1
|
Feng Q, Yuan H, Ma J, Guo Z, Xia X, Zhao G. Invasive Klebsiella pneumoniae liver abscess syndrome complicated by carbapenem-resistant Acinetobacter baumannii infection: a case report. Front Med (Lausanne) 2025; 11:1511734. [PMID: 39845819 PMCID: PMC11753218 DOI: 10.3389/fmed.2024.1511734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background A liver abscess caused by hypervirulent Klebsiella pneumoniae can lead to multiple invasive extrahepatic infections, including lung abscesses, endophthalmitis, brain abscesses, and necrotizing fasciitis. This condition, known as Klebsiella pneumoniae liver abscess invasion syndrome, progresses rapidly and is associated with severe illness, high disability rates, and significant mortality. However, bloodstream infections with co-infection involving carbapenem-resistant Acinetobacter baumannii are exceedingly rare. Case presentation The Emergency Medicine Department of the First People's Hospital of Kunshan successfully treated a male patient diagnosed with liver, lung, and prostate abscesses. The patient underwent puncture and drainage, with analysis of the drainage fluid, sputum culture, and metagenomic next-generation sequencing (m-NGS) revealing a co-infection with blood-borne Klebsiella pneumoniae and Acinetobacter baumannii. Guided by drug sensitivity test results, the patient received treatment with polymyxin and cefoperazone sodium-sulbactam sodium for infection control and liver protection. The treatment was successful, and the patient fully recovered and was discharged. Conclusion By reporting this rare case and highlighting the drug resistance of the bacteria, we propose a new diagnosis and treatment plan for managing Klebsiella pneumoniae combined with carbapenem-resistant Acinetobacter baumannii infection, along with a literature review.
Collapse
Affiliation(s)
- Qiupeng Feng
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| | - Hua Yuan
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| | - Jin Ma
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| | - Zhiqiang Guo
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| | - Xiaohua Xia
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| | - Guang Zhao
- Department of Emergency Medicine, The First People’s Hospital of Kunshan, Kunshan, China
- Jiangsu University Health Science Center, Kunshan, China
| |
Collapse
|
2
|
Tavares RDS, Fidalgo C, Rodrigues ET, Tacão M, Henriques I. Integron-associated genes are reliable indicators of antibiotic resistance in wastewater despite treatment- and seasonality-driven fluctuations. WATER RESEARCH 2024; 258:121784. [PMID: 38761599 DOI: 10.1016/j.watres.2024.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The present study aims to characterize the bacterial community, resistome and integron abundance of a municipal wastewater treatment plant (WWTP) over the course of 12 months and evaluate the year-long performance of integron-related genes as potential indicators of antibiotic resistance mechanisms in influents and effluents. For that, total DNA was extracted and subjected to 16S rRNA-targeted metabarcoding, high-throughput (HT) qPCR (48 targets) and standard qPCR (5 targets). Targets included integrase genes, antibiotic resistance genes (ARGs) and putative pathogenic groups. A total of 16 physicochemical parameters determined in the wastewater samples were also considered. Results revealed that the WWTP treatment significantly impacted the bacterial community, as well as the content in ARGs and integrase genes. Indeed, there was a relative enrichment from influent to effluent of 13 pathogenic groups (e.g., Legionella and Mycobacterium) and genes conferring resistance to sulphonamides, aminoglycosides and disinfectants. Effluent samples (n = 25) also presented seasonal differences, with an increase of the total ARGs' concentration in summer, and differences between winter and summer on relative abundance of sulphonamide and disinfectant resistance mechanisms. From the eight putative integron-related genes selected, all were positively correlated with the total ARGs' content in wastewater and the relative abundance of resistance to most of the specific antibiotic classes. The genes intI1, blaGES and qacE∆1 were the most strongly correlated with the total concentration of ARGs. Genes blaGES and blaVIM, were better correlated to resistance to beta-lactams, aminoglycosides and tetracyclines. This study supports the use of integron-related genes as powerful indicators of antibiotic resistance in wastewater, being robust despite the variability caused by wastewater treatment and seasonality.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cátia Fidalgo
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
3
