1
|
Xu Y, Yu W, Wang X, Tao K, Bian Z, Wang H, Wei Y. Impact of low-dose free chlorine on the conjugative transfer of antibiotic resistance genes in wastewater effluents: Identifying key environmental factors for predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136824. [PMID: 39667151 DOI: 10.1016/j.jhazmat.2024.136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Reclaimed water disinfection results in the coexistence of antibiotic resistance genes (ARGs) and low-dose free chlorine in receiving environments. However, the impact of low-dose free chlorine on ARGs conjugative transfer and the key factors influencing the transfer under complex environmental conditions remain unclear, hindering the establishment of an effective monitoring system for resistance pollution in reclaimed water. This study investigated ARGs conjugative transfer under the influence of free chlorine at environmentally relevant concentrations and key interactive factors using machine learning models. The results showed that low-dose free chlorine (0.05-0.3 mg/L) promoted ARGs conjugative transfer, with 0.15 mg/L having a greater promoting effect than free chlorine concentrations of 0.05 and 0.3 mg/L. Additionally, different exposure patterns of low-dose chlorine affected ARGs conjugative transfer, with intermittent exposure posing a higher risk of ARGs dissemination. SVM linear model performed best in predicting ARGs conjugative transfer (RMSE=0.012, R2=0.975), and the SHapley Additive Explanations (SHAP) method revealed that key factors such as HCO3-, SAA, NO3-, and HA had positive SHAP values, indicating a positive influence on ARGs transfer under low-dose chlorine, making them the key features for predicting the ARGs conjugative transfer under the low-dose chlorine exposure. This study also revealed potential mechanisms of ARGs transfer under continuous low-dose free chlorine exposure, including intracellular reactive oxygen species (ROS), enzyme activity, cell membrane permeability, and gene expression. The integration of the machine learning model and post-hoc interpretation methods clarified the key drivers of ARGs conjugative transfer in reclaimed water-replenished environments, providing new insights for the safe reuse of reclaimed water and the development of river monitoring indicators.
Collapse
Affiliation(s)
- Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiaowen Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Yuansong Wei
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
2
|
Jin C, Jia C, Hu W, Xu H, Shen Y, Yue M. Predicting antimicrobial resistance in E. coli with discriminative position fused deep learning classifier. Comput Struct Biotechnol J 2024; 23:559-565. [PMID: 38274998 PMCID: PMC10809114 DOI: 10.1016/j.csbj.2023.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Escherichia coli (E. coli) has become a particular concern due to the increasing incidence of antimicrobial resistance (AMR) observed worldwide. Using machine learning (ML) to predict E. coli AMR is a more efficient method than traditional laboratory testing. However, further improvement in the predictive performance of existing models remains challenging. In this study, we collected 1937 high-quality whole genome sequencing (WGS) data from public databases with an antimicrobial resistance phenotype and modified the existing workflow by adding an attention mechanism to enable the modified workflow to focus more on core single nucleotide polymorphisms (SNPs) that may significantly lead to the development of AMR in E. coli. While comparing the model performance before and after adding the attention mechanism, we also performed a cross-comparison among the published models using random forest (RF), support vector machine (SVM), logistic regression (LR), and convolutional neural network (CNN). Our study demonstrates that the discriminative positional colors of Chaos Game Representation (CGR) images can selectively influence and highlight genome regions without prior knowledge, enhancing prediction accuracy. Furthermore, we developed an online tool (https://github.com/tjiaa/E.coli-ML/tree/main) for assisting clinicians in the rapid prediction of the AMR phenotype of E. coli and accelerating clinical decision-making.
Collapse
Affiliation(s)
- Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Wenkang Hu
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Haidong Xu
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yanyi Shen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Abhadionmhen AO, Asogwa CN, Ezema ME, Nzeh RC, Ezeora NJ, Abhadiomhen SE, Echezona SC, Udanor CN. Machine Learning Approaches for Microorganism Identification, Virulence Assessment, and Antimicrobial Susceptibility Evaluation Using DNA Sequencing Methods: A Systematic Review. Mol Biotechnol 2024:10.1007/s12033-024-01309-0. [PMID: 39520638 DOI: 10.1007/s12033-024-01309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Microbial infections pose a substantial global health challenge, particularly impacting immunocompromised individuals and exacerbating the issue of antimicrobial resistance (AMR). High virulence of pathogens can lead to severe infections and prolonged antimicrobial treatment, increasing the risk of developing resistant strains. Integrating machine-learning (ML) with DNA sequencing technologies offers potential solutions by enhancing microbial identification, virulence assessment, and antimicrobial susceptibility evaluation. This review explores recent advancements in these integrated approaches, addressing current limitations and identifying gaps in the literature. A comprehensive literature search was conducted across databases including PubMed, Scopus, Web of Science, and IEEE Xplore, covering publications from January 2014 to June 2024. Using a detailed Boolean search string, relevant studies focusing on ML applications in microorganism identification, antimicrobial susceptibility testing, and microbial virulence were included. The screening process involved a two-stage review of titles, abstracts, and full texts, with data extraction and critical appraisal performed using the QIAO tool. Data were analyzed through narrative synthesis to identify common themes and innovations. Out of 1,650 initially identified records, 19 studies met the inclusion criteria. These studies primarily focused on AMR, with additional research on microbial virulence and identification. Machine learning algorithms such as Random Forest, Support Vector Machines, and Convolutional Neural Networks, combined with DNA sequencing techniques like Whole Genome Sequencing and Metagenomic Sequencing, demonstrated significant advancements in predictive accuracy and efficiency. High-quality studies achieved impressive performance metrics, including F1-scores up to 0.88 and AUC scores up to 0.96. The integration of ML and DNA sequencing technologies has significantly enhanced microbial analysis, improving the identification of pathogens, assessment of virulence, and evaluation of antimicrobial susceptibility. Despite advancements, challenges such as data quality, high costs, and model interpretability persist. This review highlights the need for continued innovation and provides recommendations for future research to address these limitations and improve disease management and public health strategies. The systematic review is registered with PROSPERO (CRD42024571347).
Collapse
Affiliation(s)
| | | | - Modesta Ero Ezema
- Department of Computer Science, University of Nigeria, Nsukka, Nigeria.
