1
|
Walde MG, Lehmann MM, Gessler A, Vitasse Y, Diao H. Stable Isotope Labelling Reveals Water and Carbon Fluxes in Temperate Tree Saplings Before Budbreak. PLANT, CELL & ENVIRONMENT 2025; 48:805-817. [PMID: 39351616 PMCID: PMC11615418 DOI: 10.1111/pce.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024]
Abstract
Despite considerable experimental effort, the physiological mechanisms governing temperate tree species' water and carbon dynamics before the onset of the growing period remain poorly understood. We applied 2H-enriched water during winter dormancy to the soil of four potted European tree species. After 8 weeks of chilling, hydrogen isotopes in stem, twig and bud water were measured six times during 2 consecutive weeks of forcing conditions (Experiment 1). Additionally, we pulse-labelled above-ground plant tissues using 2H-enriched water vapour and 13C-enriched CO2 7 days after exposure to forcing conditions to trace atmospheric water and carbon uptake (Experiment 2). Experiment 1 revealed soil water incorporation into the above-ground organs of all species during the chilling phase and significant species-specific differences in water allocation during the forcing conditions, which we attributed to differences in structural traits. Experiment 2 illustrated water vapour incorporation into all above-ground tissue of all species. However, the incorporation of carbon was found for evergreen saplings only. Our results suggest that temperate trees take up and reallocate soil water and absorb atmospheric water to maintain sufficient above-ground tissue hydration during winter. Therefore, our findings provide new insights into the water allocation dynamics of temperate trees during early spring.
Collapse
Affiliation(s)
- Manuel G. Walde
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco M. Lehmann
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Arthur Gessler
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Yann Vitasse
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Haoyu Diao
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
2
|
Arend M, Hoch G, Kahmen A. Stem growth phenology, not canopy greening, constrains deciduous tree growth. TREE PHYSIOLOGY 2024; 44:tpad160. [PMID: 38159107 DOI: 10.1093/treephys/tpad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Canopy phenology is a widely used proxy for deciduous forest growth with various applications in terrestrial ecosystem modeling. Its use relies on common assumptions that canopy greening and stem growth are tightly coordinated processes, enabling predictions on the timing and the quantity of annual tree growth. Here, we present parallel observations of canopy and stem growth phenology and annual stem increment in around 90 deciduous forest trees with diffuse-porous (Fagus sylvatica, Acer pseudoplatanus, Carpinus betulus) or ring-porous (Quercus robur × petraea) wood anatomy. These data were collected in a mixed temperate forest at the Swiss-Canopy-Crane II site, in 4 years with strongly contrasting weather conditions. We found that stem growth resumption lagged several weeks behind spring canopy greening in diffuse-porous but not in ring-porous trees. Canopy greening and stem growth resumption showed no or only weak signs of temporal coordination across the observation years. Within the assessed species, the seasonal timing of stem growth varied strongly among individuals, as trees with high annual increments resumed growth earlier and also completed their main growth earlier. The length of main growth activity had no influence on annual increments. Our findings not only challenge tight temporal coordination of canopy and stem growth phenology but also demonstrate that longer main growth activity does not translate into higher annual increments. This may compromise approaches modeling tree growth and forest productivity with canopy phenology and growth length.
