1
|
Farahani F, Vöröslakos M, Birnbaum AM, FallahRad M, Williams PTJA, Martin JH, Parra LC. Repeated tDCS at clinically-relevant field intensity can boost concurrent motor learning in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633248. [PMID: 39868267 PMCID: PMC11761702 DOI: 10.1101/2025.01.15.633248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning. We developed a preparation that allows concurrent stimulation during the performance of a pellet-reaching task in freely behaving rats. The task was automated to minimize experimenter bias. We measured field magnitudes intracranially to calibrate the stimulation current. In this study, only male rats were used. Animals were trained for 20 min with concurrent epicranial tDCS over 10 daily sessions. Behavior was recorded with high-speed video to quantify reaching dynamics. We also measured motor-evoked potentials (MEPs) bilaterally with epidural microstimulation. The new electrode montage enabled stable stimulation over 10 sessions with a field intensity of 2V/m at the motor cortex. The number of successful reaches improved across days of training, and the rate of learning was higher in the anodal group as compared to sham-control animals (F(1)=7.12, p=0.008, N=24). MEPs were not systematically affected by tDCS. Posthoc analysis suggests that tDCS modulated motor learning only for right-pawed animals, improving success of reaching, but limiting stereotypy in these animals. Repeated and concurrent anodal tDCS can boost motor-skill learning at clinically-relevant field intensities. In this animal model the effect interacted with paw preference and was not associated with corticospinal excitability.
Collapse
Affiliation(s)
| | - Mihály Vöröslakos
- Neuroscience Institute, NYU Grossman School of Medicine, New York University
| | | | | | | | - John H Martin
- Molecular, Cellular and Biomedical Science, CUNY School of Medicine
| | - Lucas C Parra
- Biomedical Engineering Department, City College of New York
| |
Collapse
|
2
|
McNally KR, Summers S, Stanton TR, McAuley J, Chang WJ, Chowdhury N, Cavaleri R. Exploring whether home-based neuromodulation can boost the analgesic effects of exercise in people with knee osteoarthritis: protocol for a double-blinded, pilot randomised controlled trial. BMJ Open 2024; 14:e090523. [PMID: 39542463 PMCID: PMC11575249 DOI: 10.1136/bmjopen-2024-090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Knee osteoarthritis (OA) represents a leading cause of disability globally. Exercise has been demonstrated to improve pain and function in people with knee OA. However, when in pain, commencement of exercise is difficult, and clinical effects with such interventions are often modest. Recently, transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has been shown to bolster the pain-relieving effect of exercise in experimental settings. While promising, the utility of employing this approach beyond the research environment is yet to be elucidated. Therefore, this pilot study aims to investigate the feasibility, safety, adherence, tolerability and preliminary efficacy of tDCS and exercise in home-based settings to improve pain and function in people with knee OA. METHODS AND ANALYSIS This protocol is for a pilot randomised, double-blinded, sham-controlled trial. 24 individuals with idiopathic knee OA will be randomised to receive either active tDCS+exercise (Intervention) or sham tDCS+exercise (Control) at home. Participants will receive 20 min of tDCS 5 days per week for the first 2 weeks of this 8-week trial. Participants in both groups will complete a lower limb strengthening programme 3 days per week for the entire 8 weeks. Outcome measures of feasibility (acceptability, satisfaction, retention), safety, adherence and tolerability will be assessed throughout the trial period, with clinical outcomes of pain and function assessed before and following the intervention. Feasibility, safety, adherence and tolerability outcomes will be explored descriptively using frequencies and percentages. To examine preliminary efficacy, within-group and between-group changes in pain and functional measures will be analysed. ETHICS AND DISSEMINATION This protocol obtained ethical approval from the Queensland University of Technology Human Research Ethics Committee (HREA 2024-8302-20200). All participants will provide written informed consent. The findings of the study will be disseminated via journal publications and international conference proceedings. TRIAL REGISTRATION NUMBER ACTRN12624000397516p.
Collapse
Affiliation(s)
- Keeley R McNally
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia
| | - Simon Summers
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia
| | - Tasha R Stanton
- IMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | - James McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Health Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, New South Wales, Australia
- College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nahian Chowdhury
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Rocco Cavaleri
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
3
|
Mousavi S, Mottahedi A, Ehsani F, Delkhosh CT, Jaberzadeh S. Comparing the effects of anodal and cathodal transcranial direct current stimulation of primary motor cortex at varying intensities on motor learning in healthy young adults. Eur J Neurosci 2024; 60:6543-6555. [PMID: 39428835 DOI: 10.1111/ejn.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired t-test indicated that online learning occurred in all groups (p < 0.05), except in M1 c-tDCS (1 mA) (p > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); p < 0.001; and ER (F(DF) = 9(4), p < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (p < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.
Collapse
Affiliation(s)
- Sheida Mousavi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Amin Mottahedi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Hanson NJ, Maceri RM, Koutakis P. Transcranial direct current stimulation (tDCS) and cycling performance on the 3-minute aerobic test (3mAT): placebo and nocebo effects. Sci Rep 2024; 14:24659. [PMID: 39428389 PMCID: PMC11491469 DOI: 10.1038/s41598-024-74941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used extensively but research on its efficacy within the sport and exercise science realm has been inconsistent. There may be placebo and nocebo effects present with its use. Our objective was to determine if subjects can be influenced to believe that tDCS will improve cycling performance. Subjects were separated into a belief group (B; 5 women, 6 men) and a disbelief group (DB; 9 women, 3 men). The B group was told that the stimulation would improve performance on a subsequent cycling test. In the DB group, subjects were told that it was not effective and would hinder performance. The cycling test was a 3-minute aerobic test (3mAT) where subjects maintained the highest power output possible for three minutes, after completing a full 20 min warmup. During the warmup, they were given either no stimulation (control) or 2 mA bilateral stimulation over the M1 region. There was a very slight increase in maximal minute power for the B group (0.22%) and a small decrease for the DB group (-1.00%); however, these differences were not significant. No significant differences were found for any of the cycling variables. In conclustion, tDCS was unable to improve performance on the 3mAT. These findings, in conjunction with others, suggest that the acute effect of tDCS is still questionable when aiming to enhance endurance performance.