| | - Royransom Chiemela Nzeh
- Department of Computer Science, University of Nigeria, Nsukka, Nigeria
- School of Computer Science and Communication Engineering, JiangSu University, Zhenjiang, 212013, JiangSu, China
| | | | | | | | | |
Collapse
|
4
|
Li Y, Cui X, Yang X, Liu G, Zhang J. Artificial intelligence in predicting pathogenic microorganisms' antimicrobial resistance: challenges, progress, and prospects. Front Cell Infect Microbiol 2024; 14:1482186. [PMID: 39554812 PMCID: PMC11564165 DOI: 10.3389/fcimb.2024.1482186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
The issue of antimicrobial resistance (AMR) in pathogenic microorganisms has emerged as a global public health crisis, posing a significant threat to the modern healthcare system. The advent of Artificial Intelligence (AI) and Machine Learning (ML) technologies has brought about revolutionary changes in this field. These advanced computational methods are capable of processing and analyzing large-scale biomedical data, thereby uncovering complex patterns and mechanisms behind the development of resistance. AI technologies are increasingly applied to predict the resistance of pathogens to various antibiotics based on gene content and genomic composition. This article reviews the latest advancements in AI and ML for predicting antimicrobial resistance in pathogenic microorganisms. We begin with an overview of the biological foundations of microbial resistance and its epidemiological research. Subsequently, we highlight the main AI and ML models used in resistance prediction, including but not limited to Support Vector Machines, Random Forests, and Deep Learning networks. Furthermore, we explore the major challenges in the field, such as data availability, model interpretability, and cross-species resistance prediction. Finally, we discuss new perspectives and solutions for research into microbial resistance through algorithm optimization, dataset expansion, and interdisciplinary collaboration. With the continuous advancement of AI technology, we will have the most powerful weapon in the fight against pathogenic microbial resistance in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, Jinan Fourth People’s Hospital, Jinan, China
| | - Xiaoyan Cui
- Pharmacy Department, Jinan Huaiyin People’s Hospital, Jinan, China
| | - Xiaoyan Yang
- Pharmacy Department, Pingyin County Traditional Chinese Medicine Hospital, Jinan, China
| | - Guangqia Liu
- Pharmacy Department, Jinan Licheng District Liubu Town Health Centre, Jinan, China
| | - Juan Zhang
- Department of Pharmacy, Jinan Fourth People’s Hospital, Jinan, China
| |
Collapse
|
5
|
Ferrari D, Arina P, Edgeworth J, Curcin V, Guidetti V, Mandreoli F, Wang Y. Using interpretable machine learning to predict bloodstream infection and antimicrobial resistance in patients admitted to ICU: Early alert predictors based on EHR data to guide antimicrobial stewardship. PLOS DIGITAL HEALTH 2024; 3:e0000641. [PMID: 39413052 PMCID: PMC11482717 DOI: 10.1371/journal.pdig.0000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Nosocomial infections and Antimicrobial Resistance (AMR) stand as formidable healthcare challenges on a global scale. To address these issues, various infection control protocols and personalized treatment strategies, guided by laboratory tests, aim to detect bloodstream infections (BSI) and assess the potential for AMR. In this study, we introduce a machine learning (ML) approach based on Multi-Objective Symbolic Regression (MOSR), an evolutionary approach to create ML models in the form of readable mathematical equations in a multi-objective way to overcome the limitation of standard single-objective approaches. This method leverages readily available clinical data collected upon admission to intensive care units, with the goal of predicting the presence of BSI and AMR. We further assess its performance by comparing it to established ML algorithms using both naturally imbalanced real-world data and data that has been balanced through oversampling techniques. Our findings reveal that traditional ML models exhibit subpar performance across all training scenarios. In contrast, MOSR, specifically configured to minimize false negatives by optimizing also for the F1-Score, outperforms other ML algorithms and consistently delivers reliable results, irrespective of the training set balance with F1-Score.22 and.28 higher than any other alternative. This research signifies a promising path forward in enhancing Antimicrobial Stewardship (AMS) strategies. Notably, the MOSR approach can be readily implemented on a large scale, offering a new ML tool to find solutions to these critical healthcare issues affected by limited data availability.
Collapse
Affiliation(s)
- Davide Ferrari
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
- Centre for Clinical Infection & Diagnostics Research, St. Thomas’ Hospital, London, United Kingdom
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Jonathan Edgeworth
- Centre for Clinical Infection & Diagnostics Research, St. Thomas’ Hospital, London, United Kingdom
| | - Vasa Curcin
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | | | | | - Yanzhong Wang
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Condorelli C, Nicitra E, Musso N, Bongiorno D, Stefani S, Gambuzza LV, Carchiolo V, Frasca M. Prediction of antimicrobial resistance of Klebsiella pneumoniae from genomic data through machine learning. PLoS One 2024; 19:e0309333. [PMID: 39292673 PMCID: PMC11410219 DOI: 10.1371/journal.pone.0309333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024] Open
Abstract
Antimicrobials, such as antibiotics or antivirals are medications employed to prevent and treat infectious diseases in humans, animals, and plants. Antimicrobial Resistance occurs when bacteria, viruses, and parasites no longer respond to these medicines. This resistance renders antibiotics and other antimicrobial drugs ineffective, making infections challenging or impossible to treat. This escalation in drug resistance heightens the risk of disease spread, severe illness, disability, and mortality. With datasets now containing hundreds or even thousands of pathogen genomes, machine learning techniques are on the rise for predicting antibiotic resistance in pathogens, prediction based on gene content and genome composition. Aim of this work is to combine and incorporate machine learning methods on bacterial genomic data to predict antimicrobial resistance, we will focus on the case of Klebsiella pneumoniae in order to support clinicians in selecting appropriate therapy.
Collapse
Affiliation(s)
- Chiara Condorelli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Lucia Valentina Gambuzza
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Catania, Italy
| | - Vincenza Carchiolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Catania, Italy
| | - Mattia Frasca
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Panjla A, Joshi S, Singh G, Bamford SE, Mechler A, Verma S. Applying Machine Learning for Antibiotic Development and Prediction of Microbial Resistance. Chem Asian J 2024; 19:e202400102. [PMID: 38948939 DOI: 10.1002/asia.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human health worldwide. It is now more challenging than ever to introduce a potent antibiotic to the market considering rapid emergence of antimicrobial resistance, surpassing the rate of antibiotic drug discovery. Hence, new approaches need to be developed to accelerate the rate of drug discovery process and meet the demands for new antibiotics, while reducing the cost of their development. Machine learning holds immense promise of becoming a useful tool, especially since in the last two decades, exponential growth has occurred in computational power and biological big data analytics. Recent advancements in machine learning algorithms for drug discovery have provided significant clues for potential antibiotic classes. Apart from discovery of new scaffolds, the machine learning protocols will significantly impact prediction of AMR patterns and drug metabolism. In this review, we outline power of machine learning in antibiotic drug discovery, metabolic fate, and AMR prediction to support researchers engaged and interested in this field.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Saurabh Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Geetanjali Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Sarah E Bamford
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sandeep Verma
- Mehta Family Center for Engineering in Medicine, Center for Nanoscience, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| |
Collapse
|
8
|
de la Lastra JMP, Wardell SJT, Pal T, de la Fuente-Nunez C, Pletzer D. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review. J Med Syst 2024; 48:71. [PMID: 39088151 PMCID: PMC11294375 DOI: 10.1007/s10916-024-02089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.
