1
|
Vanetti C, Saulle I, Artusa V, Moscheni C, Cappelletti G, Zecchini S, Strizzi S, Garziano M, Fenizia C, Tosoni A, Broggiato M, Ogno P, Nebuloni M, Clerici M, Trabattoni D, Limanaqi F, Biasin M. A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:353-367. [PMID: 39421150 PMCID: PMC11486504 DOI: 10.15698/mic2024.10.838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Antonella Tosoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Martina Broggiato
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Pasquale Ogno
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Manuela Nebuloni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
- Department of Biomedical and Clinical Sciences, Fondazione Don Carlo Gnocchi, IRCCSMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| |
Collapse
|
2
|
Suganuma T, Hassan H, Gogol M, Workman JL. C G composition in transposon-derived genes is increased in FXD with perturbed immune system. NAR MOLECULAR MEDICINE 2024; 1:ugae015. [PMID: 39465205 PMCID: PMC11500580 DOI: 10.1093/narmme/ugae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Increasing incidence of Fragile X disorders (FXD) and of immune-mediated disorders in FXD suggests that additional factors besides FMR1 mutations contribute to the pathogenesis. Here, we discovered that the expression levels or splicing of specific transposon element (TE)-derived genes, regulating purine metabolism and immune responses against viral infections are altered in FXD. These genes include HLA genes clustered in chr6p21.3 and viral responsive genes in chr5q15. Remarkably, these TE-derived genes contain a low A T/C G suggesting base substitutions of A T to C G. The TE-derived genes with changed expression levels contained a higher content of 5'-CG-3' dinucleotides in FXD compared to healthy donors. This resembles the genomes of some RNA viruses, which maintain high contents of CG dinucleotides to sustain their latent infection exploiting antiviral responses. Thus, past viral infections may have persisted as TEs, provoking immune-mediated disorders in FXD.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| |
Collapse
|
3
|
Sæterstad S, Østvik AE, Hansen MD, Bruland T, van Beelen Granlund A. The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response. J Transl Med 2024; 22:750. [PMID: 39123229 PMCID: PMC11316291 DOI: 10.1186/s12967-024-05532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNɣ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabeth Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
4
|
Best LG, Erdei E, Haack K, Kent JW, Malloy KM, Newman DE, O’Leary M, O’Leary RA, Sun Q, Navas-Acien A, Franceschini N, Cole SA. Genetic variant rs1205 is associated with COVID-19 outcomes: The Strong Heart Study and Strong Heart Family Study. PLoS One 2024; 19:e0302464. [PMID: 38662664 PMCID: PMC11045144 DOI: 10.1371/journal.pone.0302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.
Collapse
Affiliation(s)
- Lyle G. Best
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
- Pathology Department, University of North Dakota, Grand Forks, ND, United States of America
| | - Esther Erdei
- Pharmaceutical Sciences, University of New Mexico—Albuquerque, Albuquerque, New Mexico, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Jack W. Kent
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Kimberly M. Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Marcia O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Rae A. O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shelley A. Cole
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| |
Collapse
|
5
|