Collapse
|
5
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Shakeb S, Obaid Baig M, Abualait T, Obaid S, Yoo W, Bashir S. Effects of anodal transcranial direct current stimulation on postural stability in subacute stroke: A randomized control trial. Physiol Rep 2024; 12:e70067. [PMID: 39349984 PMCID: PMC11442135 DOI: 10.14814/phy2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) promotes neuromodulation and neuroplasticity in the brain. The aim of this study was to determine the long-term effects of the anodal tDCS on postural and trunk stability, physical performance, anticipatory postural adjustment and quality of life in sub-acute stroke patients. Thirty-six participants with sub-acute stroke were divided into experimental and control groups using sealed envelope randomization. Outcome measures comprised the Postural Assessment Scale for Stroke, Trunk Impairment Scale, Time Up and Go Test, Functional Reach Test, and Stroke-Specific Quality of Life Scale. Assessments were conducted at 0, 3, 6, 9, and 12 weeks. Within-group analysis revealed significant improvement in both the experimental (p-value < 0.05) and control groups (p-value < 0.005). Notably, significant effects were observed in postural stability after intervention, and during one of the detraining assessments, the experimental group showed superior results compared to the control group in subacute stroke. Anodal tDCS yield significant short- and long-term effects on postural stability, while short term effects on trunk stability. Additionally, long term effects were observed on the physical performance and anticipatory postural adjustments while no effects at quality of life either short or long term basis among the subacute stroke patients.
Collapse
Affiliation(s)
- Somia Shakeb
- Faculty of Rehabilitation & Allied Health SciencesRiphah International UniversityIslamabadPakistan
| | - Mirza Obaid Baig
- Faculty of Rehabilitation & Allied Health SciencesRiphah International UniversityIslamabadPakistan
| | - Turki Abualait
- College of Applied Medical SciencesImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Sumaiyah Obaid
- Faculty of Rehabilitation & Allied Health SciencesRiphah International UniversityIslamabadPakistan
| | - Woo‐Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart HospitalHallym University College of MedicineAnyangKorea
| | - Shahid Bashir
- Neuroscience CenterKing Fahad Specialist HospitalDammamSaudi Arabia
| |
Collapse
|
7
|
Hejazi HS, Khanmohammadi R, Olyaei G, Qanbari S. The effects of combining sensorimotor training with transcranial direct current stimulation on the anticipatory and compensatory postural adjustments in patients with chronic low back pain. Disabil Rehabil 2024:1-13. [PMID: 38982892 DOI: 10.1080/09638288.2024.2375756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE To investigate the effects of concurrent sensorimotor training (SMT) and transcranial direct current stimulation (tDCS) on the anticipatory and compensatory postural adjustments (APAs and CPAs) in patients with chronic low back pain (CLBP). METHOD The interventions included (1) SMT plus tDCS and (2) SMT plus sham tDCS. Outcome measures were the normalized integrals of electromyography activity (NIEMG) during the phases of anticipatory and compensatory, and muscle onset latency. The investigated muscles were ipsilateral and contralateral multifidus (MF), transversus abdominus/internal oblique (TrA/IO), and gluteus medius (GM). RESULTS Between-group comparisons demonstrated that ipsilateral TrA/IO NIEMG during CPA1 (p = 0.010) and ipsilateral GM NIEMG during CPA1 (p = 0.002) and CPA2 (p = 0.025) were significantly lower in the SMT combined with tDCS than in the control group. Furthermore, this group had greater NIEMG for contralateral GM during APA1 than the control group (p = 0.032). Moreover, the onset latency of contralateral TrA/IO was significantly earlier after SMT combined with tDCS (p = 0.011). CONCLUSIONS Both groups that received SMT showed positive effects, but anodal tDCS had an added value over sham stimulation for improving postural control strategies in patients with CLBP. Indeed, SMT combined with tDCS leads to stronger APA and less demand for CPA. RCT REGISTRATION NUMBER IRCT20220228054149N1. REGISTRATION DATE 2022-04-04.
Collapse
Affiliation(s)
- Hanie Sadat Hejazi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Olyaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Qanbari
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sato T, Katagiri N, Suganuma S, Laakso I, Tanabe S, Osu R, Tanaka S, Yamaguchi T. Simulating tDCS electrode placement to stimulate both M1 and SMA enhances motor performance and modulates cortical excitability depending on current flow direction. Front Neurosci 2024; 18:1362607. [PMID: 39010941 PMCID: PMC11246916 DOI: 10.3389/fnins.2024.1362607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.
Collapse
Affiliation(s)
- Takatsugu Sato
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Saki Suganuma
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Zhang F, Han Y, Wang H, Li Y, Tang D. Effects of transcranial direct current stimulation on motor learning in healthy elderly individuals: a systematic review and meta-analysis. Somatosens Mot Res 2024:1-11. [PMID: 38319133 DOI: 10.1080/08990220.2024.2310851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is widely used in motor recovery. Nevertheless, whether tDCS improves motor learning in healthy older adults is still controversial. This review aims to investigate the effectiveness of tDCS on motor learning in healthy elderly individuals. METHODS The PubMed, Cochrane Library, Web of Science and Embase databases were initially searched from inception to December 5, 2022. The standard mean difference (SMD) with the corresponding 95% confidence intervals (CIs) were analysed via random-effect models. RESULTS Compared with the sham group, no significant effects were found regarding improvement in motor learning based on the speed or accuracy of the task and reaction time for the tDCS intervention group. After subgroup analysis, a significant effect was found for improved motor learning based on reaction time in the primary motor cortex (M1)-cerebellar group. CONCLUSIONS This review revealed that tDCS had no significant effect on improving the speed or accuracy of motor learning in healthy elderly adults. However, it has a significant effect on improving the motor learning ability based on the reaction time of the task (mainly referring to the tDCS stimulation position of M1 and cerebellar), although the results have obvious heterogeneity and uncertainty.