Collapse
Affiliation(s)
- José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de la Laguna, (Santa Cruz de Tenerife), Spain.
| | - Samuel J T Wardell
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Tarun Pal
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand.
| |
Collapse
|
9
|
Sawant PA, Hiralkar SS, Hulsurkar YP, Phutane MS, Mahajan US, Kudale AM. Predicting over-the-counter antibiotic use in rural Pune, India, using machine learning methods. Epidemiol Health 2024; 46:e2024044. [PMID: 38637971 PMCID: PMC11417445 DOI: 10.4178/epih.e2024044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Over-the-counter (OTC) antibiotic use can cause antibiotic resistance, threatening global public health gains. To counter OTC use, this study used machine learning (ML) methods to identify predictors of OTC antibiotic use in rural Pune, India. METHODS The features of OTC antibiotic use were selected using stepwise logistic, lasso, random forest, XGBoost, and Boruta algorithms. Regression and tree-based models with all confirmed and tentatively important features were built to predict the use of OTC antibiotics. Five-fold cross-validation was used to tune the models' hyperparameters. The final model was selected based on the highest area under the curve (AUROC) with a 95% confidence interval (CI) and the lowest log-loss. RESULTS In rural Pune, the prevalence of OTC antibiotic use was 35.9% (95% CI, 31.6 to 40.5). The perception that buying medicines directly from a medicine shop/pharmacy is useful, using antibiotics for eye-related complaints, more household members consuming antibiotics, and longer duration and higher doses of antibiotic consumption in rural blocks and other social groups were confirmed as important features by the Boruta algorithm. The final model was the XGBoost+Boruta model with 7 predictors (AUROC, 0.934; 95% CI, 0.891 to 0.978; log-loss, 0.279) log-loss. CONCLUSIONS XGBoost+Boruta, with 7 predictors, was the most accurate model for predicting OTC antibiotic use in rural Pune. Using OTC antibiotics for eye-related complaints, higher consumption of antibiotics and the perception that buying antibiotics directly from a medicine shop/pharmacy is useful were identified as key factors for planning interventions to improve awareness about proper antibiotic use.
Collapse
Affiliation(s)
- Pravin Arun Sawant
- Department of Health Sciences, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Sakshi Shantanu Hiralkar
- Department of Health Sciences, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Mugdha Sharad Phutane
- Department of Health Sciences, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Uma Satish Mahajan
- Department of Health Sciences, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Abhay Machindra Kudale
- Department of Health Sciences, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
10
|
Hu K, Meyer F, Deng ZL, Asgari E, Kuo TH, Münch PC, McHardy AC. Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes. Brief Bioinform 2024; 25:bbae206. [PMID: 38706320 PMCID: PMC11070729 DOI: 10.1093/bib/bbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species-antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amoxicillin/clavulanic acid, cefoxitin, ceftazidime and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, Campylobacter jejuni and Enterococcus faecium phenotypes were more robustly predicted than those of Escherichia coli, Staphylococcus aureus, Salmonella enterica, Neisseria gonorrhoeae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus pneumoniae and Mycobacterium tuberculosis. In addition, our study provides software recommendations for each species-antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
Collapse
Affiliation(s)
- Kaixin Hu
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhi-Luo Deng
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ehsaneddin Asgari
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, USA
| | - Tzu-Hao Kuo
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Yu J, Jia Y, Yu Q, Lin L, Li C, Chen B, Zhong P, Lin X, Li H, Sun Y, Zhong X, He Y, Huang X, Lin S, Pan Y. Deciphering complex antibiotic resistance patterns in Helicobacter pylori through whole genome sequencing and machine learning. Front Cell Infect Microbiol 2024; 13:1306368. [PMID: 38379956 PMCID: PMC10878306 DOI: 10.3389/fcimb.2023.1306368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024] Open
Abstract
Introduction Helicobacter pylori (H.pylori, Hp) affects billions of people worldwide. However, the emerging resistance of Hp to antibiotics challenges the effectiveness of current treatments. Investigating the genotype-phenotype connection for Hp using next-generation sequencing could enhance our understanding of this resistance. Methods In this study, we analyzed 52 Hp strains collected from various hospitals. The susceptibility of these strains to five antibiotics was assessed using the agar dilution assay. Whole-genome sequencing was then performed to screen the antimicrobial resistance (AMR) genotypes of these Hp strains. To model the relationship between drug resistance and genotype, we employed univariate statistical tests, unsupervised machine learning, and supervised machine learning techniques, including the development of support vector machine models. Results Our models for predicting Amoxicillin resistance demonstrated 66% sensitivity and 100% specificity, while those for Clarithromycin resistance showed 100% sensitivity and 100% specificity. These results outperformed the known resistance sites for Amoxicillin (A1834G) and Clarithromycin (A2147), which had sensitivities of 22.2% and 87%, and specificities of 100% and 96%, respectively. Discussion Our study demonstrates that predictive modeling using supervised learning algorithms with feature selection can yield diagnostic models with higher predictive power compared to models relying on single single-nucleotide polymorphism (SNP) sites. This approach significantly contributes to enhancing the precision and effectiveness of antibiotic treatment strategies for Hp infections. The application of whole-genome sequencing for Hp presents a promising pathway for advancing personalized medicine in this context.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yan Jia
- Department of Gastroenterology, the 7Medical Center of PLA General Hospital, Beijing, China
| | - Qichao Yu
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Lin
- Department of Gastroenterology, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Chao Li
- Department of Gastroenterology, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Bowang Chen
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- Department of Data Science, Intelliphecy, Nanjing, Jiangsu, China
| | - Pingyu Zhong
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xueqing Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Huilan Li
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yinping Sun
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyun Huang
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Shuangming Lin
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
12
|
Niharika J, Thakur P, Sengar GS, Deb R, Parihar R, Sonowal J, Chaudhary P, Pegu SR, Das PJ, Rajkhowa S, Gupta VK. Whole genome sequencing-based cataloguing of antibiotic resistant genes in piggery waste borne samples. Gene 2023; 887:147786. [PMID: 37689220 DOI: 10.1016/j.gene.2023.147786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The growing use of antibiotics in livestock is one of the main causes of the rapid global spread of antimicrobial resistance (AMR). However, extensive research on AMR in animals is currently absent. In this article, we provide the bacterial antibiotic resistance genes (ARGs) from piggery waste samples in West Bengal, India, based on whole genome sequencing (WGS). According to the study, there are alarmingly high levels of Enterobacteriaceae in piggery waste, especially slaughterhouse waste, that are resistant to beta-lactam, aminoglycoside, sulphonamide, and tetracycline. We found several plasmids carrying multidrug-resistant Enterobacteriaceae including resistant to last-resort medications like colistin and carbapenems. Our findings will serve as a guide for developing AMR management policies for livestock in India and aid in understanding the current AMR profiles of pigs. To grasp the actual situation with AMR in the pig sector, large scale sample screening must be done.
Collapse
Affiliation(s)
- Jagana Niharika
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | - Priyanka Thakur
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | | | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India.
| | - Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India.
| |
Collapse
|
13
|
Baker M, Zhang X, Maciel-Guerra A, Dong Y, Wang W, Hu Y, Renney D, Hu Y, Liu L, Li H, Tong Z, Zhang M, Geng Y, Zhao L, Hao Z, Senin N, Chen J, Peng Z, Li F, Dottorini T. Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China. NATURE FOOD 2023; 4:707-720. [PMID: 37563495 PMCID: PMC10444626 DOI: 10.1038/s43016-023-00814-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production.