Collapse
Affiliation(s)
- Matthias Arend
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
- Department of Environmental Sciences, Plant Ecology, University of Trier, Behringstraße 21, Trier 54296, Germany
| | - Günter Hoch
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| |
Collapse
|
3
|
Zhang Q, Zhao H, Cheng W, Cong N, Wang X, Liang H, Li X. Increased productivity of temperate vegetation in the preceding year drives early spring phenology in the subsequent year in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166676. [PMID: 37673244 DOI: 10.1016/j.scitotenv.2023.166676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Under global warming, rising temperature have advanced spring phenology in recent decades. However, the internal physiological mechanisms driving changes in spring phenology still remain poorly understood. Here, we investigated the effects of temperate vegetation gross primary productivity (GPP) during the preceding year on spring phenology of the subsequent year based on the start of growing season (SOS) extracted from NDVI datasets between 1982 and 2015. We found that the preceding year's GPP had an effect on the subsequent year's SOS, equivalent to 33 %-50 % of effect of the preseason's mean temperature. Specifically, in the temperate and semi-humid or humid conditions, the preceding year's GPP had a stronger effect on SOS than in boreal or semi-arid conditions. In addition, the SOS of the dwarf vegetation, with less transport pressure and higher carbon concentrations, was more sensitive to the preceding year's GPP than that of tall forests. We found the effects of the preceding year's GPP on SOS varied with space and vegetation types. Therefore, the physiological mechanism should be considered in future spring phenology model separately according to space and vegetation types, to improve the accuracy of future phenology and then global carbon sequestration predictions.
Collapse
Affiliation(s)
- Qi Zhang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongfang Zhao
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Wanying Cheng
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuhui Wang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| | - Hangqi Liang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xia Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| |
Collapse
|
4
|
Wang X, Schönbeck L, Gessler A, Yang Y, Rigling A, Yu D, He P, Li M. The effects of previous summer drought and fertilization on winter non-structural carbon reserves and spring leaf development of downy oak saplings. FRONTIERS IN PLANT SCIENCE 2022; 13:1035191. [PMID: 36407605 PMCID: PMC9669721 DOI: 10.3389/fpls.2022.1035191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
It is still unknown whether the previous summer season drought and fertilization will affect the winter non-structural carbohydrate (NSC) reserves, spring leaf development, and mortality of trees in the next year. We, therefore, conducted an experiment with Quercus pubescens (downy oaks) saplings grown under four drought levels from field capacity (well-watered; ~25% volumetric water content) to wilting point (extreme drought; ~6%), in combination with two fertilizer treatments (0 vs. 50 kg/ha/year blended) for one growing season to answer this question. We measured the pre- and post-winter NSC, and calculated the over-winter NSC consumption in storage tissues (i.e. shoots and roots) following drought and fertilization treatment, and recorded the spring leaf phenology, leaf biomass, and mortality next year. The results showed that, irrespective of drought intensity, carbon reserves were abundant in storage tissues, especially in roots. Extreme drought did not significantly alter NSC levels in tissues, but delayed the spring leaf expansion and reduced the leaf biomass. Previous season fertilization promoted shoot NSC use in extreme drought-stressed saplings over winter (showing reduced carbon reserves in shoots after winter), but it also showed positive effects on survival next year. We conclude that: (1) drought-stressed downy oak saplings seem to be able to maintain sufficient mobile carbohydrates for survival, (2) fertilization can alleviate the negative effects of extreme drought on survival and recovery growth of tree saplings.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Leonie Schönbeck
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Geneva, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Yue Yang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Dapao Yu
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, Liaoning, China
| | - Peng He
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
5
|
Valdovinos-Ayala J, Robles C, Fickle JC, Pérez-de-Lis G, Pratt RB, Jacobsen AL. Seasonal patterns of increases in stem girth, vessel development, and hydraulic function in deciduous tree species. ANNALS OF BOTANY 2022; 130:355-365. [PMID: 35274669 PMCID: PMC9486900 DOI: 10.1093/aob/mcac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The onset of spring growth and vessel formation were examined within three deciduous woody plant species, Acer rubrum, Populus balsamifera ssp. trichocarpa and Quercus rubra. We were broadly interested in the lag between the onset of girth expansion and the formation of mature and hydraulically conductive vessels within the new xylem. METHODS Dendrometers were installed on 20 trees (6-7 per species), and expansion of both bole and distal stems was monitored throughout the growing season in a common garden. For each species, four to six distal stems were harvested every other week for anatomical examination of vessel formation. Additionally, for Populus and Quercus, hydraulic conductivity measurements and active xylem staining were completed on all stem samples. KEY RESULTS For all three species, the timing of girth expansion was similar. Expansion of distal branches occurred 12-37 d earlier than that of the bole. Vessel formation initiated several weeks prior to leaf-out, but no new earlywood vessels were mature at the time of bud break for Acer and Populus and only a few were present in Quercus. Initial stem girth expansion occurred 2 to >6 weeks before the maturation of the first current-year vessels, and there was an additional delay of up to 4 weeks before mature vessels became hydraulically functional. Hydraulic conductivity was strongly correlated with the number and diameter of stained vessels. CONCLUSIONS Bud break and leaf expansion relied predominantly on water supplied by vessels formed during prior seasons. Early-season activity is likely affected by the function of older xylem vessels and the environmental factors that influence their structure and function. Understanding the functional lifespan of vessels and the varying contributions of new and older vessels to conductivity are critical to understanding of the phenology and vascular function of long-lived woody plants in response to changing climates.