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Cao Y, Tian Y, Huang J, Xu L, Fan Z, Pan Z, Chen S, Gao Y, Wei L, Zheng S, Zhang X, Yu Y, Ren F. CRISPR/Cas13-assisted carbapenem-resistant Klebsiella pneumoniae detection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:118-127. [PMID: 37963801 DOI: 10.1016/j.jmii.2023.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND/PURPOSE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is capable of causing serious community and hospital-acquired infections. However, currently, the identification of CRKP is complex and inefficient. Hence, this study aimed to develop methods for the early and effective identification of CRKP to allow reasonable antimicrobial therapy in a timely manner. METHODS K. pneumoniae (KP)-, K. pneumoniae carbapenemase (KPC)- and New Delhi metallo-β-lactamase (NDM)- specific CRISPR RNAs (crRNAs), polymerase chain reaction (PCR) primers and recombinase-aided amplification (RAA) primers were designed and screened in conserved sequence regions. We established fluorescence and lateral flow strip assays based on CRISPR/Cas13a combined with PCR and RAA, respectively, to assist in the detection of CRKP. Sixty-one clinical strains (including 51 CRKP strains and 10 carbapenem-sensitive strains) were collected for clinical validation. RESULTS Using the PCR-CRISPR assay, the limit of detection (LOD) for KP and the blaKPC and blaNDM genes reached 1 copy/μL with the fluorescence signal readout. Using the RAA-CRISPR assay, the LOD could reach 101 copies/μL with both the fluorescence signal readout and the lateral flow strip readout. Additionally, the positivity rates of CRKP-positive samples detected by the PCR/RAA-CRISPR fluorescence and RAA-CRISPR lateral flow strip methods was 92.16% (47/51). The sensitivity and specificity reached 100% for KP and blaKPC and blaNDM gene detection. For detection in a simulated environmental sample, 1 CFU/cm2 KP could be detected. CONCLUSION We established PCR/RAA-CRISPR assays for the detection of blaKPC and blaNDM carbapenemase genes, as well as KP, to facilitate the detection of CRKP.
Collapse
Affiliation(s)
- Yaling Cao
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yuan Tian
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Jing Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Department of Infection Control, Beijing 100730, China.
| | - Ling Xu
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zihao Fan
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zhenzhen Pan
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Sisi Chen
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yao Gao
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Linlin Wei
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Sujun Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Xiangying Zhang
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yanhua Yu
- Center for Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Feng Ren
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
7
|
Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0103322. [PMID: 36475717 PMCID: PMC9872597 DOI: 10.1128/aac.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited therapeutic options dictate the need for new classes of antimicrobials active against carbapenem-resistant Acinetobacter baumannii. Presented data confirm and extend penicillin binding protein 7/8 (PBP 7/8) as a high-value target in the CR A. baumannii strain HUMC1. PBP 7/8 was essential for optimal growth/survival of HUMC1 in ex vivo human ascites and in a rat subcutaneous abscess model; in a mouse pneumonia model, the absence of PBP 7/8 decreased lethality 11-fold. The loss of PBP 7/8 resulted in increased permeability, sensitivity to complement, and lysozyme-mediated bactericidal activity. These changes did not appear to be due to alterations in the cellular fatty acid composition or capsule production. However, a decrease in lipid A and an increase in coccoidal cells and cell aggregation were noted. The compromise of the stringent permeability barrier in the PBP 7/8 mutant was reflected by an increased susceptibility to several antimicrobials. Importantly, expression of ampC was not significantly affected by the loss of PBP 7/8 and serial passage of the mutant strain in human ascites over 7 days did not yield revertants possessing a wild-type phenotype. In summary, these data and other features support PBP 7/8 as a high-value drug target for extensively drug-resistant and CR A. baumannii. Our results guide next-stage studies; the determination that the inactivation of PBP 7/8 results in an increased sensitivity to lysozyme enables the design of a high-throughput screening assay to identify small molecule compounds that can specifically inhibit PBP 7/8 activity.
Collapse
|
8
|
Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. Int J Mol Sci 2022; 23:ijms23126582. [PMID: 35743027 PMCID: PMC9223528 DOI: 10.3390/ijms23126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacillus that causes multiple infections that can become severe, mainly in hospitalized patients. Its high ability to persist on abiotic surfaces and to resist stressors, together with its high genomic plasticity, make it a remarkable pathogen. Currently, the isolation of strains with high antimicrobial resistance profiles has gained relevance, which complicates patient treatment and prognosis. This resistance capacity is generated by various mechanisms, including the modification of the target site where antimicrobial action is directed. This mechanism is mainly generated by genetic mutations and contributes to resistance against a wide variety of antimicrobials, such as β-lactams, macrolides, fluoroquinolones, aminoglycosides, among others, including polymyxin resistance, which includes colistin, a rescue antimicrobial used in the treatment of multidrug-resistant strains of A. baumannii and other Gram-negative bacteria. Therefore, the aim of this review is to provide a detailed and up-to-date description of antimicrobial resistance mediated by the target site modification in A. baumannii, as well as to detail the therapeutic options available to fight infections caused by this bacterium.