Collapse
Affiliation(s)
- Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Xibin Zhang
- Shandong New Hope Liuhe Group Co. Ltd and Qingdao Key Laboratory of Animal Feed Safety, Qingdao, People's Republic of China
| | | | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - David Renney
- Nimrod Veterinary Products Ltd., Moreton-in-Marsh, UK
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Longhai Liu
- Shandong Kaijia Food Co., Weifang, People's Republic of China
| | - Hui Li
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Zhiqin Tong
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Meimei Zhang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Yingzhi Geng
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Li Zhao
- Agricultural Biopharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao City, People's Republic of China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing City, People's Republic of China
| | - Nicola Senin
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
| |
Collapse
|
14
|
Karlsen ST, Rau MH, Sánchez BJ, Jensen K, Zeidan AA. From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 2023; 47:fuad030. [PMID: 37286882 PMCID: PMC10337747 DOI: 10.1093/femsre/fuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
Collapse
Affiliation(s)
- Signe T Karlsen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Martin H Rau
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Benjamín J Sánchez
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kristian Jensen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ahmad A Zeidan
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
15
|
Álvarez VE, Quiroga MP, Centrón D. Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens. mSystems 2023:e0073422. [PMID: 37184409 DOI: 10.1128/msystems.00734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Nodo de Bioinformática. Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Kaya DE, Ülgen E, Kocagöz AS, Sezerman OU. A comparison of various feature extraction and machine learning methods for antimicrobial resistance prediction in streptococcus pneumoniae. FRONTIERS IN ANTIBIOTICS 2023; 2:1126468. [PMID: 39816648 PMCID: PMC11731958 DOI: 10.3389/frabi.2023.1126468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 01/18/2025]
Abstract
Streptococcus pneumoniae is one of the major concerns of clinicians and one of the global public health problems. This pathogen is associated with high morbidity and mortality rates and antimicrobial resistance (AMR). In the last few years, reduced genome sequencing costs have made it possible to explore more of the drug resistance of S. pneumoniae, and machine learning (ML) has become a popular tool for understanding, diagnosing, treating, and predicting these phenotypes. Nucleotide k-mers, amino acid k-mers, single nucleotide polymorphisms (SNPs), and combinations of these features have rich genetic information in whole-genome sequencing. This study compares different ML models for predicting AMR phenotype for S. pneumoniae. We compared nucleotide k-mers, amino acid k-mers, SNPs, and their combinations to predict AMR in S. pneumoniae for three antibiotics: Penicillin, Erythromycin, and Tetracycline. 980 pneumococcal strains were downloaded from the European Nucleotide Archive (ENA). Furthermore, we used and compared several machine learning methods to train the models, including random forests, support vector machines, stochastic gradient boosting, and extreme gradient boosting. In this study, we found that key features of the AMR prediction model setup and the choice of machine learning method affected the results. The approach can be applied here to further studies to improve AMR prediction accuracy and efficiency.
Collapse
Affiliation(s)
- Deniz Ece Kaya
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ege Ülgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ayşe Sesin Kocagöz
- Department of Infectious Diseases, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
17
|
Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics (Basel) 2023; 12:antibiotics12030523. [PMID: 36978390 PMCID: PMC10044311 DOI: 10.3390/antibiotics12030523] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
Collapse
|
18
|
Hernàndez-Carnerero À, Sànchez-Marrè M, Mora-Jiménez I, Soguero-Ruiz C, Martínez-Agüero S, Álvarez-Rodríguez J. Dimensionality reduction and ensemble of LSTMs for antimicrobial resistance prediction. Artif Intell Med 2023; 138:102508. [PMID: 36990585 DOI: 10.1016/j.artmed.2023.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/21/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Bacterial resistance to antibiotics has been rapidly increasing, resulting in low antibiotic effectiveness even treating common infections. The presence of resistant pathogens in environments such as a hospital Intensive Care Unit (ICU) exacerbates the critical admission-acquired infections. This work focuses on the prediction of antibiotic resistance in Pseudomonas aeruginosa nosocomial infections at the ICU, using Long Short-Term Memory (LSTM) artificial neural networks as the predictive method. The analyzed data were extracted from the Electronic Health Records (EHR) of patients admitted to the University Hospital of Fuenlabrada from 2004 to 2019 and were modeled as Multivariate Time Series. A data-driven dimensionality reduction method is built by adapting three feature importance techniques from the literature to the considered data and proposing an algorithm for selecting the most appropriate number of features. This is done using LSTM sequential capabilities so that the temporal aspect of features is taken into account. Furthermore, an ensemble of LSTMs is used to reduce the variance in performance. Our results indicate that the patient's admission information, the antibiotics administered during the ICU stay, and the previous antimicrobial resistance are the most important risk factors. Compared to other conventional dimensionality reduction schemes, our approach is able to improve performance while reducing the number of features for most of the experiments. In essence, the proposed framework achieve, in a computationally cost-efficient manner, promising results for supporting decisions in this clinical task, characterized by high dimensionality, data scarcity, and concept drift.
Collapse
|
19
|
Li S, Wu J, Ma N, Liu W, Shao M, Ying N, Zhu L. Prediction of genome-wide imipenem resistance features in Klebsiella pneumoniae using machine learning. J Med Microbiol 2023; 72. [PMID: 36753438 DOI: 10.1099/jmm.0.001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Introduction. The resistance rate of Klebsiella pneumoniae (K. pneumoniae) to imipenem is increasing year by year, and the imipenem resistance mechanism of K. pneumoniae is complex. Therefore, it is urgent to develop new strategies to explore the resistance mechanism of imipenem for its effective and accurate use in clinical practice.Hypothesis/Gap sStatement. Machine learning could identify resistance features and biological process that influence microbial resistance from whole-genome sequencing (WGS) data.Aims. This work aimed to predict imipenem resistance genetic features in K. pneumoniae from whole-genome k-mer features, and analyse their function for understanding its resistance mechanism.Methods. This study analysed WGS data of K. pneumoniae combined with resistance phenotype for imipenem, and established K. pneumoniae to imipenem genotype-phenotype model to predict resistance features using chi-squared test and random forest. An external clinical dataset was used to verify prediction power of resistance features. The potential genes were identified through alignment the resistance features with the K. pneumoniae reference genome using blastn, the functions of potential genes were further analysed to explore its resistance-related signalling pathways with GO and KEGG analysis, the resistance sequence patterns were screened using streme software. Finally, the resistance features were combined and modelled through four machine-learning algorithms (logistic regression, SVM, GBDT and XGBoost) to evaluate their phenotype prediction ability.Results. A total of 16 670 imipenem resistance features were predicted from genotype-phenotype model. The 30 potential genes were identified by annotating the resistance features and corresponded to known antibiotic-related genes (mdtM, dedA, rne, etc.). GO and KEGG pathway analyses indicated the possible association of imipenem resistance with metabolism process and cell membrane. CRYCAGCDN and CGRDAAAN were found from the imipenem resistance features, which were widely presented in the reported β-lactam resistance genes (bla SHV, bla CTX-M, bla TEM, etc.), and YCYAGCMCAST with metabolic functions (organic substance metabolic process, nitrogen compound metabolic process and cellular metabolic process) was identified from the top 50 resistance features. The 25 resistance genes in the training dataset included 19 genes in the external dataset, which verified the accuracy of prediction. The area under curve values of logistics regression, SVM, GBDT and XGBoost were 0.965, 0.966, 0.969 and 0.969, respectively, indicating that the imipenem resistance features have a strong prediction power.Conclusion. Machine-learning methods could effectively predict the imipenem resistance feature in K. pneumoniae, and provide resistance sequence profiles for predicting resistance phenotype and exploring potential resistance mechanisms. It provides an important insight into the potential therapeutic strategies of K. pneumoniae resistance to imipenem, and speed up the application of machine learning in routine diagnosis.
Collapse
Affiliation(s)
- Shanshan Li
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China
| | - Jun Wu
- Lin'an Center for Disease Control and Prevention, Lin'an, 311300, PR China
| | - Nan Ma
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China
| | - Wenjia Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China.,College of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Mengjie Shao
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China
| | - Nanjiao Ying
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China.,Institute of Biomedical Engineering and Instrument, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China
| | - Lei Zhu
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China.,Institute of Biomedical Engineering and Instrument, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China
| |
Collapse
|
20
|
Abstract
As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.