Venema WJ, Hiddingh S, van Loosdregt J, Bowes J, Balliu B, de Boer JH, Ossewaarde-van Norel J, Thompson SD, Langefeld CD, de Ligt A, van der Veken LT, Krijger PHL, de Laat W, Kuiper JJW. A cis-regulatory element regulates ERAP2 expression through autoimmune disease risk SNPs. CELL GENOMICS 2024; 4:100460. [PMID: 38190099 PMCID: PMC10794781 DOI: 10.1016/j.xgen.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) near the ERAP2 gene are associated with various autoimmune conditions, as well as protection against lethal infections. Due to high linkage disequilibrium, numerous trait-associated SNPs are correlated with ERAP2 expression; however, their functional mechanisms remain unidentified. We show by reciprocal allelic replacement that ERAP2 expression is directly controlled by the splice region variant rs2248374. However, disease-associated variants in the downstream LNPEP gene promoter are independently associated with ERAP2 expression. Allele-specific conformation capture assays revealed long-range chromatin contacts between the gene promoters of LNPEP and ERAP2 and showed that interactions were stronger in patients carrying the alleles that increase susceptibility to autoimmune diseases. Replacing the SNPs in the LNPEP promoter by reference sequences lowered ERAP2 expression. These findings show that multiple SNPs act in concert to regulate ERAP2 expression and that disease-associated variants can convert a gene promoter region into a potent enhancer of a distal gene.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Susan D Thompson
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aafke de Ligt
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Vanetti C, Stracuzzi M, Crivellaro E, Ciciliano F, Garziano M, Fenizia C, Biasin M, Rubinacci V, Amendola A, Tanzi E, Zuccotti GV, Clerici M, Giacomet V, Trabattoni D. Humoral and cell-mediated immune responses in HIV-vertically infected young patients after three doses of the BNT162b2 mRNA SARS-CoV-2 vaccine. Front Immunol 2024; 14:1301766. [PMID: 38250079 PMCID: PMC10797701 DOI: 10.3389/fimmu.2023.1301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Data on the efficacy of three SARS-CoV-2 mRNA BNT162b2 vaccine doses and the role of previous SARS-CoV-2-infection in enhancing vaccine immunogenicity in HIV-vertically-infected people living with HIV (PLWH) are limited, as is the duration of vaccine-induced responses. Methods SARS-CoV-2 plasma neutralizing activity (NA) against the European (B.1), Delta (B.1.617.2) and Omicron (B.1.1.529) variants and cell-mediated immunity (CMI) were analyzed in 29 ART-treated young PLWH (mean age 27.9 years) and 30 healthy controls (HC) who received three BNT162b2 vaccine doses. Individuals were stratified based on the presence/absence of previous SARS-CoV-2 infection (infected and vaccinated -SIV-; uninfected and vaccinated -SV-). Analyses were performed before vaccination (T0), 25 days from the second dose (T1), the day the third dose was administered (T2), and 3 months after the third dose (T3). Results In PLWH: i) NA against all variants was higher in SIV compared to SV at T2 and was increased at T3; ii) switched-memory plasmablasts were augmented in SIV alone at T2 and T3; iii) a SARS-CoV-2 specific T cell memory was generated; iv) IFN-γ-secreting CD4+ and CD8+ T lymphocytes were boosted at T3 mainly in SV. CMI magnitude was reduced in PLWH compared to HC. Notably, after the third dose of vaccine viremia was unmodified, but CD4 T cell counts were reduced>20% in 3/29 PHLW. Conclusion A third dose of BNT162b2 vaccine induces strong humoral and CMI responses in young ART-treated PLWH independently from a previous SARS-CoV-2 natural infection. The lower magnitude of CMI responses should be considered when planning mRNA vaccine booster doses in PLWH.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marta Stracuzzi
- Pediatric Infectious Disease Unit, Ospedale L. Sacco, University of Milan, Milan, Italy
| | - Elisa Crivellaro
- Pediatric Infectious Disease Unit, Ospedale L. Sacco, University of Milan, Milan, Italy
| | - Federica Ciciliano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valeria Rubinacci
- Pediatric Infectious Disease Unit, Ospedale L. Sacco, University of Milan, Milan, Italy
| | | | - Elisabetta Tanzi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vania Giacomet