Collapse
|
9
|
Zhang DF, Zhang ZF, Li PD, Qu PH. Characterization of carbapenem resistant Acinetobacter baumannii ST540 and Klebsiella pneumoniae ST2237 isolates in a pneumonia case from China. J Appl Microbiol 2022; 133:1434-1445. [PMID: 35652720 DOI: 10.1111/jam.15648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to characterize the chromosome and plasmid sequences, and determine the transferability of plasmids in carbapenem-resistance Acinetobacter baumannii (A. baumannii) DD520 and Klebsiella pneumoniae (K. pneumoniae) DD521 isolates from the same patient who was co-infected in a hospital in China. METHODS AND RESULTS Both isolates DD520 and DD521 exhibited multi-drug resistance phenotype, especially the former isolate which was resistant to 9 classes of antimicrobials including carbapenems, quinolones, penicillins, cephalosporins, tetracyclines, phenicols, fosfomycins, sulfanilamides, and aminoglycosides. Carbapenem resistance genes of blaOXA-23 and blaOXA-66 were identified on the chromosome of A. baumannii DD520, and blaKPC-2 was found in the plasmid pDD521.2 from K. pneumoniae DD521. Phylogenetic analysis revealed that A. baumannii DD520 belonged to the ST540 clone, and K. pneumoniae DD521 belonged to the ST2237 clone. Plasmid analysis suggested that blaKPC-2 was embedded into plasmid pDD521.2, which might be resulted from IS26- and Tn1721-mediated transposition. Plasmid pDD521.2 carrying blaKPC-2 successfully transferred from K. pneumoniae DD521 into Escherichia coli C600, and carbapenems resistance also transferred in the conjugation. CONCLUSIONS To our knowledge, it was the first report of A. baumannii ST540 and K. pneumoniae ST2237 in the same patient in China. Both these two isolates exhibited resistance to carbapenem, which was likely to be resulted from carbapenem resistance genes blaOXA-23 -blaOXA-66 on the chromosome of A. baumannii ST540, and blaKPC-2 in the plasmid of K. pneumoniae ST2237. SIGNIFICANCE AND IMPACT OF THE STUDY Our study highlighted that effective measures were urgent to prevent and control the co-infection caused by two or more carbapenem-resistance pathogens in the same patient.
Collapse
Affiliation(s)
- Dao-Feng Zhang
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, China.,Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zeng-Feng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Pan-Dong Li
- Lushi County People's Hospital, Sanmenxia, China
| | - Ping-Hua Qu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Ionescu MI, Neagoe DȘ, Crăciun AM, Moldovan OT. The Gram-Negative Bacilli Isolated from Caves- Sphingomonas paucimobilis and Hafnia alvei and a Review of Their Involvement in Human Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042324. [PMID: 35206510 PMCID: PMC8872274 DOI: 10.3390/ijerph19042324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
The opportunistic infections with Gram-negative bacilli are frequently reported. The clinical studies are focused on the course of human infectious and very often the source of infection remain unclear. We aim to see if the Gram-negative bacilli isolated from a non-contaminated environment—the caves—are reported in human infections. Eleven samples were collected from six Romanian caves. We used the standard procedure used in our clinical laboratory for bacterial identification and for antibiotic susceptibility testing of the cave isolates. Out of the 14 bacterial strains, three isolates are Gram-negative bacilli—one isolate belong to Hafnia alvei and two strains belong to Sphingomonas paucimobilis. We screened for the published studies—full-text original articles or review articles—that reported human infections with S. paucimobilis and H. alvei. Data sources—PubMed and Cochrane library. We retrieved 447 cases from 49 references—262 cases (58.61%) are S. paucimobilis infections and 185 cases (41.39%) are H. alvei infections. The types of infections are diverse but there are some infections more frequent; there are 116 cases (44.27%) and many infections of the bloodstream with S. paucimobilius (116 cases) and 121 cases (65.41%) are urinary tract infections with H. alvei. The acquired source of the bloodstream infections is reported for 93 of S. paucimobilis bloodstream infections—50 cases (43%) are hospital-acquired, and 40 cases (37%) are community-acquired. Most of the infections are reported in patients with different underlying conditions. There are 80 cases (17.9%) are reported of previously healthy persons. Out of the 72 cases of pediatric infections, 62 cases (86.11%) are caused by S. paucimobilis. There are ten death casualties—three are H. alvei infections, and seven are S. paucimobilis infections.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania;
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
- Correspondence:
| | - Dan Ștefan Neagoe
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
| | | | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Clinicilor 5, 400006 Cluj-Napoca, Romania;
- Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Whole-Genome Sequencing Enables Molecular Characterization of Non-Clonal Group 258 High-Risk Clones (ST13, ST17, ST147 and ST307) Among Carbapenem-Resistant Klebsiella pneumoniae From a Tertiary University Hospital Centre in Portugal. Microorganisms 2022; 10:microorganisms10020416. [PMID: 35208876 PMCID: PMC8875758 DOI: 10.3390/microorganisms10020416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The carbapenem-resistant Enterobacterales (CRE) strains have been identified by the World Health Organization as critical priority pathogens in research and development of diagnostics, treatments, and vaccines. However, recent molecular information about carbapenem-resistant K. pneumoniae (CRK) epidemiology in Portugal is still scarce. Thus, this study aimed to provide the molecular epidemiology, resistome, and virulome of CRK clinical strains recovered from a tertiary care hospital centre (2019–2021) using polymerase chain reaction (PCR) and the advanced molecular technique whole-genome sequencing (WGS). PCR amplification of carbapenemase genes was performed in 437 carbapenem-resistant K. pneumoniae strains. The most frequent carbapenemases were: KPC-3 (42%), followed by OXA-181 (20%), GES-5 (0.2%), and NDM-1 (0.2%). Additionally, 10 strains (2%) coproduced KPC-3 and OXA-181, and 1 strain coproduced KPC-3 and OXA-48 (0.2%). The genomic population structure of 68 strains characterized by WGS demonstrated the ongoing dissemination of four main high-risk clones: ST13, ST17, ST147, and ST307, while no clones belonging to the European predominant clonal groups (CG15 and CG258) were found. Moreover, we describe one K. pneumoniae ST39-KL62 that coproduced the NDM-1 carbapenemase and the extended-spectrum beta-lactamase CTX-M-15, and one K. pneumoniae ST29-KL54 GES-5 and BEL-1 coproducer. Furthermore, a high prevalence of iron siderophores were present in all CRK strains, with several strains presenting both colibactin and the hypermucoviscosity phenotype. Thus, the data presented here highlight an uncommon molecular epidemiology pattern in Portugal when compared with most European countries, further supporting the emergence and dissemination of nonclonal group 258 hypervirulent multidrug high-risk clones and the need to promote in-depth hospital molecular surveillance studies.
Collapse
|
12
|
Ababneh Q, Abulaila S, Jaradat Z. Isolation of extensively drug resistant Acinetobacter baumannii from environmental surfaces inside intensive care units. Am J Infect Control 2022; 50:159-165. [PMID: 34520789 DOI: 10.1016/j.ajic.2021.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acinetobacter baumannii is a nosocomial pathogen that has emerged as a major threat in the health-care settings, particularly intensive care units (ICUs). The aim of this study was to investigate the prevalence of A. baumannii in the environment of intensive care and emergency units in 4 hospitals in Jordan. METHODS A total of 311 surface and 26 air samples were collected from 6 different ICUs and 2 emergency units. Examined high-touch surfaces included bed rails, sinks, food tables, trolley handles, ventilator inlets, blankets, sheets, door handles, light switches, bedside tables and drawers, curtains, normal saline stands and neonatal incubators. A. baumannii isolates were identified by CHROMagar and confirmed using 2 different PCR assays. All obtained isolates were characterized for their antibiotic resistance phenotypes, biofilm formation capacities and were typed by multi-locus sequence typing. RESULTS Of the 337 samples, 24 A. baumannii isolates were recovered, mostly from surfaces in the internal medicine ICUs. Among the 24 isolates, 10 isolates were classified as extensively-resistant (XDR), harbored the blaOXA-23 like gene and able to form biofilms with varying capacities. ST2 was the most frequent sequence type, with all ST2 isolates classified as XDRs. CONCLUSIONS Our results showed that high-touch surfaces of adult and pediatric ICUs were contaminated with XDR A. baumannii isolates. Therefore, the cleaning practices of the surfaces and equipment surrounding ICU patients should be optimized, and health-care workers should continuously wash their hands and change their gloves constantly to control the spread of this pathogen.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sally Abulaila