Collapse
Affiliation(s)
- Telmah Lluka
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Noman SM, Zeeshan M, Arshad J, Deressa Amentie M, Shafiq M, Yuan Y, Zeng M, Li X, Xie Q, Jiao X. Machine Learning Techniques for Antimicrobial Resistance Prediction of Pseudomonas Aeruginosa from Whole Genome Sequence Data. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:5236168. [PMID: 36909968 PMCID: PMC9995192 DOI: 10.1155/2023/5236168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
AIM Due to the growing availability of genomic datasets, machine learning models have shown impressive diagnostic potential in identifying emerging and reemerging pathogens. This study aims to use machine learning techniques to develop and compare a model for predicting bacterial resistance to a panel of 12 classes of antibiotics using whole genome sequence (WGS) data of Pseudomonas aeruginosa. METHOD A machine learning technique called Random Forest (RF) and BioWeka was used for classification accuracy assessment and logistic regression (LR) for statistical analysis. RESULTS Our results show 44.66% of isolates were resistant to twelve antimicrobial agents and 55.33% were sensitive. The mean classification accuracy was obtained ≥98% for BioWeka and ≥96 for RF on these families of antimicrobials. Where ampicillin was 99.31% and 94.00%, amoxicillin was 99.02% and 95.21%, meropenem was 98.27% and 96.63%, cefepime was 99.73% and 98.34%, fosfomycin was 96.44% and 99.23%, ceftazidime was 98.63% and 94.31%, chloramphenicol was 98.71% and 96.00%, erythromycin was 95.76% and 97.63%, tetracycline was 99.27% and 98.25%, gentamycin was 98.00% and 97.30%, butirosin was 99.57% and 98.03%, and ciprofloxacin was 96.17% and 98.97% with 10-fold-cross validation. In addition, out of twelve, eight drugs have found no false-positive and false-negative bacterial strains. CONCLUSION The ability to accurately detect antibiotic resistance could help clinicians make educated decisions about empiric therapy based on the local antibiotic resistance pattern. Moreover, infection prevention may have major consequences if such prescribing practices become widespread for human health.
Collapse
Affiliation(s)
- Sohail M. Noman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Muhammad Zeeshan
- Department of Medicine and Surgery, Al-Nafees Medical College and Hospital, Isra University, Islamabad 44000, Pakistan
| | - Jehangir Arshad
- Department of Electrical and Computer Engineering, Comsats University Islamabad, Lahore Campus 44000, Lahore, Pakistan
| | | | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
22
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
23
|
Identification of Novel Antimicrobial Resistance Genes Using Machine Learning, Homology Modeling, and Molecular Docking. Microorganisms 2022; 10:microorganisms10112102. [PMID: 36363694 PMCID: PMC9693463 DOI: 10.3390/microorganisms10112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance (AMR) threatens the healthcare system worldwide with the rise of emerging drug resistant infectious agents. AMR may render the current therapeutics ineffective or diminish their efficacy, and its rapid dissemination can have unmitigated health and socioeconomic consequences. Just like with many other health problems, recent computational advances including developments in machine learning or artificial intelligence hold a prodigious promise in deciphering genetic factors underlying emergence and dissemination of AMR and in aiding development of therapeutics for more efficient AMR solutions. Current machine learning frameworks focus mainly on known AMR genes and are, therefore, prone to missing genes that have not been implicated in resistance yet, including many uncharacterized genes whose functions have not yet been elucidated. Furthermore, new resistance traits may evolve from these genes leading to the rise of superbugs, and therefore, these genes need to be characterized. To infer novel resistance genes, we used complete gene sets of several bacterial strains known to be susceptible or resistant to specific drugs and associated phenotypic information within a machine learning framework that enabled prioritizing genes potentially involved in resistance. Further, homology modeling of proteins encoded by prioritized genes and subsequent molecular docking studies indicated stable interactions between these proteins and the antimicrobials that the strains containing these proteins are known to be resistant to. Our study highlights the capability of a machine learning framework to uncover novel genes that have not yet been implicated in resistance to any antimicrobials and thus could spur further studies targeted at neutralizing AMR.
Collapse
|
24
|
Chakriswaran P, Vincent DR, Kadry S. Ensemble of Artificial Intelligence Techniques for Bacterial Antimicrobial Resistance (AMR) Estimation Using Topic Modeling and Similarity Measure. INT J UNCERTAIN FUZZ 2022. [DOI: 10.1142/s0218488522400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent times, bacterial Antimicrobial Resistance (AMR) analyses becomes a hot study topic. The AMR comprises information related to the antibiotic product name, class name, subclass name, type, subtype, gene type, etc., which can fight against the illness. However, the tagging language used to determine the data is of free context. These contexts often contain ambiguous data, which leads to a hugely challenging issue in retrieving, organizing, merging, and finding the relevant data. Manually reading this text and labelling is not time-consuming. Hence, topic modeling overcomes these challenges and provides efficient results in categorizing the topic and in determining the data. In this view, this research work designs an ensemble of artificial intelligence for categorizing the AMR gene data and determine the relationship between the antibiotics. The proposed model includes a weighted voting based ensemble model by the incorporation of Latent Dirichlet Allocation (LDA) and Hierarchical Recurrent Neural Networks (HRNN), shows the novelty of the work. It is used for determining the amount of “topics” that cluster utilizing a multidimensional scaling approach. In addition, the proposed model involves the data pre-processing stage to get rid of stop words, punctuations, lower casing, etc. Moreover, an explanatory data analysis uses word cloud which assures the proper functionality and to proceed with the model training process. Besides, three approaches namely perplexity, Harmonic mean, and Random initialization of K are employed to determine the number of topics. For experimental validation, an openly accessible Bacterial AMR reference gene database is employed. The experimental results reported that the perplexity provided the optimal number of topics from the AMR gene data of more than 6500 samples. Therefore, the proposed model helps to find the appropriate antibiotic for bacterial and viral spread and discover how to increase the proper antibiotic in human bodies
Collapse
Affiliation(s)
- Priya Chakriswaran
- School of Information Technology and Engineering, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - Durai Raj Vincent
- School of Information Technology and Engineering, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Norway
| |
Collapse
|
25
|
Wang L, Tay ACY, Li J, Zhao Q. Editorial: Computational Predictions, Dynamic Tracking, and Evolutionary Analysis of Antibiotic Resistance Through the Mining of Microbial Genomes and Metagenomic Data. Front Microbiol 2022; 13:880967. [PMID: 35444627 PMCID: PMC9014298 DOI: 10.3389/fmicb.2022.880967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Alfred Chin Yen Tay
- The Marshall Centre for Infectious Diseases, Research and Training, University of Western Australia, Perth, WA, Australia
| | - Jian Li
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
26
|
Peng Z, Maciel-Guerra A, Baker M, Zhang X, Hu Y, Wang W, Rong J, Zhang J, Xue N, Barrow P, Renney D, Stekel D, Williams P, Liu L, Chen J, Li F, Dottorini T. Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLoS Comput Biol 2022; 18:e1010018. [PMID: 35333870 PMCID: PMC8986120 DOI: 10.1371/journal.pcbi.1010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023] Open
Abstract
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species. Livestock have been suggested as an important source of antimicrobial-resistant (AMR) Escherichia coli, capable of infecting humans and carrying resistance to drugs used in human medicine. China has a large intensive livestock farming industry, poultry being the second most important source of meat in the country, and is the largest user of antibiotics for food production in the world. Here we studied antimicrobial resistance gene overlap between E. coli isolates collected from humans, livestock and their shared environments in a large-scale Chinese poultry farm and associated slaughterhouse. By using a computational approach that integrates machine learning, whole-genome sequencing, gene sharing network and mobile genetic elements analysis we characterized the E. coli community structure, antimicrobial resistance phenotypes and the genetic relatedness of non-pathogenic and pathogenic E. coli strains. We uncovered the network of genes, associated with AMR, shared across host species (animals and workers) and environments (farm and slaughterhouse). Our approach opens up new avenues for the development of a fast, affordable and effective computational solutions that provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming.