- Pediatric Infectious Disease Unit, Ospedale L. Sacco, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Raja A, Kuiper JJW. Evolutionary immuno-genetics of endoplasmic reticulum aminopeptidase II (ERAP2). Genes Immun 2023; 24:295-302. [PMID: 37925533 PMCID: PMC10721543 DOI: 10.1038/s41435-023-00225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Saulle I, Garziano M, Cappelletti G, Limanaqi F, Strizzi S, Vanetti C, Lo Caputo S, Poliseno M, Santantonio TA, Clerici M, Biasin M. Salivary miRNA Profiles in COVID-19 Patients with Different Disease Severities. Int J Mol Sci 2023; 24:10992. [PMID: 37446170 DOI: 10.3390/ijms241310992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, the SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we showed that of the 84 miRNAs analyzed, 8 were differently expressed in the plasma and saliva of SD patients. In particular: (1) miRNAs let-7a-5p, let-7b-5p, and let-7c-5p were significantly downregulated; and (2) miR-23a and b and miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, and miR-146) were significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9, and TNFα) and chemokines (CCL2 and RANTES) increased in both the saliva and plasma of SD and MD patients. Notably, disease severity correlated with NA and immune activation. Monitoring these parameters could help predict disease outcomes and identify new markers of disease progression.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Micaela Garziano
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Fiona Limanaqi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mariacristina Poliseno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Teresa Antonia Santantonio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
10
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
12
|
Vanetti C, Lampasona V, Stracuzzi M, Fenizia C, Biasin M, Saulle I, Limanaqi F, Abdelsalam A, Loretelli C, Paradiso L, Longoni E, Barcellini L, Piemonti L, Marzinotto I, Dispinseri S, Amendola A, Fappani C, Tanzi E, Clerici MS, Scarlatti G, Zuccotti GV, Giacomet V, Trabattoni D. The Immunological Profile of SARS-CoV-2 Infection in Children Is Linked to Clinical Severity and Age. Int J Mol Sci 2023; 24:ijms24076779. [PMID: 37047752 PMCID: PMC10095251 DOI: 10.3390/ijms24076779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) is clinically less severe in children, even if the wide variety and degree of severity of symptoms reported in children pose a still-unresolved challenge for clinicians. We performed an in-depth analysis of the immunological profiles of 18 hospitalized SARS-CoV-2-infected children, whose results were compared to those obtained from 13 age- and sex-matched healthy controls (HC). The patients were categorized as paucisymptomatic/moderate (55.6%) or severe/critical (44.5%) according to established diagnostic criteria and further stratified into the categories of infants (1–12 months), children (1–12 years), and adolescents (>12 years). We assessed SARS-CoV-2-specific RBD antibodies (Ab), neutralizing antibodies (nAb), and circulating cytokines/chemokines in the plasma, and the SARS-CoV-2-specific immune response was measured in PBMCs by gene expression and secretome analyses. Our results showed peculiar circulating cytokine/chemokine profiles among patients sharing a similar clinical phenotype. A cluster of patients consisting of infants with severe symptoms presented hyperinflammatory profiles, together with extremely polarized antibody profiles. In a second cluster consisting of paucisymptomatic patients, a less pronounced increase in the level of inflammatory cytokines, together with an association between the selected cytokines and humoral responses, was observed. A third cluster, again consisting of paucisymptomatic patients, showed a circulating cytokine/chemokine profile which overlapped with that of the HC. The SARS-CoV-2-stimulated production of pro-inflammatory proteins, T lymphocyte activation, and migration-specific proteins, were significantly increased in SARS-CoV-2-infected children compared to the HC. Our findings suggest that immune response activation in the course of SARS-CoV-2 infection in children is directly correlated with clinical severity and, to a lesser extent, age.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Marta Stracuzzi
- Paediatric Infectious Disease Unit, Ospedale L. Sacco, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ahmed Abdelsalam
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- International Center for T1D, Paediatric Clinical Research Center Romeo ed Enrica Invernizzi, Università degli Studi di Milano, 20157 Milan, Italy
| | - Cristian Loretelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- International Center for T1D, Paediatric Clinical Research Center Romeo ed Enrica Invernizzi, Università degli Studi di Milano, 20157 Milan, Italy