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10020251. [PMID: 35208703 PMCID: PMC8877040 DOI: 10.3390/microorganisms10020251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) carbapenemase has been considered a global threat due to its worldwide widespread in recent years. In Portugal, a very low number of infections with NDM-producing Enterobacterales has been reported. A total of 52 strains from 40 patients and 1 environmental sample isolated during COVID-19 pandemic were included in this study. Wholegenome sequencing (WGS) was performed on 20 carbapenemase-producing strains, including 17 NDM-1-producing Klebsiella pneumoniae ST11-KL105 lineage strains, one NDM-1-producing Escherichia coli ST58 strain and one KPC-3-producing K. pneumoniae ST147 strain, recovered from a total of 19 patients. Of interest, also one NDM-1-producing K. pneumoniae ST11-KL105 was collected from the hospital environment. Genome-wide phylogenetic analysis revealed an ongoing dissemination of NDM-1-producing K. pneumoniae ST11 strains (n = 18) with the same genetic features seen across multiple wards. Furthermore, the ST58 E. coli strain, collected from a patient rectal swab that was also colonised with a K. pneumoniae strain, also showed the IncFIA plasmid replicon and the blaNDM-1 gene (preceded by IS30 and followed by genes bleMBL, trpF, dsbC, cutA, groES and groEL). The blaNDM-1 is part of Tn125-like identical to those reported in Poland, Italy and India. The blaKPC-3 K. pneumoniae ST147-KL64 strain has the genetic environment Tn4401d isoform. In conclusion, herein we report the molecular epidemiology, resistome, virulome and mobilome of the first NDM-1 carbapenemase outbreak caused by K. pneumoniae ST11-KL105 lineage during the COVID-19 pandemic in Portugal. Moreover, the outbreak strains characterised included seventeen different patients (infected and colonised) and one environmental sample which also emphasises the role of commensal and hospital environment strains in the dissemination of the outbreak.
Collapse
|
14
|
Méndez L, Ferreira J, Caneiras C. Hafnia alvei Pneumonia: A Rare Cause of Infection in a Patient with COVID-19. Microorganisms 2021; 9:microorganisms9112369. [PMID: 34835494 PMCID: PMC8620350 DOI: 10.3390/microorganisms9112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023] Open
Abstract
Herein, we describe a case report of a critically ill patient, a 48-year-old man without comorbidities admitted to the hospital with a serious type 1 (hypoxemic) respiratory insufficiency and confirmed diagnosis of COVID-19. After 5 days with invasive mechanical ventilation, the patient developed a bacterial co-infection, namely a pneumonia by Hafnia alvei, requiring the last line of respiratory support: extracorporeal membrane oxygenation (ECMO). Subsequently, his clinical situation gradually stabilized, until he was discharged from the hospital on day 61, being accompanied in ambulatory consultation by the physical medicine and pulmonology department during the post-COVID-19 recovery. H. alvei is a Gram-negative bacterium that is rarely isolated from human specimens and is rarely considered to be pathogenic. However, COVID-19 disease can cause substantial organ dysfunction and can be associated with bacterial secondary infections which can favor the emergence of rare infectious diseases by uncommon microorganisms.
Collapse
Affiliation(s)
- Lucía Méndez
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Pulmonology Department, Centro Hospitalar Entre o Douro e Vouga, 4520-221 Santa Maria da feira, Portugal;
| | - Jorge Ferreira
- Pulmonology Department, Centro Hospitalar Entre o Douro e Vouga, 4520-221 Santa Maria da feira, Portugal;
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Microbiology and Immunology Department, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
15
|
Hayashi W, Iimura M, Soga E, Koide S, Izumi K, Yoshida S, Arakawa Y, Nagano Y, Nagano N. Presence of Colistin- and Tigecycline-Resistant Klebsiella pneumoniae ST29 in Municipal Wastewater Influents in Japan. Microb Drug Resist 2021; 27:1433-1442. [PMID: 33835858 DOI: 10.1089/mdr.2020.0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the presence of colistin- and/or tigecycline-resistant Klebsiella spp. in influents from four wastewater treatment plants (WWTPs), which partly reflect the gut microbiome of human populations. Colistin- and tigecycline-resistant Klebsiella pneumoniae isolates (K30/ST29) were detected four times from the WWTP A during a period of 3 months. Disruptions of the mgrB and ramR genes by ISEc68 and ISKpn21, respectively, were identified in those four isolates. They also shared the IncL/M 86,197-bp plasmids carrying a blaCTX-M-3 and Tn1548-associated armA [IS26-IntI1-dfrA12-gucF-aadA2-qacEΔ1-sul1-ISCR1-ISEc28-armA-ISEc29-msr(E)-mph(E)-IS26]. Those isolates formed a distinct cluster within wgMLST clusters of ST29 K30 public reference strains of human origin and were unique due to harboring of Tn21-like mercury resistance operon transposons in addition to silver, copper, and arsenic resistance determinants. Five K. pneumoniae strains with different STs and 1 Klebsiella quasipneumoniae strain, exhibiting colistin resistance, were detected in WWTPs B, C, and D. For these isolates, disruptions of mgrB by ISEc68 (three isolates) or ISEcl1 (one isolate), insertion of IS2 in the mgrB promoter region (one isolate), and inactivation of MgrB by a nonsense mutation (one isolate) were identified. Close monitoring of these mcr-negative colistin- and/or tigecycline-resistant bacteria in wastewater influents is imperative to avoid further limiting of treatment options.