Collapse
Affiliation(s)
- Fusheng Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
- School of Physical Education, Zhaotong University, Zhaotong, China
| | - Yanbai Han
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Hongli Wang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yong Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Dingyu Tang
- School of Physical Education, Zhaotong University, Zhaotong, China
| |
Collapse
|
10
|
Sasaki A, Aisawa A, Takeuchi N. Transcranial direct current stimulation facilitates backward walking training. Exp Brain Res 2024; 242:67-77. [PMID: 37955707 DOI: 10.1007/s00221-023-06728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Backward walking training presents a great challenge to the physical and neural systems, which may result in an improvement in gait performance. Transcranial direct current electrical stimulation (tDCS), which can non-invasively enhance cortical activity, has been reported to strengthen corticomotor plasticity. We investigated whether excitatory tDCS over the primary motor cortex (M1) or the dorsolateral prefrontal cortex (DLPFC) enhances the effects of backward walking training in healthy participants. Thirty-six healthy participants (16 men and 20 women, mean age 21.3 ± 1.4 years) participated in this study. The participants were randomly assigned to one of the three tDCS groups (M1, DLPFC, and sham). They performed 5 min of backward walking training during 15 min of tDCS. We evaluated dual-task forward and backward walking performance before and after training. Both tDCS groups increased walking speed in the backward condition, but the DLPFC group increased the dual-task backward walking speed more than the M1 group. The M1 group showed decreased gait variability in dual-task backward walking, whereas the DLPFC group showed increased gait variability. Backward walking training combined with M1 stimulation may increase the backward walking speed by reducing gait variability. Backward walking training combined with DLPFC stimulation may prioritize walking speed over gait stability. Our results indicate that backward walking training combined with tDCS may be extended to other rehabilitation methods to improve gait performance.
Collapse
Affiliation(s)
- Ayuka Sasaki
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Anri Aisawa
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
11
|
Wang IL, Gu CY, Lei TH, Chen CH, Chiu CH, Su Y. The effect of transcranial direct current stimulation on bilateral asymmetry and joint angles of the lower limb for females when crossing obstacles. BMC Sports Sci Med Rehabil 2023; 15:176. [PMID: 38129892 PMCID: PMC10734077 DOI: 10.1186/s13102-023-00793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gait asymmetry is often accompanied by the bilateral asymmetry of the lower limbs. The transcranial direct current stimulation (tDCS) technique is widely used in different populations and scenarios as a potential tool to improve lower limb postural control. However, whether cerebral cortex bilateral tDCS has an interventional effect on postural control as well as bilateral symmetry when crossing obstacles in healthy female remains unknown. METHODS Twenty healthy females were recruited in this prospective study. Each participant walked and crossed a height-adjustable obstacle. Two-way repeated ANOVA was used to evaluate the effect of group (tDCS and sham-tDCS) and height (30%, 20%, and 10% leg length) on the spatiotemporal and maximum joint angle parameters for lower limb crossing obstacles. The Bonferroni post-hoc test and paired t-test were used to determine the significance of the interaction effect or main effect. The statistically significant differences were set at p < 0.05. RESULTS The Swing time (SW) gait asymmetry (GA), Stance time (ST) GA, leading limb hip-knee-ankle maximum joint angles and trailing limb hip-knee maximum joint angles decreased in the tDCS condition compared to the sham-tDCS condition at 30%, 20% leg's length crossing height except for 10% leg's length, whereas there was a significant decrease in SW/ST GA between the tDCS condition and the sham-tDCS condition at 30%, 20%, 10% leg's length crossing height (P < 0.05). CONCLUSION We conclude that tDCS intervention is effective to reduce bilateral asymmetry in spatio-temporal parameters and enhance dynamic balance in female participants during obstacle crossing when the heights of the obstacles were above 10% of the leg's length. TRIAL REGISTRATION NO ChiCTR2100053942 (date of registration on December 04, 2021). Prospectively registered in the Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- I-Lin Wang
- College of Physical Education, Hubei Normal University, 435002, Huangshi, Hubei, China
| | - Chin-Yi Gu
- College of Physical Education, Hubei Normal University, 435002, Huangshi, Hubei, China
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, 435002, Huangshi, Hubei, China
| | - Che-Hsiu Chen
- Department of Sport Performance, National Taiwan University of Sport, 404, Taichung, Taiwan
| | - Chih-Hui Chiu
- Department of Exercise Health Science, National Taiwan University of Sport, 404, Taichung, Taiwan
| | - Yu Su
- Graduate Institute, Jilin Sport University, 130022, Changchun, China.
| |
Collapse
|
12
|
Corrêa FI, Carneiro Costa G, Leite Souza P, Marduy A, Parente J, Ferreira da Cruz S, de Souza Cunha M, Beber Freitas M, Correa Alves D, Silva SM, Ferrari Corrêa JC, Fregni F. Additive effect of transcranial direct current stimulation (tDCS) in combination with multicomponent training on elderly physical function capacity: a randomized, triple blind, controlled trial. Physiother Theory Pract 2023; 39:2352-2365. [PMID: 35619246 DOI: 10.1080/09593985.2022.2081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the additive effect of Transcranial Direct Current Stimulation (tDCS) associated with multi-component training (MT) on the functional capacity (FC) of older adults and to assess whether these effects remain after the end of training. The secondary objectives were to evaluate the locomotion capacity, balance, functional independence, and quality of life and correlate them with functional capacity. METHODOLOGY Twenty-eight older adults were randomized into two groups: experimental (MT associated with active tDCS - a-tDCS) and control (MT associated with sham tDCS - s-tDCS). The FC was measured by the Glittre-ADL test, locomotion capacity by the 6-minute walk test, balance by the BESTest, functional independence by the FIM, and quality of life by the WHQOL. The assessments were performed pre-, post-intervention, and 30-day follow-up. RESULTS There was a significant decrease in the time to the Glittre-ADL test when comparing the a-tDCS and s-tDCS groups after the interventions (139.77 ± 21.62, 205.10 ± 43.02, p < .001) and at the 30-day follow-up (142.74 ± 17.12, 219.55 ± 54.05, p < .001), respectively. There was a moderate correlation between FC and locomotion capacity and balance. CONCLUSIONS The addition of tDCS potentiated the results of MT to impact FC, maintaining the positive results longer. Locomotion and balance influenced the improvement of functional capacity.