| | - Laura Paradiso
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Emma Longoni
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Lucia Barcellini
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonella Amendola
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mario Salvatore Clerici
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Vania Giacomet
- Paediatric Infectious Disease Unit, Ospedale L. Sacco, 20157 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
13
|
ERAP/HLA-C and KIR Genetic Profile in Couples with Recurrent Implantation Failure. Int J Mol Sci 2022; 23:ijms232012518. [PMID: 36293373 PMCID: PMC9603896 DOI: 10.3390/ijms232012518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Proper embryo implantation depends on the tolerance of the maternal immune system to the fetus and its foreign paternal antigens. During implantation and early pregnancy, the dominant leukocytes in the uterus are uterine NK cells, expressing killer immunoglobulin-like receptors (KIR). KIRs recognize human leukocyte antigens (HLA-C) on the human trophoblast inherited from the father and mother. The antigenic peptides presented by the HLA are formed via their cleavage by endoplasmic reticulum aminopeptidases ERAP1 and ERAP2. The aim of this study was to assess the association of combined KIR genes and their HLA-C ligands, as well as ERAP1 and ERAP2 polymorphisms with recurrent implantation failure after in vitro fertilization (RIF). We tested 491 couples who underwent in vitro fertilization (IVF) and 322 fertile couples. Genotype CC rs27044 ERAP1 in female with a male’s HLA-C1C1 or HLA-C1C2 protected from RIF (p/pcorr. = 0.005/0.044, OR = 0.343; p/pcorr. = 0.003/0.027, OR = 0.442, respectively). Genotype TT rs30187 ERAP1 in female with a male’s HLA-C1C2 genotype increased the risk of RIF. Summarizing, in the combination of female ERAP1 and an HLA-C partner, the rs30187 C>T and rs27044 C>G polymorphisms play an important role in implantation failure.
Collapse
|
14
|
Mattorre B, Tedeschi V, Paldino G, Fiorillo MT, Paladini F, Sorrentino R. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Front Immunol 2022; 13:1002375. [PMID: 36203608 PMCID: PMC9531115 DOI: 10.3389/fimmu.2022.1002375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Endoplasmic Reticulum Aminopeptidase 1 and 2 (ERAP1 and ERAP2) and Insulin Regulated Aminopeptidase (IRAP) are three M1 zinc metalloproteases whose role in antigen processing is the refining of peptidome either in the Endoplasmic reticulum (ERAP1 and ERAP2), or in the endosomes (IRAP). However, other novel and distinct functions are emerging. Here, we focus specifically on ERAP2. This gene has a peculiar evolutionary history, being absent in rodents and undergoing in humans to a balanced selection of two haplotypes, one of which not expressing the full length ERAP2. These observations suggest that its role in antigen presentation is not essential. An additional, less investigated role is in the regulation of the Renin Angiotensin System (RAS). ERAP1 and ERAP2 cleave Angiotensin II (Ang II) into Ang III and IV, which counteract the action of Ang II whereas IRAP is itself the receptor for Ang IV. We have recently reported that macrophages, independently from the haplotype, express and release a N-terminus ERAP2 “short” form which directly binds IRAP and the two molecules are co-expressed in the endosomes and on the cell membrane. This new evidence suggests that the maintenance of the ERAP2 gene in humans could be due to its activity in the regulation of the RAS system, possibly as an Ang IV agonist. Its role in the immune-mediated diseases as well as in disorders more specifically related to an imbalance of the RAS system, including hypertension, pre-eclampsia but also viral infections such as COVID-19, is discussed here.
Collapse
|
15
|
Fan J, Long QX, Ren JH, Chen H, Li MM, Cheng Z, Chen J, Zhou L, Huang AL. Genome-wide association study of SARS-CoV-2 infection in Chinese population. Eur J Clin Microbiol Infect Dis 2022; 41:1155-1163. [PMID: 35927536 PMCID: PMC9362144 DOI: 10.1007/s10096-022-04478-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.