Collapse
Affiliation(s)
| | - Catherine Robles
- Department of Biology, California State University, Bakersfield, CA, USA
| | - Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, CA, USA
| | - Gonzalo Pérez-de-Lis
- Department of Biology, California State University, Bakersfield, CA, USA
- BIOAPLIC, Departamento de Botánica, EPSE, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, USA
| | | |
Collapse
|
6
|
D’Orangeville L, Itter M, Kneeshaw D, Munger JW, Richardson AD, Dyer JM, Orwig DA, Pan Y, Pederson N. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. TREE PHYSIOLOGY 2022; 42:304-316. [PMID: 34312673 PMCID: PMC8842417 DOI: 10.1093/treephys/tpab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Collapse
Affiliation(s)
- Loïc D’Orangeville
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
- Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Malcolm Itter
- Research Center for Ecological Change, University of Helsinki, P.O. Box 4, 00014, Finland
- Department of Environmental Conservation, University of Massachusetts Amherst, 225 Holdsworth Hall, Amherst MA 01003, USA
| | - Dan Kneeshaw
- Center for Forest Research, Université du Québec à Montréal, CP 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, P.O. Box 5620, Flagstaff, AZ 86011, USA
| | - James M Dyer
- Department of Geography, Ohio University, Clippinger 122, Athens, OH 45701, USA
| | - David A Orwig
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| | - Yude Pan
- U.S. Department of Agriculture Forest Service, 11 Campus Blvd #200, Newtown Square, PA 19073, USA
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| |
Collapse
|
7
|
Description of Intra-Annual Changes in Cambial Activity and Differentiation of Secondary Conductive Tissues of Aesculus hippocastanum Trees Affected by the Leaf Miner Cameraria ohridella. FORESTS 2021. [DOI: 10.3390/f12111537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aesculus hippocastanum trees are commonly infested by the leaf miner Cameraria ohridella, whose larval activity causes the destruction of the leaf parenchyma and induces defoliation. Pest attacks result in, e.g., production of smaller fruits and tree re-flowering in autumn. Concerning pest influence on stem structure only scarce information of narrower annual growth rings of wood has been published. Therefore, we determined the effect of the presence of the leaf miner infestation on intra-annual cambial activity and on differentiation of conductive tissues. These data were compared with phenological phases and pest activity. Pest feeding resulted in changes in onset, cessation and duration of cambial divisions, and differentiation of secondary xylem. The duration of cambial activity was about a month shorter in heavily infested trees and was connected with premature tree defoliation. Affected trees were characterised by a reduction in cambial divisions and earlier cessation of wood differentiation resulting in narrower wood rings. Furthermore, the infested trees exhibited altered wood structure, with more vessels of smaller diameters, however these changes did not affect its theoretical hydraulic conductivity. Interestingly, pest attack did not influence secondary phloem differentiation. The probable influence of long-term infestation on tree growth and condition was discussed.