Collapse
Affiliation(s)
- Wataru Hayashi
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, Japan
| | - Masaki Iimura
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Eiji Soga
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, Japan
| | - Katsutoshi Izumi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Satoshi Yoshida
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Nagano
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Nagano
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, Japan.,Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| |
Collapse
|
16
|
An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Microorganisms 2021; 9:microorganisms9030576. [PMID: 33799747 PMCID: PMC8001128 DOI: 10.3390/microorganisms9030576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which blaCTX-M-15 was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with blaKPC-3 included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase.
Collapse
|
17
|
Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms. Microorganisms 2021; 9:microorganisms9010141. [PMID: 33435450 PMCID: PMC7826917 DOI: 10.3390/microorganisms9010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
Resistance to last resort antibiotics in bacteria is an emerging threat to human and animal health. It is important to identify the source of these antimicrobial resistant (AMR) bacteria that are resistant to clinically important antibiotics and evaluate their potential transfer among bacteria. The objectives of this study were to (i) detect bacteria resistant to colistin, carbapenems, and β-lactams in commercial poultry farms, (ii) characterize phylogenetic and virulence markers of E. coli isolates to potentiate virulence risk, and (iii) assess potential transfer of AMR from these isolates via conjugation. Ceca contents from laying hens from conventional cage (CC) and cage-free (CF) farms at three maturity stages were randomly sampled and screened for extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter (CRA), and colistin resistant Escherichia coli (CRE) using CHROMagar™ selective media. We found a wide-spread abundance of CRE in both CC and CF hens across all three maturity stages. Extraintestinal pathogenic Escherichia coli phylogenetic groups B2 and D, as well as plasmidic virulence markers iss and iutA, were widely associated with AMR E. coli isolates. ESBL-producing Enterobacteriaceae were uniquely detected in the early lay period of both CC and CF, while multidrug resistant (MDR) Acinetobacter were found in peak and late lay periods of both CC and CF. CRA was detected in CF hens only. blaCMY
was detected in ESBL-producing E. coli in CC and CF and MDR Acinetobacter spp. in CC. Finally, the blaCMY
was shown to be transferrable via an IncK/B plasmid in CC. The presence of MDR to the last-resort antibiotics that are transferable between bacteria in food-producing animals is alarming and warrants studies to develop strategies for their mitigation in the environment.
Collapse
|
18
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
19
|
Perdigão J, Caneiras C, Elias R, Modesto A, Spadar A, Phelan J, Campino S, Clark TG, Costa E, Saavedra MJ, Duarte A. Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms 2020; 8:E1986. [PMID: 33322205 PMCID: PMC7763156 DOI: 10.3390/microorganisms8121986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The evolutionary epidemiology, resistome, virulome and mobilome of thirty-one multidrug resistant Klebsiella pneumoniae clinical isolates from the northern Vila Real region of Portugal were characterized using whole-genome sequencing and bioinformatic analysis. The genomic population structure was dominated by two main sequence types (STs): ST147 (n = 17; 54.8%) and ST15 (n = 6; 19.4%) comprising four distinct genomic clusters. Two main carbapenemase coding genes were detected (blaKPC-3 and blaOXA-48) along with additional extended-spectrum β-lactamase coding loci (blaCTX-M-15, blaSHV-12, blaSHV-27, and blaSHV-187). Moreover, whole genome sequencing enabled the identification of one Klebsiella variicola KPC-3 producer isolate previously misidentified as K. pneumoniae, which in addition to the blaKPC-3 carbapenemase gene, bore the chromosomal broad spectrum β-lactamase blaLEN-2 coding gene, oqxAB and fosA resistance loci. The blaKPC-3 genes were located in a Tn4401b transposon (K. variicolan = 1; K. pneumoniaen = 2) and Tn4401d isoform (K. pneumoniaen = 28). Overall, our work describes the first report of a blaKPC-3 producing K. variicola, as well as the detection of this species during infection control measures in surveillance cultures from infected patients. It also highlights the importance of additional control measures to overcome the clonal dissemination of carbapenemase producing clones.