Collapse
Affiliation(s)
- Fernanda Ishida Corrêa
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Glaucio Carneiro Costa
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Paulo Leite Souza
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Anna Marduy
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao Parente
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefany Ferreira da Cruz
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Micaelly de Souza Cunha
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Maik Beber Freitas
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - David Correa Alves
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | - Soraia Micaela Silva
- Doctoral and Master Program in Science of Reabilitation, Nove de Julho University, São Paulo, Brazil
| | | | - Felipe Fregni
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Marcos-Frutos D, López-Alonso V, Mera-González I, Sánchez-Molina JA, Colomer-Poveda D, Márquez G. Chronic Functional Adaptations Induced by the Application of Transcranial Direct Current Stimulation Combined with Exercise Programs: A Systematic Review of Randomized Controlled Trials. J Clin Med 2023; 12:6724. [PMID: 37959190 PMCID: PMC10649950 DOI: 10.3390/jcm12216724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The present systematic review aimed to determine the chronic effects of the combination of transcranial direct current stimulation (tDCS) and exercise on motor function and performance outcomes. We performed a systematic literature review in the databases MEDLINE and Web of Science. Only randomized control trials that measured the chronic effect of combining exercise (comprising gross motor tasks) with tDCS during at least five sessions and measured any type of motor function or performance outcome were included. A total of 22 interventions met the inclusion criteria. Only outcomes related to motor function or performance were collected. Studies were divided into three groups: (a) healthy population (n = 4), (b) neurological disorder population (n = 14), and (c) musculoskeletal disorder population (n = 4). The studies exhibited considerable variability in terms of tDCS protocols, exercise programs, and outcome measures. Chronic use of tDCS in combination with strength training does not enhance motor function in healthy adults. In neurological disorders, the results suggest no additive effect if the exercise program includes the movements pretending to be improved (i.e., tested). However, although evidence is scarce, tDCS may enhance exercise-induced adaptations in musculoskeletal conditions characterized by pain as a limiting factor of motor function.
Collapse
Affiliation(s)
| | | | | | | | - David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, 15179 A Coruña, Spain; (D.M.-F.); (V.L.-A.); (I.M.-G.); (J.A.S.-M.)
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, 15179 A Coruña, Spain; (D.M.-F.); (V.L.-A.); (I.M.-G.); (J.A.S.-M.)
| |
Collapse
|
14
|
Pantovic M, de Albuquerque LL, Mastrantonio S, Pomerantz AS, Wilkins EW, Riley ZA, Guadagnoli MA, Poston B. Transcranial Direct Current Stimulation of Primary Motor Cortex over Multiple Days Improves Motor Learning of a Complex Overhand Throwing Task. Brain Sci 2023; 13:1441. [PMID: 37891809 PMCID: PMC10604977 DOI: 10.3390/brainsci13101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task. This study utilized a double-blind, randomized, SHAM-controlled, between-subjects experimental design. Forty-six young adults were allocated to either a tDCS group or a SHAM group and completed three experimental sessions on three consecutive days at the same time of day. Each experimental session was identical and consisted of overhand throwing trials to a target in a pre-test block, five practice blocks performed simultaneously with 20 min of tDCS, and a post-test block. Overhand throwing performance was quantified as the endpoint error. Transcranial magnetic stimulation was used to obtain motor-evoked potentials (MEPs) from the first dorsal interosseus muscle to quantify changes in M1 excitability due to tDCS. Endpoint error significantly decreased over the three days of practice in the tDCS group but not in the SHAM group. MEP amplitude significantly increased in the tDCS group, but the MEP increases were not associated with increases in motor learning. These findings indicate that tDCS applied over multiple days can improve motor learning in a complex motor tasks in healthy young adults.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina-Wilmington, Wilmington, NC 28403, USA;
| | - Sierra Mastrantonio
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Austin S. Pomerantz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Mark A. Guadagnoli
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
15
|
Takano K, Katagiri N, Sato T, Jin M, Koseki T, Kudo D, Yoshida K, Tanabe S, Tsujikawa M, Kondo K, Yamaguchi T. Changes in Corticospinal Excitability and Motor Control During Cerebellar Transcranial Direct Current Stimulation in Healthy Individuals. CEREBELLUM (LONDON, ENGLAND) 2023; 22:905-914. [PMID: 36053392 DOI: 10.1007/s12311-022-01469-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) modulates the primary motor cortex (M1) via cerebellar brain inhibition (CBI), which affects motor control in humans. However, the effects of ctDCS on motor control are inconsistent because of an incomplete understanding of the real-time changes in the M1 excitability that occur during ctDCS, which determines motor output under regulation by the cerebellum. This study investigated changes in corticospinal excitability and motor control during ctDCS in healthy individuals. In total, 37 healthy individuals participated in three separate experiments. ctDCS (2 mA) was applied to the cerebellar hemisphere during the rest condition or a pinch force-tracking task. Motor-evoked potential (MEP) amplitude and the F-wave were assessed before, during, and after ctDCS, and pinch force control was assessed before and during ctDCS. The MEP amplitudes were significantly decreased during anodal ctDCS from 13 min after the onset of stimulation, whereas the F-wave was not changed. No significant changes in MEP amplitudes were observed during cathodal and sham ctDCS conditions. The MEP amplitudes were decreased during anodal ctDCS when combined with the pinch force-tracking task, and pinch force control was impaired during anodal ctDCS relative to sham ctDCS. The MEP amplitudes were not significantly changed before and after all ctDCS conditions. Motor cortical excitability was suppressed during anodal ctDCS, and motor control was unskilled during anodal ctDCS when combined with a motor task in healthy individuals. Our findings provided a basic understanding of the clinical application of ctDCS to neurorehabilitation.
Collapse
Affiliation(s)
- Keita Takano
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Masafumi Jin
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Tadaki Koseki
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Kaito Yoshida
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Masahiro Tsujikawa
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
16
|
Xiao S, Shen B, Zhang C, Xu Z, Li J, Fu W, Jin J. Effects of tDCS on Foot Biomechanics: A Narrative Review and Clinical Applications. Bioengineering (Basel) 2023; 10:1029. [PMID: 37760131 PMCID: PMC10525503 DOI: 10.3390/bioengineering10091029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, neuro-biomechanical enhancement techniques, such as transcranial direct current stimulation (tDCS), have been widely used to improve human physical performance, including foot biomechanical characteristics. This review aims to summarize research on the effects of tDCS on foot biomechanics and its clinical applications, and further analyze the underlying ergogenic mechanisms of tDCS. This review was performed for relevant papers until July 2023 in the following databases: Web of Science, PubMed, and EBSCO. The findings demonstrated that tDCS can improve foot biomechanical characteristics in healthy adults, including proprioception, muscle strength, reaction time, and joint range of motion. Additionally, tDCS can be effectively applied in the field of foot sports medicine; in particular, it can be combined with functional training to effectively improve foot biomechanical performance in individuals with chronic ankle instability (CAI). The possible mechanism is that tDCS may excite specific task-related neurons and regulate multiple neurons within the system, ultimately affecting foot biomechanical characteristics. However, the efficacy of tDCS applied to rehabilitate common musculoskeletal injuries (e.g., CAI and plantar fasciitis) still needs to be confirmed using a larger sample size. Future research should use multimodal neuroimaging technology to explore the intrinsic ergogenic mechanism of tDCS.