Collapse
|
8
|
Bárek V, Kováčová M, Kišš V, Paulen O. Water Regime Monitoring of the Royal Walnut ( Juglans regia L.) Using Sap Flow and Dendrometric Measurements. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112354. [PMID: 34834717 PMCID: PMC8622544 DOI: 10.3390/plants10112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Changes in the distribution of annual rainfall totals, together with the increase in temperature over the last 40 years, are causing more frequent periods of drought, and plants are more often exposed to water stress. The aim of this study was to monitor the effect of different water regimes (irrigated and non-irrigated) of individuals of walnut tree (Juglans regia L.) in a private orchard located in the West of Slovakia. Our research was focused on dendrometric and sap flow measurements in the period from 28 March to 2 June 2019. The results showed differences in the sap flow of walnut trees during the budbreak period: when trees were irrigated, sap flow in the diurnal cycle was around 130 g·h-1 (20.48%), higher than in the non-irrigated treatment. Dendrometric differences between the irrigated and non-irrigated treatments were not significant. The sap flow data in the flowering period of the irrigated variant were slightly higher at 150 g·h-1 (35.62%) than non-irrigated. Dendrometric differences were more significant when the difference between the variants was more than 1.5 mm. Continuation of this research and analysis of the data obtained in the coming years will allow us to evaluate the effects of the environment on fruit trees in the long term.
Collapse
Affiliation(s)
- Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Martina Kováčová
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Vladimír Kišš
- Research Centre Agrobiotech, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Oleg Paulen
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
9
|
Ray DM, Savage JA. Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport. AOB PLANTS 2021; 13:plab028. [PMID: 34234934 PMCID: PMC8255074 DOI: 10.1093/aobpla/plab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.
Collapse
Affiliation(s)
- Dustin M Ray
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| |
Collapse
|
10
|
Marchand LJ, Dox I, Gričar J, Prislan P, Van den Bulcke J, Fonti P, Campioli M. Timing of spring xylogenesis in temperate deciduous tree species relates to tree growth characteristics and previous autumn phenology. TREE PHYSIOLOGY 2021; 41:1161-1170. [PMID: 33367844 DOI: 10.1093/treephys/tpaa171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We explored the timing of spring xylogenesis and its potential drivers in homogeneous mature forest stands in a temperate European region. Three species with contrasting leaf development dynamics and wood anatomy were studied: European beech, silver birch and pedunculate oak. Detailed phenological observations of xylogenesis and leaf phenology were performed from summer 2017 until spring 2018. Cambium reactivation (CR) occurred before the buds of oak and birch were swollen, whereas these two phenological phases were concurrent for beech. On the other hand, initial earlywood vessels were fully differentiated (FDIEV) after leaf unfolding for all three species. Timing of CR was correlated to average ring-width of the last 10 years (2008-17), tree diameter and, partially, with tree age. In addition, the timing of FDIEV was correlated to tree age and previous year's autumn phenology, i.e., timing of wood growth cessation and onset of leaf senescence. Multivariate models could explain up to 68% of the variability of CR and 55% of the variability of FDIEV. In addition to the 'species' factor, the variability could be explained by ca 30% by tree characteristics and previous year's autumn phenology for both CR and FDIEV. These findings are important to better identify which factors (other than environment) can be driving the onset of the growing season, and highlight the influence of tree growth characteristics and previous year's phenology on spring wood phenology, wood formation and, potentially, forest production.
