1
|
Elliott CI, Simmons DBD, Stotesbury T. Integrating time since deposition estimation of bloodstains into a DNA profiling workflow: A novel approach using fluorescence spectroscopy. Talanta 2025; 284:127234. [PMID: 39603014 DOI: 10.1016/j.talanta.2024.127234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Determining the time since deposition (TSD) of bloodstains is important to establish a timeline of bloodshed, while DNA profiling addresses identity (source attribution). Traditionally treated as separate processes, this study integrates TSD estimation into routine DNA profiling by analyzing typically discarded cell lysate (eluates) from spin-column-based DNA extractions. Fluorescence spectroscopy was used to analyze eluates from bloodstains deposited up to 99 weeks. Two excitation-emission matrices (EEMs) were acquired for each sample and deconvoluted using parallel factor analysis (PARAFAC) to identify individual fluorophores. For example, tryptophan demonstrated a time-dependent decrease in fluorescence. Additionally, we observed an accumulation of fluorescent oxidation products (FOX) and advanced glycation end products (AGEs) over TSD. An untargeted metabolomics high-performance liquid chromatography-mass spectrometry workflow was applied to assist with fluorophore identification. Chemometric models were used to estimate TSD from EEM fluorescence data. Boruta feature selection coupled with random forest regression outperformed all other models and achieved high accuracy, with an R2 of 0.993 and root mean square error of prediction (RMSEP) of 2.83 weeks for the full 99-week period, and an R2 of 0.987 and RMSEP of 2.06 weeks for the 1-year timeframe. Comparisons were also made between anticoagulant-free (AC-free) and anticoagulant-treated (AC-treated) bloodstains deposited up to 3 months. We noted differences in fluorescence based on AC treatment, with AC-free blood exhibiting higher FOX and lower AGE fluorescence than AC-treated blood. Our findings demonstrate the effectiveness and feasibility of integrating TSD estimation into routine forensic DNA extractions while maintaining high prediction accuracies.
Collapse
Affiliation(s)
- Colin I Elliott
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada.
| | - Denina B D Simmons
- Faculty of Science Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Theresa Stotesbury
- Faculty of Science Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada.
| |
Collapse
|
2
|
Reichenbach M, Richter S, Galli R, Meinhardt M, Kirsche K, Temme A, Emmanouilidis D, Polanski W, Prilop I, Krex D, Sobottka SB, Juratli TA, Eyüpoglu IY, Uckermann O. Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain. J Cancer Res Clin Oncol 2024; 151:19. [PMID: 39724474 PMCID: PMC11671560 DOI: 10.1007/s00432-024-06052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors. METHODS A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence. Fresh samples were obtained from routine surgeries (glioblastoma n = 6, meningioma n = 6, brain metastases n = 10, pituitary adenoma n = 2, non-tumor from surgery for the treatment of pharmacoresistant epilepsy n = 2). Additionally, in situ intraoperative label-free CLE was performed in three cases. The autofluorescence images were visually inspected for feature identification and quantification. For reference, tissue cryosections were prepared and further analyzed by label-free multiphoton microscopy and HE histology. RESULTS Label-free CLE enabled the acquisition of autofluorescence images for all cases. Autofluorescent structures were assigned to the cytoplasmic compartment of cells, elastin fibers, psammoma bodies and blood vessels by comparison to references. Sparse punctuated autofluorescence was identified in most images across all cases, while dense punctuated autofluorescence was most frequent in glioblastomas. Autofluorescent cells were observed in higher abundancies in images of non-tumor samples. Diffuse autofluorescence, fibers and round fluorescent structures were predominantly found in tumor tissues. CONCLUSION Label-free CLE imaging through an approved clinical device was able to visualize the characteristic autofluorescence patterns of human brain tumors and non-tumor brain tissue ex vivo and in situ. Therefore, this approach offers the possibility to obtain intraoperative diagnostic information before resection, importantly independent of any kind of marker or label.