Collapse
Affiliation(s)
- Songlin Xiao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
| | - Bin Shen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
| | - Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
| | - Zhen Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
| | - Jingjing Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (S.X.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jing Jin
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
17
|
Erdoğan ET, Kır C, Beycan E, Karakaya E, Altınçınar S, Bayramoğlu T, Eskikurt G, Karamürsel S. Acute Effect of Single-Session Cerebellar Anodal Transcranial Direct Current Stimulation on Static and Dynamic Balance in Healthy Volunteers. Brain Sci 2023; 13:1107. [PMID: 37509037 PMCID: PMC10377200 DOI: 10.3390/brainsci13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Several studies have shown the positive effect of cerebellar transcranial direct current stimulation (ctDCS) on balance in patients and older adults. However, in healthy volunteers, the results are conflicting. We aimed to investigate the immediate effect of anodal ctDCS on the dynamic-static balance in healthy, non-athletic young adults due to the possible benefits for sports performance. Twenty-one healthy volunteers participated in two consecutive 20 min sessions of ctDCS (2 mA current intensity), with 1-week intervals (anodal ctDCS-sham ctDCS). Flamingo and Y-Balance tests were used to evaluate the static and dynamic balances before and after the ctDCS. A Continuous Performance Test (CPT) was used to evaluate the changes in sustained attention, impulsivity, and vigilance. A repeated measure analysis of variance (ANOVA) was used to compare the changes in balance scores, reaction time, omission, and commission numbers. There were no statistically significant differences in dynamic and static balance scores and in CPT parameters between conditions. In conclusion, there was no immediate neuromodulation effect of anodal ctDCS to improve balance performance in healthy, young individuals. Furthermore, no evidence was found to support the use of cerebellar tDCS to improve sports performance.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Can Kır
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Esin Beycan
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Esin Karakaya
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Sanem Altınçınar
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Türkü Bayramoğlu
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Gökçer Eskikurt
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| |
Collapse
|
18
|
Priming Effects of Anodal Transcranial Direct Current Stimulation on the Effects of Conventional Physiotherapy on Balance and Muscle Performance in Athletes With Anterior Cruciate Ligament Injury. J Sport Rehabil 2023; 32:315-324. [PMID: 36623509 DOI: 10.1123/jsr.2022-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 01/11/2023]
Abstract
CONTEXT In athletes, postural control impairment and knee muscle dysfunction are the most common disorders following anterior cruciate ligament (ACL) injury. Because of functional changes in the motor cortex following ACL injury, physiotherapy (PT) is not enough for treatment and using neuromodulators, such as trans-cranial direct current stimulation (tDCS) may be necessary. The present study focused on the effects of anodal tDCS (a-tDCS) over the primary motor cortex (M1) concurrent with PT on postural control and muscular performance in the athletes with ACL injury. DESIGN In this study, 34 athletes with ACL injury were randomly assigned in 2 groups of intervention group (active M1 a-tDCS concurrent with PT, n = 16) and control group (sham M1 a-tDCS concurrent with PT, n = 16). METHODS The participants of all groups received 20-minute 2 mA M1 a-tDCS with PT during 10 sessions, while tDCS was turned off after 30 seconds in the sham group. Before, immediately following, and 1 month after the interventions, the center of pressure and the average of power of flexor and extensor muscles at 2 velocities of 30°/s and 60°/s were measured by force plate and isokinetic devices, respectively. RESULTS One month after treatment, the displacement of center of pressure was decreased in the intervention group (P < .05), while there were no changes in the control group. Y-axis of center of pressure decreased in the intervention group relative to the control group, although average of power of flexor and extensor muscles increased immediately in both groups, but the rise in the intervention group was larger than that in the control group (P < .05). CONCLUSION The findings indicated that M1 a-tDCS can induce the efficacy of PT, which has a lasting effect on the improvement of the postural control in athletes with ACL injury.
Collapse
|
19
|
Kamali AM, Ijadi M, Keshtkarhesamabadi B, Kazemiha M, Mahmoudi R, Roozbehi A, Nami M. A dual-mode neurostimulation approach to enhance athletic performance outcome in experienced taekwondo practitioners. Sci Rep 2023; 13:251. [PMID: 36604440 PMCID: PMC9816304 DOI: 10.1038/s41598-022-26610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a growing empirical approach to improve athletic performance. Some recent studies have investigated the effects of transcutaneous spinal direct current stimulation (tsDCS) on the motor performance such as reaction time. TDCS and tsDCS can lead to alteration of the spontaneous neural activity, and the membrane potentials of motor neurons in cerebral cortex and spinal interneurons, respectively. Given the paucity of experimental studies on the non-invasive brain stimulation in the field of sports neuroscience, especially martial sports, the present study aimed at investigating the effects of neurostimulation in potentiating the motor and cognitive functions in experienced taekwondo practitioners. The study sample included 15 experienced male taekwondo players who received real or sham direct current stimulation on the primary motor cortex (M1) and the lumbar spinal segment (T12-L2) over two sessions, 72 h apart. Next, the performance of the participants was evaluated through a simulation of taekwondo exercise directly after the sham and real sessions. Moreover, a cognitive platform (CBS: Cambridge Brain Science) was used to investigate the participants' cognitive profile in each instance. Unlike sham stimulation, real tDCS was associated with improved selective attention and reaction time in both in the simulated task performance and cognitive examination. The concurrent cortical and trans-spinal tDCS was found to improve selective attention (31% performance improvement) (P < 0.0001) [EFFECT SIZE; 1.84]. and reduce reaction time (4.7% performance improvement) (P < 0.0001) [EFFECT SIZE; 0.02]. Meanwhile, the intervention failed to leave a significant change in cognitive functions evaluated through CBS (P > 0.05). As informed by our results, the present dual-mode neurostimulation could improve motor functions potentially through the effect of tsDCS over the spinal interneurons and tDCS over the primary motor cortex. Likewise, our findings suggested an improved performance in simulated taekwondo task after real- but not sham-stimulation. This study paves the way for designing neurostimulation protocols to improve the performance of professional athletes, namely martial art practitioners, including their accuracy and velocity of reactions. Such positive effects of neuostimulation in athletic performance as demonstrated in this research and similar reports are expected to enhance the athletes' success in professional competitions.
