1
|
Thomae AV, Verweij L, Witt CM, Blum D, Feusi E, Fringer A, Huber M, Roos M, Lal JA, Naef R. Evaluation of a newly developed flipped-classroom course on interprofessional practice in health care for medical students. MEDICAL EDUCATION ONLINE 2023; 28:2198177. [PMID: 37021707 PMCID: PMC10081083 DOI: 10.1080/10872981.2023.2198177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Interprofessional education is expected to promote collaborative practice and should therefore be included in health professionals' curricula. Reports on interprofessional curricular development and its evaluation are rare. We therefore undertook a comprehensive quantitative and qualitative evaluation of a new, mandatory course on interprofessional collaboration for medical students during their third year of the Bachelor of Medicine study programme. The newly developed and implemented course spans over six weeks and was designed in a hybrid, flipped-classroom format. It incorporates experience- and case-based learning as well as interactions with other health professionals. Each student completes an eLearning and a clinical workshadowing individually before attending the - due to the pandemic - virtual live lectures. To assess quality and usefulness of teaching-learning formats and course structure to learn about interprofessional collaboration and to develop interprofessional competencies and identity, a quantitative and qualitative evaluation was performed with more than 280 medical students and 26 nurse educators from teaching hospitals using online surveys (open & closed-ended format). Data were analyzed descriptively and using content analysis processes. Students appreciated the flipped-classroom concept, the real-world case-based learning scenarios with interprofessional lecturer teams, and the possibility of an experience-based learning opportunity in the clinical setting including interaction with students and professionals from other health professions. Interprofessional identity did not change during the course. Evaluation data showed that the course is a promising approach for teaching-learning interprofessional competencies to medical students. The evaluation revealed three factors that determined the success of this course, namely, a flipped-classroom concept, the individual workshadowing of medical students with another health professional, mainly nurses, and live sessions with interprofessional teaching-learning teams. The course structure and teaching-learning methods showed potential and could serve as a template for interprofessional course development in other institutions and on other course topics.
Collapse
Affiliation(s)
- Anita V. Thomae
- Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lotte Verweij
- Institute for Implementation Science in Health Care, University of Zurich, Switzerland & Centre of Clinical Nursing Science, University Hospital Zurich, Zurich, Switzerland
| | - Claudia M. Witt
- Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - David Blum
- Competence Center Palliative Care, Department of Radiooncology, University Hospital Zurich, Zurich, Switzerland
| | - Emanuel Feusi
- Institute of Public Health, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - André Fringer
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Marion Huber
- Institute of Public Health, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Melanie Roos
- Faculty of Medicine, Student Affairs, Curricula Development, University of Zurich, Zurich, Switzerland
| | - Jasmin Anita Lal
- Faculty of Medicine, Student Affairs, Curricula Development, University of Zurich, Zurich, Switzerland
| | - Rahel Naef
- Institute for Implementation Science in Health Care, University of Zurich, Switzerland & Centre of Clinical Nursing Science, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
Affiliation(s)
| | - Scott Ballantyne
- Department of Biology, University of Wisconsin River Falls, River Falls, WI, USA
| | | | | | | | | | | | - Christopher M. Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Thea M. Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Katy Klymus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Yale J. Passamaneck
- Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA
| | - Mauro F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Tang X, Cao Y, Booth CJ, Arora G, Cui Y, Matias J, Fikrig E. Adiponectin in the mammalian host influences ticks' acquisition of the Lyme disease pathogen Borrelia. PLoS Biol 2023; 21:e3002331. [PMID: 37862360 PMCID: PMC10619873 DOI: 10.1371/journal.pbio.3002331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/01/2023] [Accepted: 09/12/2023] [Indexed: 10/22/2023] Open
Abstract
Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1β, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Yu J, Cen X, Chen G, Tang M, Mo L, Li J. iTRAQ-based quantitative proteomic analysis in liver of Pomacea canaliculata induced by oleanolic acid stress. PEST MANAGEMENT SCIENCE 2022; 78:3467-3478. [PMID: 35567384 DOI: 10.1002/ps.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triterpene acid is one of the typical active constituents of Eucalyptus bark, which is the main by-product of the Eucalyptus wood industry. Our studies have demonstrated that triterpene acid stress could inhibit climbing and increase mortality in Pomacea canaliculata (Lamarck). However, limited attention has been paid to the proteomic responses of this snail under triterpene acid stress. RESULT Using iTRAQ-based quantitative proteomics, we elucidated the regulatory mechanism in the livers of P. canaliculata held in chlorine-free water and exposed to 100 mg L-1 oleanolic acid (OA) for 24 h. A total of 4308 proteins were identified, of which 274 were differentially expressed proteins (DEPs) including 168 (61.31%) differentially upregulated proteins and 106 (38.69%) differentially downregulated proteins. Bioinformatics analysis revealed that P. canaliculata responses to OA stress are mainly involved in glucose metabolism, energy synthesis, immune response, stress response, protein synthesis, and apoptosis. According to KEGG analysis, the 274 DEPs were mapped to 168 KEGG pathways and 10 KEGG pathways were significantly enriched (P < 0.05). Furthermore, qRT-PCR was performed for histone H4, catalase, isocitrate dehydrogenase, superoxide dismutase, ferritin, lipase, and tropomyosin to validate the iTRAQ results. CONCLUSION Proteomic analysis suggested that OA stress led to the disruption of glucose metabolism, energy synthesis, and protein synthesis, and triggered a series of molecular pathways containing many key proteins involved in the immune process, thereby helping P. canaliculata resist OA stress. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaqi Yu
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle, Health School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Xiaofeng Cen
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle, Health School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Guifeng Chen
- Guangxi Academy of Specialty Crops, Guilin, People's Republic of China
| | - Mingli Tang
- Guangxi Academy of Specialty Crops, Guilin, People's Republic of China
| | - Ling Mo
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle, Health School of Public Health, Guilin Medical University, Guilin, People's Republic of China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jingjing Li
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle, Health School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
5
|
Gianola S, Bargeri S, Cinquini M, Iannicelli V, Meroni R, Castellini G. More than one third of clinical practice guidelines on low back pain overlap in AGREE II appraisals. Research wasted? BMC Med Res Methodol 2022; 22:184. [PMID: 35790902 PMCID: PMC9254584 DOI: 10.1186/s12874-022-01621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Systematic reviews can apply the Appraisal of Guidelines for Research & Evaluation (AGREE) II tool to critically appraise clinical practice guidelines (CPGs) for treating low back pain (LBP); however, when appraisals differ in CPG quality rating, stakeholders, clinicians, and policy-makers will find it difficult to discern a unique judgement of CPG quality. We wanted to determine the proportion of overlapping CPGs for LBP in appraisals that applied AGREE II. We also compared inter-rater reliability and variability across appraisals. METHODS For this meta-epidemiological study we searched six databases for appraisals of CPGs for LBP. The general characteristics of the appraisals were collected; the unit of analysis was the CPG evaluated in each appraisal. The inter-rater reliability and the variability of AGREE II domain scores for overall assessment were measured using the intraclass correlation coefficient and descriptive statistics. RESULTS Overall, 43 CPGs out of 106 (40.6%) overlapped in seventeen appraisals. Half of the appraisals (53%) reported a protocol registration. Reporting of AGREE II assessment was heterogeneous and generally of poor quality: overall assessment 1 (overall CPG quality) was rated in 11 appraisals (64.7%) and overall assessment 2 (recommendation for use) in four (23.5%). Inter-rater reliability was substantial/perfect in 78.3% of overlapping CPGs. The domains with most variability were Domain 6 (mean interquartile range [IQR] 38.6), Domain 5 (mean IQR 28.9), and Domain 2 (mean IQR 27.7). CONCLUSIONS More than one third of CPGs for LBP have been re-appraised in the last six years with CPGs quality confirmed in most assessments. Our findings suggest that before conducting a new appraisal, researchers should check systematic review registers for existing appraisals. Clinicians need to rely on updated CPGs of high quality and confirmed by perfect agreement in multiple appraisals. TRIAL REGISTRATION Protocol Registration OSF: https://osf.io/rz7nh/.
Collapse
Affiliation(s)
- Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20162, Milan, Italy.
| | - Silvia Bargeri
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20162, Milan, Italy
| | - Michela Cinquini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Roberto Meroni
- Department of Physiotherapy, LUNEX International University of Health, Differdange, Luxembourg
- Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20162, Milan, Italy
| |
Collapse
|
6
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
7
|
Grinchenko AV, von Kriegsheim A, Shved NA, Egorova AE, Ilyaskina DV, Karp TD, Goncharov NV, Petrova IY, Kumeiko VV. A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Mar Drugs 2021; 19:668. [PMID: 34940667 PMCID: PMC8706970 DOI: 10.3390/md19120668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman's degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein.