Collapse
Affiliation(s)
- Jie Fan
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China.,Nanan District Center for Disease Control and Prevention, Chongqing, China
| | - Quan-Xin Long
- Key Laboratory of Molecular Biology On Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YixueYuan Road, YuZhong District, Chongqing, 400016, China
| | - Ji-Hua Ren
- Key Laboratory of Molecular Biology On Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YixueYuan Road, YuZhong District, Chongqing, 400016, China
| | - Hao Chen
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China
| | - Meng-Meng Li
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Chen
- Key Laboratory of Molecular Biology On Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YixueYuan Road, YuZhong District, Chongqing, 400016, China. .,Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology On Infectious Diseases, Chinese Ministry of Education, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YixueYuan Road, YuZhong District, Chongqing, 400016, China.
| |
Collapse
|
16
|
Kuśnierczyk P. To Be or Not to Be: The Case of Endoplasmic Reticulum Aminopeptidase 2. Front Immunol 2022; 13:902567. [PMID: 35769458 PMCID: PMC9234130 DOI: 10.3389/fimmu.2022.902567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
To be, or not to be, that is the question. (William Shakespeare, Hamlet)
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2, respectively) play a role in trimming peptides that are too long to be bound and presented by class I HLA (HLA-I) molecules to CD8+ T cells. They may also affect the HLA-I-presented peptide repertoire by overtrimming potential epitopes. Both enzymes may also be released from the cell to cleave cytokine receptors and regulate blood pressure. Both enzymes are polymorphic, which affects their expression, specificity, and activity, resulting in their role in diseases associated with HLA-I. In this brief review, we concentrate on ERAP2, less investigated because of its lack in laboratory mice and 25% of humans, as well as a lower polymorphism. ERAP2 was found to be associated with several diseases and to influence ERAP1 effects. It was discovered recently that the defective ERAP2 gene, not encoding functional aminopeptidase, may nevertheless, during viral infections, produce a truncated protein isoform of unknown function, possibly interfering with ERAP1 and full-length ERAP2 by heterodimer formation. The disease associations of ERAP2, alone or in combination with ERAP1, are reviewed.
Collapse
|
17
|
Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells 2022; 11:cells11101691. [PMID: 35626728 PMCID: PMC9139638 DOI: 10.3390/cells11101691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.
Collapse
|
18
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
19
|
Mattorre B, Caristi S, Donato S, Volpe E, Faiella M, Paiardini A, Sorrentino R, Paladini F. A Short ERAP2 That Binds IRAP Is Expressed in Macrophages Independently of Gene Variation. Int J Mol Sci 2022; 23:ijms23094961. [PMID: 35563348 PMCID: PMC9101739 DOI: 10.3390/ijms23094961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023] Open
Abstract
The M1 zinc metalloproteases ERAP1, ERAP2, and IRAP play a role in HLA-I antigen presentation by refining the peptidome either in the ER (ERAP1 and ERAP2) or in the endosomes (IRAP). They have also been entrusted with other, although less defined, functions such as the regulation of the angiotensin system and blood pressure. In humans, ERAP1 and IRAP are commonly expressed. ERAP2 instead has evolved under balancing selection that maintains two haplotypes, one of which undergoing RNA splicing leading to nonsense-mediated decay and loss of protein. Hence, likewise in rodents, wherein the ERAP2 gene is missing, about a quarter of the human population does not express ERAP2. We report here that macrophages, but not monocytes or other mononuclear blood cells, express and secrete an ERAP2 shorter form independent of the haplotype. The generation of this "short" ERAP2 is due to an autocatalytic cleavage within a distinctive structural motif and requires an acidic micro-environment. Remarkably, ERAP2 "short" binds IRAP and the two molecules are co-expressed in the endosomes as well as in the cell membrane. Of note, the same phenomenon could be observed in some cancer cells. These data prompt us to reconsider the role of ERAP2, which might have been maintained in humans due to fulfilling a relevant function in its "short" form.