Collapse
Affiliation(s)
- João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Cátia Caneiras
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal;
- Institute of Preventive Medicine and Public Health (IMP&SP), Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal
- Department of Microbiology and Immunology, Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal
| | - Rita Elias
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Ana Modesto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Eliana Costa
- Serviço de Patologia Clínica, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal;
| | - Maria José Saavedra
- Laboratory Medical Microbiology, Department of Veterinary Sciences, CITAB-Centre for the Research and Technology Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Aida Duarte
- Department of Microbiology and Immunology, Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| |
Collapse
|
20
|
Cai Z, Tao J, Jia T, Fu H, Zhang X, Zhao M, Du H, Yu H, Shan B, Huang B, Chen L, Tang YW, Jia W, Qu F. Multicenter Evaluation of the Xpert Carba-R Assay for Detection and Identification of Carbapenemase Genes in Sputum Specimens. J Clin Microbiol 2020; 58:e00644-20. [PMID: 32522829 PMCID: PMC7448655 DOI: 10.1128/jcm.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rapid diagnosis of infections caused by carbapenem-resistant Enterobacteriaceae (CRE) is crucial for proper treatment and infection control. The Xpert Carba-R assay is a qualitative multiplex real-time PCR method that qualitatively detects and differentiates five common carbapenemase genes (blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP) directly from rectal swabs or purified colonies within approximately 1 h. We performed a multicenter evaluation of the investigational use of the Carba-R assay for detection and differentiation of carbapenemase genes from sputum specimens in patients with a clinical diagnosis of pneumonia. The intra- and interassay coefficients of variation values for the Carba-R assay were 0.2% to 2.0% and 1.4% to 2.3%, respectively. A total of 301 sputum specimens were collected and tested. Compared to bacterial culture followed by PCR identification of resistance genes from colonies, the Carba-R assay reduced turnaround time from 56 to 84 h to less than 2 h. Carbapenemase genes were detected by the Carba-R assay in Klebsiella pneumoniae (n = 236), Escherichia coli (n = 22), Enterobacter cloacae (n = 23), Klebsiella oxytoca (n = 8), Serratia marcescens (n = 6), Citrobacter freundii (n = 4), and Klebsiella aerogenes (n = 2). The Carba-R assay detected 112 blaKPC (33.5%), 70 blaNDM (21.0%), 8 blaIMP (2.4%), and 2 blaVIM (0.6%) genes, with positive percent agreement, negative percent agreement, and concordance rates of 92.9%, 86.7%, and 88.3%, respectively, for the dominant blaKPC and 85.0%, 87.8%, and 87.4%, respectively, for the blaNDM genes. Neither method detected the blaOXA-48 carbapenemase gene. The convenient, rapid, and simple characteristics of the Xpert Carba-R assay make it a potential tool for CRE detection and identification directly in sputum specimens.
Collapse
Affiliation(s)
- Zhen Cai
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Jia Tao
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tianye Jia
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
| | - Hongyu Fu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhang
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mei Zhao
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua Yu
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Seton Hall University, Nutley, New Jersey, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Cepheid, Shanghai, China
| | - Wei Jia
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fen Qu
- China Aviation General Hospital of China Medical University, Beijing, China
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
| |
Collapse
|
21
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
22
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
23
|
Boszczowski I, Salomão MC, Moura ML, Freire MP, Guimarães T, Cury AP, Rossi F, Rizek CF, Martins RCR, Costa SF. Multidrug-resistant Klebsiella pneumoniae: genetic diversity, mechanisms of resistance to polymyxins and clinical outcomes in a tertiary teaching hospital in Brazil. Rev Inst Med Trop Sao Paulo 2019; 61:e29. [PMID: 31241658 PMCID: PMC6592011 DOI: 10.1590/s1678-9946201961029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/10/2019] [Indexed: 11/22/2022] Open
Abstract
Increased resistance to polymyxin in Klebsiella pneumoniae (ColRKP) has been observed. Molecular epidemiology, as well as the clinical impact of these difficult to treat pathogens need to be better characterized. We present the clinical outcomes of 28 patients infected by ColRKP in a tertiary hospital. Isolates with MIC >2 by Vitek 2 were confirmed by the microdilution broth test. Polymerase chain reaction (PCR) was performed for blaKPC, blaNDM, blaOXA-48 and blamcr-1 genes in the isolates, and Whole Genome Sequencing (WGS) was performed in six isolates. Seventeen (61%) patients were female and the mean age was 50 years old. In-hospital and 30-day mortality were 64% (18/28) and 53% (15/28), respectively. Central line-associated bloodstream infection in addition to bacteremia episodes due to other sources were the most frequent (61%). Mean APACHE and Charlson comorbidity index were 16 and 5, respectively. Twenty patients (71%) received at least one active drug and ten (35%) received two drugs: tigecycline 46% (13/28); amikacin 21% (6/28) and fosfomycin 3% (1 case). Twenty-six out of 28 tested cases were positive for blaKPC. Eight different clusters were identified. Four STs were detected (ST11, ST23, ST340, and ST437). Mutations on pmrA, arnB, udg, and yciM genes were present in all six isolates submitted to WGS; lpxMand mgrB mutations were also detected in all but one isolate. In conclusion, we observed resistance to polymyxin in severely ill patients mostly from intensive care units and/or immunosuppressed patients with high mortality rates in whom a diversity of ColRKP clusters was identified and might indicate selective pressure.