Collapse
Affiliation(s)
- Ali-Mohammad Kamali
- grid.412571.40000 0000 8819 4698Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran
| | - Mojtaba Ijadi
- grid.413020.40000 0004 0384 8939Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnam Keshtkarhesamabadi
- Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran ,High Performance Brain, Helena Félix Street, No. 7 to 7 D, 1600-121 Lisbon, Portugal
| | - Milad Kazemiha
- grid.412571.40000 0000 8819 4698Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran
| | - Reza Mahmoudi
- grid.413020.40000 0004 0384 8939Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amrollah Roozbehi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohammad Nami
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. .,Iranian Neuroscience Society-Fars Chapter, DANA Brain Health Institute, Shiraz, Iran. .,Instituto de Investigaciones Científicas Y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Neuroscience Center, Panama City, Panama. .,Harvard Alumni in Healthcare, Harvard University, Boston, MA, USA. .,Brain, Cognition, and Behavior Unit, BrainHub Academy, Dubai, United Arab Emirates.
| |
Collapse
|
20
|
Schwell G, Kozol Z, Tarshansky D, Einat M, Frenkel-Toledo S. The effect of action observation combined with high-definition transcranial direct current stimulation on motor performance in healthy adults: A randomized controlled trial. Front Hum Neurosci 2023; 17:1126510. [PMID: 36936614 PMCID: PMC10014919 DOI: 10.3389/fnhum.2023.1126510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Action observation (AO) can improve motor performance in humans, probably via the human mirror neuron system. In addition, there is some evidence that transcranial direct current stimulation (tDCS) can improve motor performance. However, it is yet to be determined whether AO combined with tDCS has an enhanced effect on motor performance. We investigated the effect of AO combined with high-definition tDCS (HD-tDCS) targeting the inferior parietal lobe (IPL) and inferior frontal gyrus (IFG), the main aggregates of the human mirror neuron system, on motor performance in healthy adults and compared the immediate vs. 24-h retention test effects (anodal electrodes were placed over these regions of interest). Sixty participants were randomly divided into three groups that received one of the following single-session interventions: (1) observation of a video clip that presented reaching movement sequences toward five lighted units + active HD-tDCS stimulation (AO + active HD-tDCS group); (2) observation of a video clip that presented the same reaching movement sequences + sham HD-tDCS stimulation (AO + sham HD-tDCS group); and (3) observation of a video clip that presented neutral movie while receiving sham stimulation (NM + sham HD-tDCS group). Subjects' reaching performance was tested before and immediately after each intervention and following 24 h. Subjects performed reaching movements toward units that were activated in the same order as the observed sequence during pretest, posttest, and retest. Occasionally, the sequence order was changed by beginning the sequence unexpectedly with a different activated unit. Outcome measures included mean Reaching Time and difference between the Reaching Time of the unexpected and expected reaching movements (Delta). In the posttest and retest, Reaching Time and Delta improved in the AO + sham HD-tDCS group compared to the NM + HD-sham tDCS group. In addition, at posttest, Delta improved in the AO + active HD-tDCS group compared to the NM + sham HD-tDCS group. It appears that combining a montage of active HD-tDCS, which targets the IPL and IFG, with AO interferes with the positive effects of AO alone on the performance of reaching movement sequences.
Collapse
Affiliation(s)
- Gidon Schwell
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Zvi Kozol
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - David Tarshansky
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Moshe Einat
- Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- *Correspondence: Silvi Frenkel-Toledo,
| |
Collapse
|
21
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
22
|
Transcranial direct current stimulation influences repetitive bimanual force control and interlimb force coordination. Exp Brain Res 2023; 241:313-323. [PMID: 36512062 DOI: 10.1007/s00221-022-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential effect of bilateral transcranial direct current stimulation (tDCS) on repetitive bimanual force control and force coordination in healthy young adults. In this sham-controlled crossover study, 18 right-handed young adults were enrolled. Repetitive bimanual handgrip force control trials were performed by the participants at 40% of maximum voluntary contraction until task failure. We randomly provided bilateral active and sham tDCS to the primary motor cortex (M1) of each participant before conducting the repetitive bimanual force control task. We quantified the number of successful trials to assess the ability to maintain bimanual force control across multiple trials. Moreover, we estimated bimanual force control and force coordination by quantifying force accuracy, variability, regularity, and correlation coefficient in maximal and adjusted successful trials. Force asymmetry was calculated to examine potential changes in motor dependency on each hand during the task. Bilateral tDCS significantly increased the number of successful trials compared with sham tDCS. The adjusted successful trial revealed that participants who received bilateral tDCS maintained better bimanual force control and coordination, as indicated by decreased force variability and regularity as well as more negative correlation coefficient values in comparison with sham condition. Moreover, participants who received bilateral tDCS produced more force from the dominant hand than from the nondominant hand in both maximal and adjusted successful trials. These findings suggest that bilateral tDCS on M1 successfully maintains bimanual force control with better force coordination by modulating motor dependency.
Collapse
|
23
|
The effects of concurrent bilateral anodal tDCS of primary motor cortex and cerebellum on corticospinal excitability: a randomized, double-blind sham-controlled study. Brain Struct Funct 2022; 227:2395-2408. [PMID: 35984496 PMCID: PMC9418272 DOI: 10.1007/s00429-022-02533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1), and cerebellum (CB) can change the level of M1 corticospinal excitability (CSE). A randomized double-blinded crossover, the sham-controlled study design was used to investigate the effects of concurrent bilateral anodal tDCS of M1 and CB (concurrent bilateral a-tDCSM1+CB) on the CSE. Twenty-one healthy participants were recruited in this study. Each participant received anodal-tDCS (a-tDCS) of 2 mA, 20 min in four pseudo-randomized, counterbalanced sessions, separated by at least 7 days (7.11 days ± 0.65). These sessions were bilateral M1 stimulation (bilateral a-tDCSM1), bilateral cerebellar stimulation (bilateral a-tDCSCB), concurrent bilateral a-tDCSM1+CB, and sham stimulation (bilateral a-tDCSSham). Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before and immediately after the intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) were assessed with paired-pulse TMS protocols. Anodal-tDCS significantly increased CSE after concurrent bilateral a-tDCSM1+CB and bilateral a-tDCSCB. Interestingly, CSE was decreased after bilateral a-tDCSM1. Respective alterations in SICI, LICI, and ICF were seen, including increased SICI and decreased ICF, which indicate the involvement of glutamatergic and GABAergic systems in these effects. These results confirm that the concurrent bilateral a-tDCSM1+CB have a facilitatory effect on CSE, whereas bilateral a-tDCSM1 exert some inhibitory effects. Moreover, the effects of the 2 mA, 20 min a-tDCS on the CB were consistent with its effects on the M1.