Collapse
Affiliation(s)
- Lorène Julia Marchand
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
- UMR 6553 ECOBIO (Ecosystèmes, Biodiversité, Evolution), Université de Rennes 1, CNRS, 263 Av. du Général Leclerc, 35042 Rennes, France
| | - Inge Dox
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Patrick Fonti
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matteo Campioli
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| |
Collapse
|
11
|
Savage JA, Chuine I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. THE NEW PHYTOLOGIST 2021; 230:1700-1715. [PMID: 33608961 DOI: 10.1111/nph.17289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 05/29/2023]
Abstract
In seasonally cold climates, many woody plants tolerate chilling and freezing temperatures by ceasing growth, shedding leaves and entering dormancy. At the same time, transport within these plants often decreases as the vascular system exhibits reduced functionality. As spring growth requires water and nutrients, we ask the question: how much does bud, leaf and flower development depend on the vasculature in spring? In this review, we present what is known about leaf, flower and vascular phenology to sort out this question. In early stages of bud development, buds rely on internal resources and do not appear to require vascular support. The situation changes during organ expansion, after leaves and flowers reconnect to the stem vascular system. However, there are major gaps in our understanding of the timing of vascular development, especially regarding the phloem, as well as the synchronization among leaves, flowers, stem and root vasculature. We believe these gaps are mainly the outcome of research completed in silo and urge future work to take a more integrative approach. We highlight current challenges and propose future directions to make rapid progress on this important topic in upcoming years.
Collapse
Affiliation(s)
- Jessica A Savage
- Department of Biology, University of Minnesota, Duluth, MN, 55811, USA
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FR-34293, Cedex 5, France
| |
Collapse
|
12
|
Wu C, Wang J, Ciais P, Peñuelas J, Zhang X, Sonnentag O, Tian F, Wang X, Wang H, Liu R, Fu YH, Ge Q. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc Natl Acad Sci U S A 2021; 118:e2015821118. [PMID: 33846246 PMCID: PMC8072329 DOI: 10.1073/pnas.2015821118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The high northern latitudes (>50°) experienced a pronounced surface stilling (i.e., decline in winds) with climate change. As a drying factor, the influences of changes in winds on the date of autumn foliar senescence (DFS) remain largely unknown and are potentially important as a mechanism explaining the interannual variability of autumn phenology. Using 183,448 phenological observations at 2,405 sites, long-term site-scale water vapor and carbon dioxide flux measurements, and 34 y of satellite greenness data, here we show that the decline in winds is significantly associated with extended DFS and could have a relative importance comparable with temperature and precipitation effects in contributing to the DFS trends. We further demonstrate that decline in winds reduces evapotranspiration, which results in less soil water losses and consequently more favorable growth conditions in late autumn. In addition, declining winds also lead to less leaf abscission damage which could delay leaf senescence and to a decreased cooling effect and therefore less frost damage. Our results are potentially useful for carbon flux modeling because an improved algorithm based on these findings projected overall widespread earlier DFS than currently expected by the end of this century, contributing potentially to a positive feedback to climate.
Collapse
Affiliation(s)
- Chaoyang Wu
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH 43210;
| | - Philippe Ciais
- IPSL-LSCE CEA CNRS UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, 91191 Gif-sur-Yvette, France
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Barcelona 08193, Spain
- Cerdanyola del Valles, CREAF, Barcelona 08193, Catalonia, Spain
| | - Xiaoyang Zhang
- Geospatial Sciences Center of Excellence, Department of Geography, South Dakota State University, Brookings, SD 57007-3510
| | - Oliver Sonnentag
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, QC H2V 2B8, Canada
| | - Feng Tian
- School of Remote Sensing and Information Engineering, Wuhan University, 430079 Wuhan, China
| | - Xiaoyue Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huanjiong Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ronggao Liu
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Quansheng Ge
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Takahashi S, Takahashi E. Relationship between Vessel Formation and Seasonal Changes in Leaf Area of Evergreen and Deciduous Species with Different Vessel Arrangements. PLANTS 2021; 10:plants10010100. [PMID: 33418961 PMCID: PMC7825128 DOI: 10.3390/plants10010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
To discuss the diversity of morphological traits and life strategies of trees, the functional relationship between leaf expansion and vessel formation must be clarified. We compared the temporal relationship among tree species with different leaf habits and vessel arrangements. Twigs, leaves, and trunk core samples were periodically acquired from 35 sample trees of nine species in a temperate forest in Japan. We quantitatively estimated leaf expansion using a nonlinear regression model and observed thin sections of twigs and trunks with a light microscope. Almost all of the first-formed vessels in twigs, which formed adjacent to the annual ring border, were lignified with a leaf area between 0% and 70% of the maximum in all species. The first-formed vessels in trunks lignified between 0% and 95% of the maximum leaf area in ring-porous deciduous Quercus serrata and ring-(radial-)porous evergreen Castanopsis cuspidate. Their lignification occurred earlier than in diffuse-porous deciduous Liquidambar styraciflua, diffuse-porous evergreen Cinnamomum camphora and Symplocos prunifolia, and radial-porous evergreen Quercus glauca and Quercus myrsinifolia. The timing varied in semi-ring-porous deciduous Acanthopanax sciadophylloides and diffuse-porous evergreen Ilex pedunculosa. The observed differences in the timing of vessel formation after leaf appearance were reflected in their differing vessel porosities and were connected to the different life strategies among tree species.