Collapse
Affiliation(s)
- Andrei V. Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Alex von Kriegsheim
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Anna E. Egorova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Diana V. Ilyaskina
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Tatiana D. Karp
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Irina Y. Petrova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| |
Collapse
|
8
|
A P, G M, M T, L B, N F. Characterisation and functional role of a novel C1qDC protein from a colonial ascidian. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104077. [PMID: 33905781 DOI: 10.1016/j.dci.2021.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As an invertebrate, the compound ascidian Botryllus schlosseri faces nonself only with innate immunity. In this species, we already identified the key components of the lectin and alternative complement activation pathways. In the present work, by mining the transcriptome, we identified a single transcript codifying for a protein, member of the C1q-domain-containing protein family, with a signal peptide followed by two globular C1q (gC1q) domains. It shares a similar domain organisation with C1q/TNF-related proteins 4, the only vertebrate protein family with two gC1q domains. Our gC1q domain-containing protein, called BsC1qDC, is actively transcribed by immunocytes. The transcription is modulated during the Botryllus blastogenetic cycle and is upregulated following the injection of Bacillus clausii cells in the circulation. Furthermore, the injection of bsc1qdc iRNA in the vasculature results in decreased transcription of the gene and a significant impairment of phagocytosis and degranulation, suggesting the involvement of this molecule in immune responses.
Collapse
Affiliation(s)
- Peronato A
- Department of Biology, University of Padova, Italy
| | - Minervini G
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tabarelli M
- PhD School in Agricultural Science and Biotechnology, University of Udine, Italy
| | - Ballarin L
- Department of Biology, University of Padova, Italy.
| | - Franchi N
- Department of Biology, University of Padova, Italy
| |
Collapse
|
9
|
Xiong X, Li C, Zheng Z, Du X. Novel globular C1q domain-containing protein (PmC1qDC-1) participates in shell formation and responses to pathogen-associated molecular patterns stimulation in Pinctada fucata martensii. Sci Rep 2021; 11:1105. [PMID: 33441832 PMCID: PMC7806589 DOI: 10.1038/s41598-020-80295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The C1q protein, which contains the globular C1q (gC1q) domain, is involved in the innate immune response, and is found abundantly in the shell, and it participates in the shell formation. In this study, a novel gC1q domain-containing gene was identified from Pinctada fucata martensii (P. f. martensii) and designated as PmC1qDC-1. The full-length sequence of PmC1qDC-1 was 902 bp with a 534 bp open reading frame (ORF), encoding a polypeptide of 177 amino acids. Quantitative real-time PCR (qRT-PCR) result showed that PmC1qDC-1 was widely expressed in all tested tissues, including shell formation-associated tissue and immune-related tissue. PmC1qDC-1 expression was significantly high in the blastula and gastrula and especially among the juvenile stage, which is the most important stage of dissoconch shell formation. PmC1qDC-1 expression was located in the outer epithelial cells of mantle pallial and mantle edge and irregular crystal tablets were observed in the nacre upon knockdown of PmC1qDC-1 expression at mantle pallial. Moreover, the recombined protein PmC1qDC-1 increased the rate of calcium carbonate precipitation. Besides, PmC1qDC-1 expression was significantly up-regulated in the mantle pallial at 6 h and was significantly up-regulated in the mantle edge at 12 h and 24 h after shell notching. The expression level of PmC1qDC-1 in mantle edge was significantly up-regulated at 48 h after LPS stimulation and was significantly up-regulated at 12 h, 24 h and 48 h after poly I:C stimulation. Moreover, PmC1qDC-1 expression was significantly up-regulated in hemocytes at 6 h after lipopolysaccharide (LPS) and poly I:C challenge. These findings suggest that PmC1qDC-1 plays a crucial role both in the shell formation and the innate immune response in pearl oysters, providing new clues for understanding the shell formation and defense mechanism in mollusk.
Collapse
Affiliation(s)
- Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuyi Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| |
Collapse
|
10
|
Xie B, He Q, Hao R, Zheng Z, Du X. Molecular and functional analysis of PmC1qDC in nacre formation of Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 106:621-627. [PMID: 32827655 DOI: 10.1016/j.fsi.2020.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus which hold the potential function in the shell formation as shell matrix proteins. In this study, a C1qDC protein was identified and characterized in pearl oyster (Pinctada fucata martensii) (PmC1qDC) to explore its function in nacre formation. The PmC1qDC-deduced protein sequence carried a typical globular C1q (gC1q) domain that possessed the typical 10-stranded β-sandwich fold with a jelly-roll topology common to all C1qDC family members and shared high homology with other gC1q domains. Homologous analysis of PmC1qDC presented it contained conserved secondary structure and Phe135, Phe155, Tyr166, Phe173, Tyr181, Phe183, and Phe256 amino acid residues. Expression pattern analysis showed that PmC1qDC expressed in all the detected tissues and exhibited a significantly higher expression level in nacre formation-associated tissues. After the shell notching, the expression level of PmC1qDC showed significantly up-regulation after 12 h in the central zone of mantle (MC). PmC1qDC expression significantly decreased in the MC after RNA interference (RNAi). Furthermore, disordered crystals with evident rough surface and irregular crystal tablets were observed in the nacre after RNAi. Results suggested that PmC1qDC affects the shell nacre formation, which is significant to improve the pearl production of pearl oyster.