Collapse
Affiliation(s)
- Icaro Boszczowski
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo,
Brazil
| | - Matias Chiarastelli Salomão
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo,
Brazil
| | - Maria Luísa Moura
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo,
Brazil
| | - Maristela Pinheiro Freire
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo,
Brazil
| | - Thais Guimarães
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo,
Brazil
| | - Ana Paula Cury
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Divisão de Laboratório Clínico, São Paulo, São Paulo, Brazil
| | - Flávia Rossi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Divisão de Laboratório Clínico, São Paulo, São Paulo, Brazil
| | - Camila Fonseca Rizek
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, Laboratório de Investigação Médica (LIM) 54, São Paulo, São Paulo,
Brazil
| | - Roberta Cristina Ruedas Martins
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, Laboratório de Investigação Médica (LIM) 54, São Paulo, São Paulo,
Brazil
| | - Silvia Figueiredo Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, Laboratório de Investigação Médica (LIM) 54, São Paulo, São Paulo,
Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de
Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms 2019; 7:microorganisms7050138. [PMID: 31100810 PMCID: PMC6560439 DOI: 10.3390/microorganisms7050138] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 11/23/2022] Open
Abstract
Klebsiella pneumoniae is a clinically relevant pathogen and a frequent cause of hospital-acquired (HA) and community-acquired (CA) urinary tract infections (UTI). The increased resistance of this pathogen is leading to limited therapeutic options. To investigate the epidemiology, virulence, and antibiotic resistance profile of K. pneumoniae in urinary tract infections, we conducted a multicenter retrospective study for a total of 81 isolates (50 CA-UTI and 31 HA-UTI) in Portugal. The detection and characterization of resistance and virulence determinants were performed by molecular methods (PCR, PCR-based replicon typing, and multilocus sequence typing (MLST)). Out of 50 CA-UTI isolates, six (12.0%) carried β-lactamase enzymes, namely blaTEM-156 (n = 2), blaTEM-24 (n = 1), blaSHV-11 (n = 1), blaSHV-33 (n = 1), and blaCTX-M-15 (n = 1). All HA-UTI were extended-spectrum β-lactamase (ESBL) producers and had a multidrug resistant profile as compared to the CA-UTI isolates, which were mainly resistant to ciprofloxacin, levofloxacin, tigecycline, and fosfomycin. In conclusion, in contrast to community-acquired isolates, there is an overlap between virulence and multidrug resistance for hospital-acquired UTI K. pneumoniae pathogens. The study is the first to report different virulence characteristics for hospital and community K. pneumoniae pathogens, despite the production of β-lactamase and even with the presence of CTX-M-15 ESBL, a successful international ST15 clone, which were identified in both settings. This highlights that a focus on genomic surveillance should remain a priority in the hospital environment.
Collapse
Affiliation(s)
- Cátia Caneiras
- Microbiology and Immunology Department, Interdisciplinary Research Centre Egas Moniz (CiiEM), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Luis Lito
- Laboratory of Microbiology, Centro Hospitalar Lisboa Norte, 1649-035 Lisboa, Portugal.
| | - José Melo-Cristino
- Laboratory of Microbiology, Centro Hospitalar Lisboa Norte, 1649-035 Lisboa, Portugal.
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, Universidade de Lisboa,1649-028 Lisboa, Portugal.
| | - Aida Duarte
- Microbiology and Immunology Department, Interdisciplinary Research Centre Egas Moniz (CiiEM), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|