Collapse
Affiliation(s)
- Sayaka Takahashi
- Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan;
- Graduate School of Agriculture, Kyoto University, Oiwake-cho Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Correspondence: ; Tel.: +81-852-32-6513
| | - Erina Takahashi
- Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan;
- Field Science Education and Research Center, Kyoto University, Oiwake-cho Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Savage JA. It's all about timing-or is it? Exploring the potential connection between phloem physiology and whole plant phenology. AMERICAN JOURNAL OF BOTANY 2020; 107:848-851. [PMID: 32458416 DOI: 10.1002/ajb2.1480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
|
15
|
Gričar J, Hafner P, Lavrič M, Ferlan M, Ogrinc N, Krajnc B, Eler K, Vodnik D. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. TREE PHYSIOLOGY 2020; 40:796-809. [PMID: 32175576 DOI: 10.1093/treephys/tpaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
An increased frequency of fire events on the Slovenian Karst is in line with future climate change scenarios for drought-prone environments worldwide. It is therefore of the utmost importance to better understand tree-fire-climate interactions for predicting the impact of changing environment on tree functioning. To this purpose, we studied the post-fire effects on leaf development, leaf carbon isotope composition (δ13C), radial growth patterns and the xylem and phloem anatomy in undamaged (H-trees) and fire-damaged trees (F-trees) of Quercus pubescens Willd. with good resprouting ability in spring 2017, the growing season after a rangeland fire in August 2016. We found that the fully developed canopy of F-trees reached only half of the leaf area index values measured in H-trees. Throughout the season, F-trees were characterized by higher water potential and stomatal conductivity and achieved higher photosynthetic rates compared to unburnt H-trees. The foliage of F-trees had more negative δ13C values than those of H-trees. This reflects that F-trees less frequently meet stomatal limitations due to reduced transpirational area and more favourable leaf-to-root ratio. In addition, the growth of leaves in F-trees relied more on the recent photosynthates than on reserves due to the fire disturbed starch accumulation in the previous season. Cambial production stopped 3 weeks later in F-trees, resulting in 60 and 22% wider xylem and phloem increments, respectively. A novel approach by including phloem anatomy in the analyses revealed that fire caused changes in conduit dimensions in the early phloem but not in the earlywood. However, premature formation of the tyloses in the earlywood vessels of the youngest two xylem increments in F-trees implies that xylem hydraulic integrity was also affected by heat. Analyses of secondary tissues showed that although xylem and phloem tissues are interlinked changes in their transport systems due to heat damage are not necessarily coordinated.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Bor Krajnc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Copini P, Vergeldt FJ, Fonti P, Sass-Klaassen U, den Ouden J, Sterck F, Decuyper M, Gerkema E, Windt CW, Van As H. Magnetic resonance imaging suggests functional role of previous year vessels and fibres in ring-porous sap flow resumption. TREE PHYSIOLOGY 2019; 39:1009-1018. [PMID: 30896019 DOI: 10.1093/treephys/tpz019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Reactivation of axial water flow in ring-porous species is a complex process related to stem water content and developmental stage of both earlywood-vessel and leaf formation. Yet empirical evidence with non-destructive methods on the dynamics of water flow resumption in relation to these mechanisms is lacking. Here we combined in vivo magnetic resonance imaging and wood-anatomical observations to monitor the dynamic changes in stem water content and flow during spring reactivation in 4-year-old pedunculate oaks (Quercus robur L.) saplings. We found that previous year latewood vessels and current year developing earlywood vessels form a functional unit for water flow during growth resumption. During spring reactivation, water flow shifted from latewood towards the new earlywood, paralleling the formation of earlywood vessels and leaves. At leaves' full expansion, volumetric water content of previous rings drastically decreased due to the near-absence of water in fibre tissue. We conclude (i) that in ring-porous oak, latewood vessels play an important hydraulic role for bridging the transition between old and new water-conducting vessels and (ii) that fibre and parenchyma provides a place for water storage.