Collapse
Affiliation(s)
- Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Xibin Zhang
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Jia Rong
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Jing Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - David Renney
- Nimrod Veterinary Products Limited, Moreton-in-Marsh, United Kingdom
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Longhai Liu
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
- * E-mail: (FL); (TD)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail: (FL); (TD)
| |
Collapse
|
27
|
Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, Schwengers O, Heider D. Multi-label classification for multi-drug resistance prediction of Escherichia coli. Comput Struct Biotechnol J 2022; 20:1264-1270. [PMID: 35317240 PMCID: PMC8918850 DOI: 10.1016/j.csbj.2022.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022] Open
|
28
|
Zhang L, Xie H, Wang H, Ding H, Zhang G, Hu J. Kill Rate and Evaluation of Ex Vivo PK/PD Integration of Cefquinome Against Actinobacillus pleuropneumoniae. Front Vet Sci 2021; 8:751957. [PMID: 34966804 PMCID: PMC8710486 DOI: 10.3389/fvets.2021.751957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We wished to study the detailed and precise antibacterial activity of cefquinome against Actinobacillus pleuropneumoniae (APP) in vitro and ex vivo. We analyzed the relationships between kill rate and cefquinome concentration in broth and between pharmacokinetic/pharmacodynamic (PK/PD) parameters and antibacterial effect in serum and tissue cage fluid (TCF) of piglets. Cefquinome exhibited time-dependent antibacterial activity against APP according to the kill rate. The maximum kill rate was 0.48 log10 CFU/mL/h at the 0-9-h period in broth. In the ex vivo PK/PD study, the maximum concentration (Cmax), time to reach the maximum concentration (Tmax), terminal half-life (T1/2β), and area under the concentration time curve (AUCinfinity) were 5.65 μg/ml, 0.58 h, 2.24 h, and 18.48 μg·h/ml in serum and 1.13 μg/ml, 2.60 h, 12.22 h, and 20.83 μg·h/ml in TCF, respectively. The values of area under the curve during 24 h/minimum inhibitory concentration (AUC24h/MIC) for bacteriostatic, bactericidal, and bacterial eradication effects were 18.94, 246.8, and 1013.23 h in serum and 4.20, 65.81, and 391.35 h in TCF, respectively. Our findings will provide a valuable basis for optimization of dosage regimens when applying cefquinome to treat APP infection.
Collapse
Affiliation(s)
- Longfei Zhang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
29
|
VanOeffelen M, Nguyen M, Aytan-Aktug D, Brettin T, Dietrich EM, Kenyon RW, Machi D, Mao C, Olson R, Pusch GD, Shukla M, Stevens R, Vonstein V, Warren AS, Wattam AR, Yoo H, Davis JJ. A genomic data resource for predicting antimicrobial resistance from laboratory-derived antimicrobial susceptibility phenotypes. Brief Bioinform 2021; 22:bbab313. [PMID: 34379107 PMCID: PMC8575023 DOI: 10.1093/bib/bbab313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global health threat that affects millions of people each year. Funding agencies worldwide and the global research community have expended considerable capital and effort tracking the evolution and spread of AMR by isolating and sequencing bacterial strains and performing antimicrobial susceptibility testing (AST). For the last several years, we have been capturing these efforts by curating data from the literature and data resources and building a set of assembled bacterial genome sequences that are paired with laboratory-derived AST data. This collection currently contains AST data for over 67 000 genomes encompassing approximately 40 genera and over 100 species. In this paper, we describe the characteristics of this collection, highlighting areas where sampling is comparatively deep or shallow, and showing areas where attention is needed from the research community to improve sampling and tracking efforts. In addition to using the data to track the evolution and spread of AMR, it also serves as a useful starting point for building machine learning models for predicting AMR phenotypes. We demonstrate this by describing two machine learning models that are built from the entire dataset to show where the predictive power is comparatively high or low. This AMR metadata collection is freely available and maintained on the Bacterial and Viral Bioinformatics Center (BV-BRC) FTP site ftp://ftp.bvbrc.org/RELEASE_NOTES/PATRIC_genomes_AMR.txt.
Collapse
Affiliation(s)
| | - Marcus Nguyen
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Brettin
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Emily M Dietrich
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Ronald W Kenyon
- Biocomplexity Institute and Initiative, University of Virginia, Virginia, USA
| | - Dustin Machi
- Biocomplexity Institute and Initiative, University of Virginia, Virginia, USA
| | - Chunhong Mao
- Biocomplexity Institute and Initiative, University of Virginia, Virginia, USA
| | - Robert Olson
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Maulik Shukla
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Rick Stevens
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL, USA
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | | | - Andrew S Warren
- Biocomplexity Institute and Initiative, University of Virginia, Virginia, USA
| | - Alice R Wattam
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
- Biocomplexity Institute and Initiative, University of Virginia, Virginia, USA
| | - Hyunseung Yoo
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - James J Davis
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
- Northwestern Argonne Institute for Science and Engineering, Evanston, IL, USA
| |
Collapse
|
30
|
He S, Leanse LG, Feng Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv Drug Deliv Rev 2021; 178:113922. [PMID: 34461198 DOI: 10.1016/j.addr.2021.113922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
In the era of antimicrobial resistance, the prevalence of multidrug-resistant microorganisms that resist conventional antibiotic treatment has steadily increased. Thus, it is now unquestionable that infectious diseases are significant global burdens that urgently require innovative treatment strategies. Emerging studies have demonstrated that artificial intelligence (AI) can transform drug delivery to promote effective treatment of infectious diseases. In this review, we propose to evaluate the significance, essential principles, and popular tools of AI in drug delivery for infectious disease treatment. Specifically, we will focus on the achievements and key findings of current research, as well as the applications of AI on drug delivery throughout the whole antimicrobial treatment process, with an emphasis on drug development, treatment regimen optimization, drug delivery system and administration route design, and drug delivery outcome prediction. To that end, the challenges of AI in drug delivery for infectious disease treatments and their current solutions and future perspective will be presented and discussed.
