Liaqut A, Tariq S, Younes I. A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;
30:69096-69121. [PMID:
37129820 DOI:
10.1007/s11356-023-27047-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Over the past few years, South Asian region has experienced frequent and thick smog events because of rapid population growth and enhanced anthropogenic activities, particularly in the Indo-Gangetic Plain (IGP). Therefore, the present study investigates aerosol properties such as aerosol optical depth (AOD) (500 nm), Angstrom exponent (AE) (440-870 nm), single scattering albedo (SSA), fine-mode fraction (FMF), absorption aerosol optical depth (AAOD), and absorption aerosol exponent (AAE) over selected AERONET sites namely Bhola (2012-2021), Dhaka (2012-2021), Jaipur (2011-2021), Kanpur (2011-2021), Karachi (2011-2021), Lahore (2011-2021), and Pokhara (2011-2021) in the IGP during the smog period (October, November, and December). Additionally, different aerosol types were categorized using AERONET direct sun (AOD, AE) and inversion products (VSD, SSA, RI, FMF, and ASY). The monthly mean AOD, AE, and FMF varied from ⁓0.33 to 1.07, ⁓0.3 to 1.4, and 0.6-0.9 µm over all selected AERONET sites during the smog period. Moreover, the outcomes revealed the dominance of biomass-burning and urban/ industrial aerosols over Lahore, Karachi, Dhaka, and Bhola during the smog period. Contrary to this, dust and mixed aerosols were abundant over Jaipur and Karachi, respectively. Furthermore, HYSPLIT cluster analysis is used to trace the transmission paths and potential sources of aerosols over selected sites.
Collapse