Collapse
Affiliation(s)
- Paul Copini
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics and MAGNetic resonance research FacilitY (MAGNEFY), Wageningen University & Research, Postbus 8128, 6700ET Wageningen, The Netherlands
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
| | - Jan den Ouden
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
| | - Mathieu Decuyper
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, PO Box 47, AA Wageningen, The Netherlands
| | - Edo Gerkema
- Laboratory of Biophysics and MAGNetic resonance research FacilitY (MAGNEFY), Wageningen University & Research, Postbus 8128, 6700ET Wageningen, The Netherlands
| | - Carel W Windt
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Henk Van As
- Laboratory of Biophysics and MAGNetic resonance research FacilitY (MAGNEFY), Wageningen University & Research, Postbus 8128, 6700ET Wageningen, The Netherlands
| |
Collapse
|
17
|
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. TREE PHYSIOLOGY 2019; 39:222-233. [PMID: 30239939 DOI: 10.1093/treephys/tpy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs, i.e., starch and soluble sugars) are frequently quantified in the context of tree response to stressful events (e.g., drought), because they serve as a carbon reservoir for growth and respiration, as well as providing a critical osmotic function to maintain turgor and vascular transport under different environmental conditions. We investigated the impact of soil water availability on intra-annual leaf phenology, radial growth dynamics and variation in NSC amounts in the stem of pubescent oak (Quercus pubescens Willd.). from a sub-Mediterranean region. For this purpose, trees growing at two nearby plots differing in bedrock and, consequently, soil characteristics (F-eutric cambisol on eocene flysch bedrock and L-rendzic leptosol on paleogenic limestone bedrock) were sampled. Non-structural carbohydrates were analysed in outer xylem and living phloem (separately for non-collapsed and collapsed parts). Results showed that xylem and phloem increments were 41.6% and 21.2%, respectively, wider in trees from F plot due to a higher rate of cell production. In contrast, the amount of NSCs and of soluble sugars significantly differed among the tissue parts and sampling dates but not between the two plots. Starch amounts were the highest in xylem, which could be explained by the abundance of xylem parenchyma cells. Two clear seasonal peaks of the starch amount were detected in all tissues, the first in September-November, in the period of leaf colouring and falling, and the second in March-April, i.e., at the onset of cambial cell production followed by bud development. The amounts of free sugars were highest in inner phloem + cambium, at the sites of active growth. Soil water availability substantially influenced secondary growth in the stem of Q. pubescens, whereas NSC amounts seemed to be less affected. The results show how the intricate relationships between soil properties, such as water availability, and tree performance should be considered when studying the impact of stressful events on the growth and functioning of trees.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Saša Zavadlav
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tuula Jyske
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tapio Laakso
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| |
Collapse
|
18
|
Prislan P, Mrak P, Žnidaršič N, Štrus J, Humar M, Thaler N, Mrak T, Gričar J. Intra-annual dynamics of phloem formation and ultrastructural changes in sieve tubes in Fagus sylvatica. TREE PHYSIOLOGY 2019; 39:262-274. [PMID: 30239917 DOI: 10.1093/treephys/tpy102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Despite increased interest in the timing and dynamics of phloem formation, seasonal changes in the structure of phloem sieve elements remain largely unexplored. To understand better the dynamics of phloem formation and the functioning of sieve tubes in the youngest phloem in Fagus sylvatica L., we investigated repeatedly taken phloem samples during the growing season of 2017 by means of light microscopy, and transmission and scanning electron microscopy. Phloem formation started with the expansion of the overwintered early phloem sieve