Collapse
Affiliation(s)
- Benedetta Mattorre
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Silvana Caristi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Simona Donato
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Emilia Volpe
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Marika Faiella
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Rosa Sorrentino
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
- Correspondence: (R.S.); (F.P.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
- Correspondence: (R.S.); (F.P.)
| |
Collapse
|
20
|
Yang Z, Tian H, Bie F, Xu J, Zhou Z, Yang J, Li R, Peng Y, Bai G, Tian Y, Chen Y, Liu L, Fan T, Xiao C, Zheng Y, Zheng B, Wang J, Li C, Gao S, He J. ERAP2 Is Associated With Immune Infiltration and Predicts Favorable Prognosis in SqCLC. Front Immunol 2022; 12:788985. [PMID: 34992605 PMCID: PMC8725995 DOI: 10.3389/fimmu.2021.788985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Immunotherapy has been proven effective among several human cancer types, including Squamous cell lung carcinoma (SqCLC). ERAP2 plays a pivotal role in peptide trimming of many immunological processes. However, the prognostic role of ERAP2 and its relationship with immune cell infiltration in SqCLC remains unclear. Methods The differential expression of ERAP2 was identified via GEO and TCGA databases. We calculated the impact of ERAP2 on clinical prognosis using the Kaplan-Meier plotter. TIMER was applied to evaluate the abundance of immune cells infiltration and immune markers. SqCLC tissue microarrays containing 190 patients were constructed, and we performed immunohistochemical staining for ERAP2, CD8, CD47, CD68, and PD-L1 to validate our findings in public data. Results In the GEO SqCLC database, ERAP2 was upregulated in patients with better survival (p=0.001). ERAP2 expression in SqCLC was significantly lower than that of matched normal samples (p<0.05) based on TCGA SqCLC data. Higher expression of ERAP2 was significantly associated with better survival in SqCLC patients from TCGA (p=0.007), KM-plotter (p=0.017), and our tissue microarrays (TMAs) (p=0.026). In univariate and multivariate Cox analysis of SqCLC TMAs, high ERAP2 expression was identified as an independent protective factor for SqCLC patients (Univariate Cox, HR=0.659, range 0.454-0.956, p<0.05. Multivariate Cox, HR=0.578, range 0.385-0.866, p<0.05). In TIMER, ERAP2 was positively correlated with several immune markers (CD274, p=1.27E-04; CD68, p=5.88E-08) and immune infiltrating cells (CD8+ T cell, p=4.09E-03; NK cell, p=1.00E-04). In our cohort, ERAP2 was significantly correlated with CD8+ tumor-infiltrating lymphocytes (TILs) (p=0.0029), and patients with higher ERAP2 expression had a higher percentage of PD-L1 positive patients (p=0.049) and a higher CD8+ TILs level (p=0.036). Conclusions For the first time, our study demonstrates that higher expression of ERAP2 is tightly associated with the immuno-supportive microenvironment and can predict a favorable prognosis in SqCLC. Meanwhile, ERAP2 may be a promising immunotherapeutic target for patients with SqCLC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhui Yang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, The University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Immunological Characterization of HIV and SARS-CoV-2 Coinfected Young Individuals. Cells 2021; 10:cells10113187. [PMID: 34831410 PMCID: PMC8618616 DOI: 10.3390/cells10113187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 01/11/2023] Open
Abstract
While the risk of SARS-CoV-2 infection and/or COVID-19 disease progression in the general population has been largely assessed, its impact on HIV-positive individuals remains unclear. We present clinical and immunological data collected in a cohort of HIV-infected young individuals during the first wave of COVID-19 pandemic. SARS-CoV-2 RNA, virus-specific antibodies, as well as the expression of factors involved in the anti-viral immune response were analyzed. Moreover, we set up an in vitro coinfection assay to study the mechanisms correlated to the coinfection process. Our results did not show any increased risk of severe COVID-19 in HIV-positive young individuals. In those subjects who contracted SARS-CoV-2 infection, an increase in IL-10 expression and production was observed. Furthermore, in the in vitro coinfection assay, we revealed a reduction in SARS-CoV-2 replication associated to an upregulation of IL-10. We speculate that IL-10 could play a crucial role in the course of SARS-CoV-2 infection in HIV-positive individuals. These results might help defining clinical management of HIV/SARS-CoV-2 co-infected young individuals, or putative indications for vaccination schedules in this population.