Collapse
Affiliation(s)
- Marlen Reichenbach
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sven Richter
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology (Neuropathology), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Kirsche
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dimitrios Emmanouilidis
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Witold Polanski
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Insa Prilop
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ilker Y Eyüpoglu
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Mischkulnig M, Reichert D, Wightman L, Roth V, Hölz M, Körner LI, Kiesel B, Vejzovic D, Giardina GA, Erkkilae MT, Unterhuber A, Andreana M, Rinner B, Kubin A, Leitgeb R, Widhalm G. Detection of a Water-Soluble Hypericin Formulation in Glioblastoma Tissue with Fluorescence Lifetime and Intensity Using a Dual-Tap CMOS Camera System. Diagnostics (Basel) 2024; 14:2423. [PMID: 39518390 PMCID: PMC11545445 DOI: 10.3390/diagnostics14212423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND High hypericin-loaded polyvinylpyrrolidone (HHL-PVP) constitutes a novel approach to utilize the promising characteristics of hypericin for photodynamic diagnosis (PDD) and therapy (PDT) of brain tumors in an orally bioavailable formulation. The aim of this study was to investigate the ability of a Complementary Metal-Oxide-Semiconductor (CMOS) camera-based fluorescence imaging system to selectively visualize HHL-PVP in glioblastoma tissue even in the presence of 5-Aminolvevulinic acid (5-ALA) induced fluorescence, which is widely utilized in brain tumor surgery. METHODS We applied a previously established system with a non-hypericin specific filter for 5-ALA fluorescence visualization and a newly introduced hypericin-specific filter at 575-615 nm that transmits the spectrum of hypericin, but not 5-ALA fluorescence. Glioblastoma specimens obtained from 12 patients (11 with preoperative 5-ALA intake) were ex vivo incubated with HHL-PVP. Subsequently, fluorescence intensity and lifetime changes using both the non-hypericin specific filter and hypericin-specific filter were measured before and after HHL-PVP incubation and after subsequent rinsing. RESULTS While no significant differences in fluorescence signal were observed using the non-hypericin specific filter, statistically significant increases in fluorescence intensity (p = 0.001) and lifetime (p = 0.028) after HHL-PVP incubation were demonstrated using the hypericin-specific filter. In consequence, specimens treated with HHL-PVP could be identified according to the fluorescence signal with high diagnostic sensitivity (87.5%) and specificity (100%). CONCLUSIONS Our CMOS camera-based system with a hypericin-specific filter is capable of selectively visualizing hypericin fluorescence in glioblastoma tissue after ex vivo HHL-PVP incubation. In the future, this technique could facilitate clinical investigations of HHL-PVP for PDD and PDT while maintaining the current standard of care with 5-ALA guidance.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - David Reichert
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University Vienna, 1090 Vienna, Austria
| | | | - Vanessa Roth
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Marijke Hölz
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa I. Körner
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Djenana Vejzovic
- Division of Biomedical Research, Medical University of Graz, 8010 Graz, Austria
| | - Gabriel A. Giardina
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mikael T. Erkkilae
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Andreana
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | | | - Rainer Leitgeb
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University Vienna, 1090 Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Restall BS, Haven NJM, Martell MT, Cikaluk BD, Wang J, Kedarisetti P, Tejay S, Adam BA, Sutendra G, Li X, Zemp RJ. Metabolic light absorption, scattering, and emission (MetaLASE) microscopy. SCIENCE ADVANCES 2024; 10:eadl5729. [PMID: 39423271 PMCID: PMC11488571 DOI: 10.1126/sciadv.adl5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging of metabolism can provide key information about health and disease progression in cells and tissues; however, current methods have lacked gold-standard information about histological structure. Conversely, histology and virtual histology methods have lacked metabolic contrast. Here, we present metabolic light absorption, scattering, and emission (MetaLASE) microscopy, which rapidly provides a virtual histology and optical metabolic readout simultaneously. Hematoxylin-like nucleic contrast and eosin-like cytoplasmic contrast are obtained using photoacoustic remote sensing and ultraviolet reflectance microscopy, respectively. The same ultraviolet source excites endogenous Nicotinamide adenine dinucleotide (phosphate), flavin adenine dinucleotide, and collagen autofluorescence, providing a map of optical redox ratios to visualize metabolic variations including in areas of invasive carcinoma. Benign chronic inflammation and glands also are seen to exhibit hypermetabolism. MetaLASE microscopy offers promise for future applications in intraoperative margin analysis and in research applications where greater insights into metabolic activity could be correlated with cell and tissue types.
Collapse
Affiliation(s)
- Brendon S. Restall
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Nathaniel J. M. Haven
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Matthew T. Martell
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Brendyn D. Cikaluk
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Wang
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Saymon Tejay
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada
| | - Gopinath Sutendra
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xingyu Li
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
6
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Vidal-Flores LM, Reyes-Alberto M, Albor-Ramírez E, Domínguez-Velasco CF, Gutierrez-Herrera E, Padilla-Castañeda MA. Fabrication and Characterization of Brain Tissue Phantoms Using Agarose Gels for Ultraviolet Vision Systems. Gels 2024; 10:540. [PMID: 39195069 DOI: 10.3390/gels10080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Recreating cerebral tissue using a tissue-mimicking phantom is valuable because it provides a tool for studying physiological and biological processes related to tissues without the necessity of performing the study directly in the tissue or even in a patient. The reproduction of the optical properties allows investigation in areas such as imaging, optics, and ultrasound, among others. This paper presents a methodology for manufacturing agarose-based phantoms that mimic the optical characteristics of brain tissue using scattering and absorbing agents and proposes combinations of these agents to recreate the healthy brain tissue optical coefficients within the wavelength range of 350 to 500 nm. The results of the characterization of the manufactured phantoms propose ideal combinations of the used materials for their use in controlled environment experiments in the UV range, following a cost-effective methodology.