tubes adjacent to the cambium and concurrent cambial cell production. The highest phloem growth rate was observed in general 1 week after the onset of cambial cell production, whereas the transition from early to late phloem occurred at the end of May. Cambial cell production ceased at the end of July. The final width of the phloem increment was 184 ± 10 μm, with an early phloem proportion of 59%. Collapse of older phloem tissue is a progressive process, which continuously occurred during the sampling period. Collapse of early phloem sieve tubes started shortly after the cessation of cambial cell production. Prior to the onset of radial growth, late phloem from the previous year represented 80% of the total non-collapsed part; during the growth period, this percentage decreased to 20%. Differences were observed in both sieve tube ultrastructure and sieve plate geometry between the youngest and older phloem. However, sieve plates were never completely occluded by callose, suggesting that processes affecting the functionality of sieve tubes may differ in the case of regular collapse or injury. The youngest parts of the phloem increment from the previous year (i.e., previous late phloem) continue functioning for some time in the current growing season, but the two-step development of overwintered phloem cells also ensures a sufficient translocation pathway for photosynthates to the actively growing tissues.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, Slovenia
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Miha Humar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Nejc Thaler
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, Slovenia
| | - Jožica Gričar
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, Slovenia
| |
Collapse
|
19
|
Prislan P, Cufar K, De Luis M, Gricar J. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. TREE PHYSIOLOGY 2018; 38:186-197. [PMID: 29325135 DOI: 10.1093/treephys/tpx167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
We investigated the dynamics of xylem differentiation processes and vessel characteristics in Fagus sylvatica L. to evaluate the plasticity of xylem structures under different environmental conditions. In 2008-10, analyses were performed on microcores collected weekly from two temperate sites: Menina planina (1200 m above sea level (a.s.l.)) and Panska reka (400 m a.s.l.). The duration between the onset and end of major cell differentiation steps and vessel characteristics (i.e., density, VD; mean diameter, MVD; mean area, MVA; and theoretic conductivity area, TCA) were analysed in the first and last quarters of the xylem rings, also in respect of local weather conditions (precipitation, temperature). Although the onset, duration and end of xylem formation phases differed between the two sites, the time spans between the successive wood formation phases were similar. Significant differences in MVD, MVA and TCA values were found between the first and last quarters of xylem increment, regardless of the site and year. Vessel density, on the other hand, depended on xylem-ring width and differed significantly between the sites, being about 30% higher at the high elevation site, in beech trees with 54% narrower xylem rings. Vessel density in the first quarter of the xylem ring showed a positive correlation with the onset of cell expansion, whereas a negative correlation of VD with the cessation of cell production was found in the last quarter of xylem increment. This may be explained by year-to-year differences in the timing of cambial reactivation and leaf development, which effect hormonal regulation of radial growth. No significant linkage between intra-annual weather conditions and conduit characteristics was found. It can thus be presumed that precipitation is not a limiting factor for xylem growth and cell differentiation in beech at the two temperate study sites and sites across Europe with similar weather conditions.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Cufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Martin De Luis
- Department of Geography and Regional Planning, University of Zaragoza-IUCA, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jožica Gricar
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|