Collapse
Affiliation(s)
- Sheng He
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Leon G Leanse
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yanfang Feng
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
31
|
Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, Hauschild AC, Schwengers O, Heider D. Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning. Bioinformatics 2021; 38:325-334. [PMID: 34613360 PMCID: PMC8722762 DOI: 10.1093/bioinformatics/btab681] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/24/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria. However, comparing different machine learning methods for the prediction of AMR based on different encodings and whole-genome sequencing data without previously known knowledge remains to be done. RESULTS In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazidime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding, one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset. Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to identify mutations that are associated with AMR for each antibiotic. AVAILABILITY AND IMPLEMENTATION Source code in data preparation and model training are provided at GitHub website (https://github.com/YunxiaoRen/ML-iAMR). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yunxiao Ren
- Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg 35032, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Linda Falgenhauer
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen 35392, Germany,Hessisches universitäres Kompetenzzentrum Krankenhaushygiene, Giessen 35392, Germany
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Alexander Goesmann
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Anne-Christin Hauschild
- Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg 35032, Germany
| | - Oliver Schwengers
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | | |
Collapse
|
32
|
Ryu S, Park WS, Yun B, Shin M, Go GW, Kim JN, Oh S, Kim Y. Diversity and characteristics of raw milk microbiota from Korean dairy farms using metagenomic and culturomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes. mSystems 2021; 6:e0034621. [PMID: 34427505 PMCID: PMC8407197 DOI: 10.1128/msystems.00346-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is an important cause of bacterial infections worldwide, with multidrug-resistant strains incurring substantial costs on human lives. Besides therapeutic concentrations of antimicrobials in health care settings, the presence of subinhibitory antimicrobial residues in the environment and in clinics selects for antimicrobial resistance (AMR), but the underlying genetic repertoire is less well understood. Here, we used machine learning to predict the population doubling time and cell growth yield of 1,407 genetically diverse E. coli strains expanding under exposure to three subinhibitory concentrations of six classes of antimicrobials from single-nucleotide genetic variants, accessory gene variation, and the presence of known AMR genes. We predicted cell growth yields in the held-out test data with an average correlation (Spearman's ρ) of 0.63 (0.36 to 0.81 across concentrations) and cell doubling times with an average correlation of 0.59 (0.32 to 0.92 across concentrations), with moderate increases in sample size unlikely to improve predictions further. This finding points to the remaining missing heritability of growth under antimicrobial exposure being explained by effects that are too rare or weak to be captured unless sample size is dramatically increased, or by effects other than those conferred by the presence of individual single-nucleotide polymorphisms (SNPs) and genes. Predictions based on whole-genome information were generally superior to those based only on known AMR genes and were accurate for AMR resistance at therapeutic concentrations. We pinpointed genes and SNPs determining the predicted growth and thereby recapitulated many known AMR determinants. Finally, we estimated the effect sizes of resistance genes across the entire collection of strains, disclosing the growth effects for known resistance genes in each individual strain. Our results underscore the potential of predictive modeling of growth patterns from genomic data under subinhibitory concentrations of antimicrobials, although the remaining missing heritability poses a challenge for achieving the accuracy and precision required for clinical use. IMPORTANCE Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains. In this study, we used a high-throughput phenotypic assay to measure the growth of a systematic collection of natural Escherichia coli strains and then employed machine learning models to predict bacterial growth from genomic data under nontherapeutic subinhibitory concentrations of antimicrobials that are common in nonclinical settings. We found a moderate to strong correlation between predicted and actual values for the different collected data sets. Moreover, we observed that the known resistance genes are still effective at sublethal concentrations, pointing to clinical implications of these concentrations.
Collapse
|
34
|
Mirzaei M, Furxhi I, Murphy F, Mullins M. A Machine Learning Tool to Predict the Antibacterial Capacity of Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1774. [PMID: 34361160 PMCID: PMC8308172 DOI: 10.3390/nano11071774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
The emergence and rapid spread of multidrug-resistant bacteria strains are a public health concern. This emergence is caused by the overuse and misuse of antibiotics leading to the evolution of antibiotic-resistant strains. Nanoparticles (NPs) are objects with all three external dimensions in the nanoscale that varies from 1 to 100 nm. Research on NPs with enhanced antimicrobial activity as alternatives to antibiotics has grown due to the increased incidence of nosocomial and community acquired infections caused by pathogens. Machine learning (ML) tools have been used in the field of nanoinformatics with promising results. As a consequence of evident achievements on a wide range of predictive tasks, ML techniques are attracting significant interest across a variety of stakeholders. In this article, we present an ML tool that successfully predicts the antibacterial capacity of NPs while the model's validation demonstrates encouraging results (R2 = 0.78). The data were compiled after a literature review of 60 articles and consist of key physico-chemical (p-chem) properties and experimental conditions (exposure variables and bacterial clustering) from in vitro studies. Following data homogenization and pre-processing, we trained various regression algorithms and we validated them using diverse performance metrics. Finally, an important attribute evaluation, which ranks the attributes that are most important in predicting the outcome, was performed. The attribute importance revealed that NP core size, the exposure dose, and the species of bacterium are key variables in predicting the antibacterial effect of NPs. This tool assists various stakeholders and scientists in predicting the antibacterial effects of NPs based on their p-chem properties and diverse exposure settings. This concept also aids the safe-by-design paradigm by incorporating functionality tools.
Collapse
Affiliation(s)
- Mahsa Mirzaei
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (M.M.); (F.M.); (M.M.)
| | - Irini Furxhi
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (M.M.); (F.M.); (M.M.)
- Transgero Limited, Cullinagh, Newcastle West, V42V384 Limerick, Ireland
| | - Finbarr Murphy
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (M.M.); (F.M.); (M.M.)
- Transgero Limited, Cullinagh, Newcastle West, V42V384 Limerick, Ireland
| | - Martin Mullins
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (M.M.); (F.M.); (M.M.)
| |
Collapse
|
35
|
A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model. Antibiotics (Basel) 2021; 10:antibiotics10060692. [PMID: 34207795 PMCID: PMC8228373 DOI: 10.3390/antibiotics10060692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
There is an increasing drug resistance of animal-derived pathogens, seriously posing a huge threat to the health of animals and humans. Traditional drug resistance testing methods are expensive, have low efficiency, and are time-consuming, making it difficult to evaluate overall drug resistance. To develop a better approach to detect drug resistance, a small sample of Escherichia coli resistance data from 2003 to 2014 in Chengdu, Sichuan Province was used, and multiple regression interpolation was applied to impute missing data based on the time series. Next, cluster analysis was used to classify anti-E. coli drugs. According to the classification results, a GM(1,1)-BP model was selected to analyze the changes in the drug resistance of E. coli, and a drug resistance prediction system was constructed based on the GM(1,1)-BP Neural Network model. The GM(1,1)-BP Neural Network model showed a good prediction effect using a small sample of drug resistance data, with a determination coefficient R2 of 0.7830 and an RMSE of only 0.0527. This model can be applied for the prediction of drug resistance trends of other animal-derived pathogenic bacteria, and provides the scientific and technical means for the effective assessment of bacterial resistance.