Collapse
Affiliation(s)
- Luis M Vidal-Flores
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Miguel Reyes-Alberto
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Efraín Albor-Ramírez
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico
| | - César F Domínguez-Velasco
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico
| | | | - Miguel A Padilla-Castañeda
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
Affiliation(s)
- Angyang Shang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Luming Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Hu L, Wang N, Bryant JD, Liu L, Xie L, West AP, Walsh AJ. Label-free spatially maintained measurements of metabolic phenotypes in cells. Front Bioeng Biotechnol 2023; 11:1293268. [PMID: 38090715 PMCID: PMC10715269 DOI: 10.3389/fbioe.2023.1293268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024] Open
Abstract
Metabolic reprogramming at a cellular level contributes to many diseases including cancer, yet few assays are capable of measuring metabolic pathway usage by individual cells within living samples. Here, autofluorescence lifetime imaging is combined with single-cell segmentation and machine-learning models to predict the metabolic pathway usage of cancer cells. The metabolic activities of MCF7 breast cancer cells and HepG2 liver cancer cells were controlled by growing the cells in culture media with specific substrates and metabolic inhibitors. Fluorescence lifetime images of two endogenous metabolic coenzymes, reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), were acquired by a multi-photon fluorescence lifetime microscope and analyzed at the cellular level. Quantitative changes of NADH and FAD lifetime components were observed for cells using glycolysis, oxidative phosphorylation, and glutaminolysis. Conventional machine learning models trained with the autofluorescence features classified cells as dependent on glycolytic or oxidative metabolism with 90%-92% accuracy. Furthermore, adapting convolutional neural networks to predict cancer cell metabolic perturbations from the autofluorescence lifetime images provided improved performance, 95% accuracy, over traditional models trained via extracted features. Additionally, the model trained with the lifetime features of cancer cells could be transferred to autofluorescence lifetime images of T cells, with a prediction that 80% of activated T cells were glycolytic, and 97% of quiescent T cells were oxidative. In summary, autofluorescence lifetime imaging combined with machine learning models can detect metabolic perturbations between glycolysis and oxidative metabolism of living samples at a cellular level, providing a label-free technology to study cellular metabolism and metabolic heterogeneity.
Collapse
Affiliation(s)
- Linghao Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Nianchao Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Joshua D. Bryant
- Microbial Pathogenesis and Immunology, Health Science Center, Texas A&M University, College Station, TX, United States
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - A. Phillip West
- Microbial Pathogenesis and Immunology, Health Science Center, Texas A&M University, College Station, TX, United States
| | - Alex J. Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Gousias K, Trakolis L, Simon M. Meningiomas with CNS invasion. Front Neurosci 2023; 17:1189606. [PMID: 37456997 PMCID: PMC10339387 DOI: 10.3389/fnins.2023.1189606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
CNS invasion has been included as an independent criterion for the diagnosis of a high-grade (WHO and CNS grade 2 and 3) meningioma in the 2016 and more recently in the 2021 WHO classification. However, the prognostic role of brain invasion has recently been questioned. Also, surgical treatment for brain invasive meningiomas may pose specific challenges. We conducted a systematic review of the 2016-2022 literature on brain invasive meningiomas in Pubmed, Scopus, Web of Science and the Cochrane Library. The prognostic relevance of brain invasion as a stand-alone criterion is still unclear. Additional and larger studies using robust definitions of histological brain invasion and addressing the issue of sampling errors are clearly warranted. Although the necessity of molecular profiling in meningioma grading, prognostication and decision making in the future is obvious, specific markers for brain invasion are lacking for the time being. Advanced neuroimaging may predict CNS invasion preoperatively. The extent of resection (e.g., the Simpson grading) is an important predictor of tumor recurrence especially in higher grade meningiomas, but also - although likely to a lesser degree - in benign tumors, and therefore also in brain invasive meningiomas with and without other histological features of atypia or malignancy. Hence, surgery for brain invasive meningiomas should follow the principles of maximal but safe resections. There are some data to suggest that safety and functional outcomes in such cases may benefit from the armamentarium of surgical adjuncts commonly used for surgery of eloquent gliomas such as intraoperative monitoring, awake craniotomy, DTI tractography and further advanced intraoperative brain tumor visualization.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, Luenen, Germany
- Medical School, Westfaelische Wilhelms University of Muenster, Muenster, Germany
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Leonidas Trakolis
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, Luenen, Germany
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, Medical School, Bielefeld University, Bielefeld, Germany
| |
Collapse
|