Collapse
|
24
|
Zhao Q, Li H, Liu Y, Mei H, Guo L, Liu X, Tao X, Ma J. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: Systematic review and meta-analysis of randomized clinical trials. Front Neurol 2022; 13:918956. [PMID: 35928134 PMCID: PMC9345505 DOI: 10.3389/fneur.2022.918956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-invasive brain stimulation (NIBS) techniques and mirror therapy (MT) are promising rehabilitation measures for stroke. While the combination of MT and NIBS has been employed for post-stroke upper limb motor functional rehabilitation, its effectiveness has not been examined. Objective This study aimed to evaluate the effectiveness of combined MT and NIBS in the recovery of upper limb motor function in stroke patients. Methods The search was carried out in PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG and VIP until December 2021. Randomized clinical trials (RCTs) comparing MT or NIBS alone with the combination of NIBS and MT in improving upper extremity motor recovery after stroke were selected. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models. Subgroup analyses were also conducted according to the types of control group, the types of NIBS, stimulation timing and phase poststroke. Results A total of 12 articles, including 17 studies with 628 patients, were reviewed in the meta-analysis. In comparison with MT or NIBS alone, the combined group significantly improved body structure and function (MD = 5.97; 95% CI: 5.01–6.93; P < 0.05), activity levels (SMD = 0.82; 95% CI 0.61–1.02; P < 0.05). For cortical excitability, the motor evoked potential cortical latency (SMD = −1.05; 95% CI:−1.57–−0.52; P < 0.05) and the central motor conduction time (SMD=-1.31 95% CI:−2.02-−0.61; P < 0.05) of the combined group were significantly shortened. A non-significant homogeneous summary effect size was found for MEP amplitude (SMD = 0.47; 95%CI = −0.29 to 1.23; P = 0.23). Subgroup analysis showed that there is an interaction between the stimulation sequence and the combined treatment effect. Conclusion In this meta-analysis of randomized clinical trials, in comparison to the control groups, MT combined with NIBS promoted the recovery of upper extremity motor function after stroke, which was reflected in the analysis of body structure and function, activity levels, and cortical excitability. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022304455.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yu Liu
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, China
| | - Haonan Mei
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Liying Guo
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Xianying Liu
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Tao
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- *Correspondence: Jiang Ma
| |
Collapse
|
25
|
Park SB, Han DH, Hong J, Lee JW. Transcranial Direct Current Stimulation of Motor Cortex Enhances Spike Performances of Professional Female Volleyball Players. J Mot Behav 2022; 55:18-30. [PMID: 35726151 DOI: 10.1080/00222895.2022.2090489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate effects of brain excitability by transcranial direct current stimulation (tDCS) on spike performances of professional female volleyball players. Thirteen professional female volleyball players were recruited for participation. We performed a randomized single-blind, SHAM-stimulus controlled, and counter-balanced crossover design with two interventions in this study. An anodal tDCS current was applied over the primary motor cortex (M1) for 20 min at 2 mA. In the SHAM intervention, the current was first applied for 30 s, after which it was terminated. Exercise performance assessment which comprised spike performance (spike ball speed, spiking consistency), two vertical jumps (jump and reach: JaR, countermovement jump: CMJ), bench-press and back-squat one-repetition maximum (1RM) were tested pre- and post-intervention. Results indicated that spike ball speed and spiking consistency following tDCS were significantly higher than those after SHAM intervention (both p < 0.05). However, JaR and CMJ did not show any significant differences between tDCS and SHAM intervention groups (both p > 0.05). There was no significant difference in bench-press and back-squat 1RM between two groups either (both p > 0.05). These findings suggest that tDCS could be effective in enhancing motor coordination performances of professional female volleyball athletes.
Collapse
Affiliation(s)
- Seung-Bo Park
- Department of Sports Culture, Dongguk University, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Junggi Hong
- Graduate School of Sports Medicine, CHA University, Gyeonggi, Republic of Korea
| | - Jea-Woog Lee
- Department of Information & Technology in Sport, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
26
|
Şahinoğlu E, Ünver B, Erkuş S, Yamak K. Efficacy of balance training on postural control in patients with rotator cuff disease: a randomized controlled study. Int J Rehabil Res 2022; 45:146-153. [PMID: 35131978 DOI: 10.1097/mrr.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We evaluated the efficacy of adding balance training to a physical therapy program on postural control and health-related quality of life in patients with rotator cuff disease. Forty-two participants were randomly allocated to the control and intervention groups. Both groups received physical therapy (education, stretching, supervised strength training, and home exercise program) 3 days/week for 6 weeks. The intervention group was instructed to perform balance exercises at home. The primary outcomes were the stability index, the Fourier transformation (F5 and F6), the weight distribution index, and the fall index, as assessed by the posturography during eight conditions with different combinations of standing (solid surface, pillows, and different head positions) and vision (eyes open/closed). The secondary outcomes included the Western Ontario Rotator Cuff Index to assess the health-related quality of life, the Shoulder Pain and Disability Index, and the Numeric Pain Rating Scale. The adherence to in-person and home-based therapy was high (>83%). The intervention group significantly improved the stability index, F5, and F6 parameters but each in only one condition (P < 0.05). No significant improvement was found in the conditions for the other primary outcomes and in the health-related quality of life. (P > 0.05). We conclude that adding the balance training protocol to the physical therapy program does not improve postural control and health-related quality of life in patients with rotator cuff disease.