Collapse
|
36
|
Remodelling structure-based drug design using machine learning. Emerg Top Life Sci 2021; 5:13-27. [PMID: 33825834 DOI: 10.1042/etls20200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
To keep up with the pace of rapid discoveries in biomedicine, a plethora of research endeavors had been directed toward Rational Drug Development that slowly gave way to Structure-Based Drug Design (SBDD). In the past few decades, SBDD played a stupendous role in identification of novel drug-like molecules that are capable of altering the structures and/or functions of the target macromolecules involved in different disease pathways and networks. Unfortunately, post-delivery drug failures due to adverse drug interactions have constrained the use of SBDD in biomedical applications. However, recent technological advancements, along with parallel surge in clinical research have led to the concomitant establishment of other powerful computational techniques such as Artificial Intelligence (AI) and Machine Learning (ML). These leading-edge tools with the ability to successfully predict side-effects of a wide range of drugs have eventually taken over the field of drug design. ML, a subset of AI, is a robust computational tool that is capable of data analysis and analytical model building with minimal human intervention. It is based on powerful algorithms that use huge sets of 'training data' as inputs to predict new output values, which improve iteratively through experience. In this review, along with a brief discussion on the evolution of the drug discovery process, we have focused on the methodologies pertaining to the technological advancements of machine learning. This review, with specific examples, also emphasises the tremendous contributions of ML in the field of biomedicine, while exploring possibilities for future developments.
Collapse
|
37
|
Iskandar K, Molinier L, Hallit S, Sartelli M, Hardcastle TC, Haque M, Lugova H, Dhingra S, Sharma P, Islam S, Mohammed I, Naina Mohamed I, Hanna PA, Hajj SE, Jamaluddin NAH, Salameh P, Roques C. Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. Antimicrob Resist Infect Control 2021; 10:63. [PMID: 33789754 PMCID: PMC8011122 DOI: 10.1186/s13756-021-00931-w] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
Data on comprehensive population-based surveillance of antimicrobial resistance is lacking. In low- and middle-income countries, the challenges are high due to weak laboratory capacity, poor health systems governance, lack of health information systems, and limited resources. Developing countries struggle with political and social dilemma, and bear a high health and economic burden of communicable diseases. Available data are fragmented and lack representativeness which limits their use to advice health policy makers and orientate the efficient allocation of funding and financial resources on programs to mitigate resistance. Low-quality data means soaring rates of antimicrobial resistance and the inability to track and map the spread of resistance, detect early outbreaks, and set national health policy to tackle resistance. Here, we review the barriers and limitations of conducting effective antimicrobial resistance surveillance, and we highlight multiple incremental approaches that may offer opportunities to strengthen population-based surveillance if tailored to the context of each country.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, 31000, Toulouse, France.
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon.
- Faculty of Pharmacy, Lebanese University, Mount Lebanon, Lebanon.
| | - Laurent Molinier
- Faculté de Médecine, Equipe constitutive du CERPOP, UMR1295, unité mixte INSERM, Université Paul Sabatier Toulouse III, 31000, Toulouse, France
| | - Souheil Hallit
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | - Massimo Sartelli
- Department of Surgery, University of Macerata, 62100, Macerata, Italy
| | - Timothy Craig Hardcastle
- Department of Trauma Service, Inkosi Albert Luthuli Central Hospital, Durban, 4091, South Africa
- Department of Surgery, Nelson Mandela School of Clinical Medicine, University of KwaZulu-Natal, Congela, 4041, Durban, South Africa
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, 57000, Malaysia
| | - Halyna Lugova
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Irfan Mohammed
- Department of Restorative Dentistry, Federal University of Pelotas School of Dentistry, Pelotas, RS, 96020-010, Brazil
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Pierre Abi Hanna
- Faculty of Pharmacy, Lebanese University, Mount Lebanon, Lebanon
| | - Said El Hajj
- Department of Medicine, Lebanese University, Beirut, Lebanon
| | - Nurul Adilla Hayat Jamaluddin
- Pharmacoepidemiology and Drug Safety Unit, Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Pascale Salameh
- INSPECT-LB, Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut, 6573-14, Lebanon
- Department of Medicine, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Christine Roques
- Department of Bactériologie-Hygiène, Centre Hospitalier Universitaire, Hôpital Purpan, 31330, Toulouse, France
- Department of Bioprocédés et Systèmes Microbiens, Laboratoire de Génie Chimique, Université Paul Sabatier Toulouse III, UMR 5503, 31330, Toulouse, France
| |
Collapse
|
38
|
Juraschek K, Borowiak M, Tausch SH, Malorny B, Käsbohrer A, Otani S, Schwarz S, Meemken D, Deneke C, Hammerl JA. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021; 9:microorganisms9030598. [PMID: 33799479 PMCID: PMC8000739 DOI: 10.3390/microorganisms9030598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to public health worldwide. Currently, AMR typing changes from phenotypic testing to whole-genome sequence (WGS)-based detection of resistance determinants for a better understanding of the isolate diversity and elements involved in gene transmission (e.g., plasmids, bacteriophages, transposons). However, the use of WGS data in monitoring purposes requires suitable techniques, standardized parameters and approved guidelines for reliable AMR gene detection and prediction of their association with mobile genetic elements (plasmids). In this study, different sequencing and assembly strategies were tested for their suitability in AMR monitoring in Escherichia coli in the routines of the German National Reference Laboratory for Antimicrobial Resistances. To assess the outcomes of the different approaches, results from in silico predictions were compared with conventional phenotypic- and genotypic-typing data. With the focus on (fluoro)quinolone-resistant E.coli, five qnrS-positive isolates with multiple extrachromosomal elements were subjected to WGS with NextSeq (Illumina), PacBio (Pacific BioSciences) and ONT (Oxford Nanopore) for in depth characterization of the qnrS1-carrying plasmids. Raw reads from short- and long-read sequencing were assembled individually by Unicycler or Flye or a combination of both (hybrid assembly). The generated contigs were subjected to bioinformatics analysis. Based on the generated data, assembly of long-read sequences are error prone and can yield in a loss of small plasmid genomes. In contrast, short-read sequencing was shown to be insufficient for the prediction of a linkage of AMR genes (e.g., qnrS1) to specific plasmid sequences. Furthermore, short-read sequencing failed to detect certain duplications and was unsuitable for genome finishing. Overall, the hybrid assembly led to the most comprehensive typing results, especially in predicting associations of AMR genes and mobile genetic elements. Thus, the use of different sequencing technologies and hybrid assemblies currently represents the best approach for reliable AMR typing and risk assessment.
Collapse
Affiliation(s)
- Katharina Juraschek
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| | - Maria Borowiak
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Simon H. Tausch
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Burkhard Malorny
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Annemarie Käsbohrer
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Saria Otani
- DTU Food, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800 Kgs Lyngby, Denmark;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Carlus Deneke
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Jens Andre Hammerl
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| |
Collapse
|
39
|
Lv J, Deng S, Zhang L. A review of artificial intelligence applications for antimicrobial resistance. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights. BIOLOGY 2020; 9:biology9110365. [PMID: 33126516 PMCID: PMC7694136 DOI: 10.3390/biology9110365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Machine learning algorithms can learn mechanisms of antimicrobial resistance from the data of DNA sequence without any a priori information. Interpreting a trained machine learning algorithm can be exploited for validating the model and obtaining new information about resistance mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs between interpretability, computational complexity and accuracy for different feature extraction methods. In this study, we have proposed a new feature extraction method, counting amino acid k-mers or oligopeptides, which provides easier model interpretation compared to counting nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods. Additionally, we have trained machine learning algorithms using different feature extraction methods and compared the results in terms of accuracy, model interpretability and computational complexity. We have built a new feature selection pipeline for extraction of important features so that new AMR determinants can be discovered by analyzing these features. This pipeline allows the construction of models that only use a small number of features and can predict resistance accurately.
Collapse
|