shoor Vir Singh
- Temple University Health System, Philadelphia, PA, United States
| | - Peilin Zhang
- Temple University Health System, Philadelphia, PA, United States
| | - Ira Shafran
- Temple University Health System, Philadelphia, PA, United States
| | - Stuart Weg
- Temple University Health System, Philadelphia, PA, United States
| | - Grzegorz Telega
- Temple University Health System, Philadelphia, PA, United States
| | - Robert Rothstein
- Temple University Health System, Philadelphia, PA, United States
| | - Harry Oken
- Temple University Health System, Philadelphia, PA, United States
| | - Stephen Schimpff
- Temple University Health System, Philadelphia, PA, United States
| | - Horacio Bach
- Temple University Health System, Philadelphia, PA, United States
| | - Tim Bull
- Temple University Health System, Philadelphia, PA, United States
| | - Irene Grant
- Temple University Health System, Philadelphia, PA, United States
| | - Jay Ellingson
- Temple University Health System, Philadelphia, PA, United States
| | - Heinrich Dahmen
- Temple University Health System, Philadelphia, PA, United States
| | - Judith Lipton
- Temple University Health System, Philadelphia, PA, United States
| | - Saurabh Gupta
- Temple University Health System, Philadelphia, PA, United States
| | - Kundan Chaubey
- Temple University Health System, Philadelphia, PA, United States
| | - Manju Singh
- Temple University Health System, Philadelphia, PA, United States
| | - Prabhat Agarwal
- Temple University Health System, Philadelphia, PA, United States
| | - Ashok Kumar
- Temple University Health System, Philadelphia, PA, United States
| | - Jyoti Misri
- Temple University Health System, Philadelphia, PA, United States
| | - Jagdip Sohal
- Temple University Health System, Philadelphia, PA, United States
| | - Kuldeep Dhama
- Temple University Health System, Philadelphia, PA, United States
| | - Zahra Hemati
- Temple University Health System, Philadelphia, PA, United States
| | - William Davis
- Temple University Health System, Philadelphia, PA, United States
| | - Michael Hier
- Temple University Health System, Philadelphia, PA, United States
| | - John Aitken
- Temple University Health System, Philadelphia, PA, United States
| | - Ellen Pierce
- Temple University Health System, Philadelphia, PA, United States
| | - Nicole Parrish
- Temple University Health System, Philadelphia, PA, United States
| | - Neil Goldberg
- Temple University Health System, Philadelphia, PA, United States
| | - Maher Kali
- Temple University Health System, Philadelphia, PA, United States
| | - Sachin Bendre
- Temple University Health System, Philadelphia, PA, United States
| | - Gaurav Agrawal
- Temple University Health System, Philadelphia, PA, United States
| | | | - Preston Linn
- Temple University Health System, Philadelphia, PA, United States
| | | | - Marie Fecteau
- Temple University Health System, Philadelphia, PA, United States
| | | | - Raghava Potula
- Temple University Health System, Philadelphia, PA, United States
| | - Olga Timofeeva
- Temple University Health System, Philadelphia, PA, United States
| | - Steven Geier
- Temple University Health System, Philadelphia, PA, United States
| | - Kuruvilla John
- Temple University Health System, Philadelphia, PA, United States
| | - Najah Zayanni
- Temple University Health System, Philadelphia, PA, United States
| | - Hoda M Malaty
- Temple University Health System, Philadelphia, PA, United States
| | | | - Amanda Kravitz
- Temple University Health System, Philadelphia, PA, United States
| | - Adriano Bulfon
- Temple University Health System, Philadelphia, PA, United States
| | | | - Hazel Mitchell
- Temple University Health System, Philadelphia, PA, United States
| | - Brett Neilan
- Temple University Health System, Philadelphia, PA, United States
| | - Verlaine Timms
- Temple University Health System, Philadelphia, PA, United States
| | - Davide Cossu
- Temple University Health System, Philadelphia, PA, United States
| | - Giuseppe Mameli
- Temple University Health System, Philadelphia, PA, United States
| | - Paul Angermeier
- Temple University Health System, Philadelphia, PA, United States
| | - Tomislav Jelic
- Temple University Health System, Philadelphia, PA, United States
| | - Ralph Goethe
- Temple University Health System, Philadelphia, PA, United States
| | - Ramon A Juste
- Temple University Health System, Philadelphia, PA, United States
| | - Lauren Kuenstner
- Temple University Health System, Philadelphia, PA, United States
| |
Collapse
|
15
|
Serological, culture and molecular survey of Mycobacterium avium paratuberculosis in a goat flock in Tuscany. Folia Microbiol (Praha) 2017; 62:471-477. [DOI: 10.1007/s12223-017-0518-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
|