Collapse
Affiliation(s)
- Ertan Şahinoğlu
- Dr. İsmail Atabek Physical Therapy and Rehabilitation Center, İzmir
| | - Bayram Ünver
- Faculty of Physical Therapy and Rehabilitation, Dokuz Eylül University, İzmir
| | - Serkan Erkuş
- Department of Orthopedics and Traumatology, Van Training and Research Hospital, Van
| | - Kamil Yamak
- Department of Orthopedics and Traumatology, University of Health Sciences, İzmir Bozyaka Education and Research Hospital, İzmir, Turkey
| |
Collapse
|
27
|
Park JE, Hallett M, Jang HR, Kim LU, Park KJ, Kim SK, Bae JE, Hong JY, Park JH. Effects of anodal stimulation and motor practice on limb-kinetic apraxia in Parkinson's disease. Exp Brain Res 2022; 240:1249-1256. [PMID: 35201381 PMCID: PMC10385019 DOI: 10.1007/s00221-021-06293-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Limb-kinetic apraxia, the loss of the ability to make precise, independent but coordinated finger and hand movements affects quality of life in patients with Parkinson's disease. We aimed to examine the effects of anodal transcranial direct current stimulation of the left posterior parietal cortex and upper extremity motor practice on limb-kinetic apraxia in Parkinson's disease. This study was conducted in a randomized, double-blind, sham-controlled fashion. Patients confirmed to have Parkinson's disease were recruited. Twenty-eight participants completed the study and were randomized to two groups: anodal or sham stimulation. For participants assigned to active stimulation, anodal stimulation of the left posterior parietal cortex was performed using 2 mA current for 20 min. Patients received anodal or sham stimulation, followed by motor practice in both groups. The primary outcome measure was time-performing sequential buttoning and unbuttoning, and several secondary outcome measures were obtained. A statistically significant interaction between stimulation type and timepoint on time taken to perform buttoning and unbuttoning was found. Patients who received anodal stimulation were found to have a significant decrease in sequential buttoning and unbuttoning time immediately following stimulation and at 24 h in the medication-ON state, compared to the medication-OFF state (31% and 29% decrease, respectively). Anodal stimulation of the left posterior parietal cortex prior to motor practice appears to be effective for limb-kinetic apraxia in Parkinson's disease. Future long-term, multi-session studies looking at the long-term effects of anodal stimulation and motor practice on limb-kinetic apraxia in Parkinson's disease may be worthwhile.
Collapse
Affiliation(s)
- Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hyung-Ryeol Jang
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Lee-Uhn Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Keun-Jin Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Seo-Kyung Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Jeong-Eun Bae
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Ji-Yi Hong
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Jeong-Ho Park
- Department of Neurology, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Republic of Korea.
| |
Collapse
|
28
|
Rebello-Sanchez I, Vasquez-Avila K, Parente J, Pacheco-Barrios K, De Melo PS, Teixeira PE, Jong K, Caumo W, Fregni F. Insights and Future Directions on the Combined Effects of Mind-Body Therapies with Transcranial Direct Current Stimulation: An Evidence-based Review. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022; 5:129-148. [PMID: 36583065 PMCID: PMC9797000 DOI: 10.4103/ijprm.jisprm-000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mind-body therapies (MBTs) use mental abilities to modify electrical neural activity across brain networks. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates neuronal membrane potentials to enhance neuroplasticity. A combination of these treatment strategies may generate synergistic or additive effects, and thus has been more commonly tested in clinical trials, fostering a novel yet promising field of research. We conducted a literature search in four different databases including only randomized clinical trials (RCTs) that tested the combination of MBTs with tDCS. Ten studies (n=461) were included. Combined protocols included meditation/mindfulness (8/10), biofeedback (1/10), and hypnosis (1/10). The RCTs were heterogeneous with regards to population, design, and types of outcomes. Based on the findings of this search, we provide here a content description, methodological and practical insights, and future directions for the field. We hope this review will provide future authors with information to facilitate the development of trials with improved protocols.
Collapse
Affiliation(s)
- Ingrid Rebello-Sanchez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Karen Vasquez-Avila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Joao Parente
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA,Research Unit for the Generation and Synthesis of Evidence in Health, San Ignacio de Loyola University, Lima, Peru
| | - Paulo S. De Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Paulo E.P. Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Kian Jong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wolnei Caumo
- Department of Surgery, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| |
Collapse
|
29
|
Savoury R, Kibele A, Behm DG. Methodological Issues with Transcranial Direct Current Stimulation for Enhancing Muscle Strength and Endurance: A Narrative Review. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Shirvani S, Davoudi M, Shirvani M, Koleini P, Hojat Panah S, Shoshtari F, Omidi A. Comparison of the effects of transcranial direct current stimulation and mindfulness-based stress reduction on mental fatigue, quality of life and aggression in mild traumatic brain injury patients: a randomized clinical trial. Ann Gen Psychiatry 2021; 20:33. [PMID: 34130721 PMCID: PMC8207739 DOI: 10.1186/s12991-021-00355-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rate of traumatic brain injuries (TBIs) due to the accidents is high around the world. Patients with mild TBIs may suffer from some psychological disorders, including aggression, and mental fatigue, and thus their quality of life decreased. Among different treatments for TBI, two treatments, namely transcranial direct current stimulation (tDCS), and mindfulness-based stress reduction (MBSR) have shown to be effective. Therefore, this study aimed to compare the effects of these two treatments on mental fatigue, aggression and quality of life in mTBI patients. MATERIALS AND METHODS This randomized controlled trial study was conducted on 48 TBI patients referred to emergency and neurosurgery departments of Shahid Beheshti Hospital, Kashan, Iran. They were selected using the convenience sampling method. Data were collected using the mental fatigue scale, the World Health Organization Quality of Life-BREF (short version), and the Buss-Perry Aggression Questionnaires. Then, the data were analyzed using a Mixed Repeated Measures ANOVAs, and the Levene and Kolmogorov-Smirnov tests by SPSS-23 software. RESULTS The mean age of patients in the three groups of MBSR, tDCS and control were 69.38 + 6.11 (25% male), 25.40 + 12.11 (25% male) and 69.37 + 0.2 (18.8% male), respectively. There was no significant difference between the three groups in terms of mental fatigue, quality of life and aggression (P < 0.05). In addition, the results showed that there was a significant difference between the main effect of time and the interaction between time and group (P < 0.001). CONCLUSIONS Both MBSR and tDCS methods are effective in reducing the mental fatigue and aggression and increasing quality of life of mTBI patients; MBSR treatment, as indicated in the present study, can be more effective than tDCS in patients with mTBI. TRIAL REGISTRATION Thailand Registry of Clinical Trials, TCTR20180827003 Registered on August 24, 2018.
Collapse
Affiliation(s)
- Sheida Shirvani
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Davoudi
- Department of Clinical Psychology, Faculty of Behavioral Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Peiman Koleini
- Department of Dental Surgery, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Safora Hojat Panah
- Department of Clinical Psychology, University of Najaf Abad, Isfahan, Iran
| | - Fatemeh Shoshtari
- Department of Clinical Psychology, University of Najaf Abad, Isfahan, Iran
| | - Abdollah Omidi
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|