Collapse
Affiliation(s)
- Bingyi Xie
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi He
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
11
|
Huang Y, Ren Q. Molecular cloning and functional analysis of three STAT isoforms in red swamp crayfish Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103670. [PMID: 32156508 DOI: 10.1016/j.dci.2020.103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway is associated with the innate immune system and plays crucial roles in the mediation of immune response to viral infections. In this study, three STAT isoform cDNAs were cloned from the red swamp crayfish Procambarus clarkii, and they were designated as PcSTATa, PcSTATb, and PcSTATc. PcSTATa and PcSTATb were generated through the alternative splicing of the last exon, and PcSTATc was produced by intron retention. PcSTATa, PcSTATb, and PcSTATc contained 2382, 2337, and 2274 bp open reading frames encoding proteins with 793, 778, and 757 amino acid residues, respectively. Domain prediction analysis revealed that three isoforms of PcSTATs contain a STAT interaction domain, a STAT all-alpha domain, a STAT DNA binding domain, and a Src-homology 2 domain. The mRNA transcripts of three PcSTAT isoforms were detected in all examined tissues of male and female crayfish. The expression levels of the three PcSTAT isoforms in the hemocytes, gills, and intestines significantly changed after the white spot syndrome virus (WSSV) challenge. PcSTAT silencing by dsRNA interference could positively regulate the expression levels of three anti-lipopolysaccharide factors (PcALF1, PcALF2, and PcALF6) and two crustins (PcCrus1 and PcCrus2) and negatively regulate the expression levels of three ALFs (PcALF3, PcALF4, and PcALF5) and two crustins (PcCrus3 and PcCrus4). These results suggest that all three PcSTAT isoforms are involved in the host defense against WSSV infection.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
12
|
Zhang J, Zhang Y, Zhang L, Wei Q, Liu X, Yang D. A sialic acid-binding lectin with bactericidal and opsonic activities from Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 94:72-80. [PMID: 31472263 DOI: 10.1016/j.fsi.2019.08.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a sialic acid-binding lectin was cloned and characterized from Manila clam Ruditapes philippinarum (designed as RpSabl). The open reading frame of RpSabl encoded a polypeptide of 162 amino acids with a calculated molecular mass of 17.7 kDa. Analysis of the conserved domain suggested that RpSabl was a new member of the sialic acid-binding lectins family. In non-stimulated clams, RpSabl transcripts were constitutively expressed in all five tested tissues, especially in hepatopancreas. After Vibrio anguillarum challenge, the expression of RpSabl mRNA in hepatopancreas was significantly up-regulated at 3 h (3.8-fold, P < 0.05), 6 h (4.9-fold, P < 0.05), 12 h (12.3-fold, P < 0.01) and 24 h (9.7-fold, P < 0.01), while RpSabl transcripts in hemocytes was only significantly up-regulated at 6 h (8.5-Fold, P < 0.01). RNAi-mediated knockdown of RpSabl transcripts affected the survival rates of Manila clam against V. anguillarum, perhaps mainly due to the inhibited expression of antibacterial effectors (e.g. lysozyme and defensin). Moreover, recombinant protein of RpSabl (rRpSabl) possessed binding activities towards lipopolysaccharides (LPS), peptidoglycan (PGN) and glucan in vitro. Coinciding with the Pathogen-associated molecular patterns (PAMPs) binding assay, rRpSabl displayed broad bacterial-agglutination properties towards Vibrio harveyi, Vibrio splendidus, V. anguillarum, Enterobacter cloacae and Aeromonas hydrophila. Meanwhile, the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rRpSabl incubation. All these results showed that RpSabl could function as a versatile molecule involved in the innate immune responses of R. philippinarum.
Collapse
Affiliation(s)
- Jianning Zhang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yifei Zhang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, PR China
| | - Qianyu Wei
- Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China; The Coastal Resources and Environment Team for Blue-Yellow Area, Ludong University, Yantai, 264025, PR China.
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|