Collapse
|
22
|
Saulle I, Vicentini C, Clerici M, Biasin M. Antigen presentation in SARS-CoV-2 infection: the role of class I HLA and ERAP polymorphisms. Hum Immunol 2021; 82:551-560. [PMID: 34116863 PMCID: PMC8108382 DOI: 10.1016/j.humimm.2021.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Given the highly polymorphic nature of Human Leukocyte Antigen (HLA) molecules, it is not surprising that they function as key regulators of the host immune response to almost all invading pathogens, including SARS-CoV-2, the etiological agent responsible for the recent COVID-19 pandemic. Several correlations have already been established between the expression of a specific HLA allele/haplotype and susceptibility/progression of SARS-CoV-2 infection and new ones are continuously emerging. Protective and harmful HLA variants have been described in both mild and severe forms of the disease, but considering the huge amount of existing variants, the data gathered in such a brief span of time are to some extent confusing and contradictory. The aim of this mini-review is to provide a snap-shot of the main findings so far collected on the HLA-SARS-CoV-2 interaction, so as to partially untangle this intricate yarn. As key factors in the generation of antigenic peptides to be presented by HLA molecules, ERAP1 and ERAP2 role in SARS-CoV-2 infection will be revised as well.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy; Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, Milan, Italy; SM Nascente Scientific Institute, IRCCS, Don C Gnocchi Foundation, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| |
Collapse
|
23
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
24
|
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun Biol 2021; 4:590. [PMID: 34002013 PMCID: PMC8128904 DOI: 10.1038/s42003-021-02095-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
Collapse
|
25
|
Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, Trabattoni D, Clerici M, Biasin M. ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:1609-1617. [PMID: 33619214 DOI: 10.4049/jimmunol.2000991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Recombinant human (rh) ERAP2-treated PBMCs are less susceptible to in vitro HIV-1 infection even when CD8+ T cells are depleted. We therefore investigated whether ERAP2 can trigger other immunocompetent cells, boosting their antiviral potential. To this end, human monocyte-derived macrophages (MDMs) differentiated from PBMCs of 15 healthy donors were in vitro HIV-1 infected in the presence/absence of 100 ng/ml of rhERAP2, rhERAP1, or rhERAP1+rhERAP2. Notably, rhERAP2 treatment resulted in a 7-fold reduction of HIV-1 replication in MDMs (p < 0.05). This antiviral activity was associated with an increased mRNA expression of CD80, IL-1β, IL-18, and TNF-α (p < 0.01 for cytokine) in in vitro ERAP2-treated HIV-1-infected MDMs and a greater release of IL-1β, TNF-α, IL-6, and IL-8 (p < 0.01 for each cytokine). The rhERAPs addition also induced the functional inflammasome activation by ASC speck formation in monocytes (p < 0.01) and in THP1-derived macrophages (p < 0.01) as well as a rise in the percentage of activated classical (CD14+CD16-HLA-DRII+CCR7+) and intermediate (CD14++CD16+HLA-DRII+CCR7+) monocytes (p < 0.02). Finally, THP-1-derived macrophages showed an increased phagocytosis following all ERAPs treatments. The discovery that ERAPs are able to trigger several antiviral mechanisms in monocyte/macrophages suggests that their anti-HIV potential is not limited to their canonical role in Ag presentation and CD8+ T cell activation. These findings pose the premise to further investigate the role of ERAPs in both innate and adaptive immunostimulatory pathways and suggest their potential use in novel preventive and therapeutic approaches against HIV-1 infection.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | | | | | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and.,Fondazione IRCCS Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy;
| |
Collapse
|
26
|
Niepiekło-Miniewska W, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wiśniewski A, Piekarska K, Nowak I, Kuśnierczyk P. Synergy of endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) polymorphisms in atopic dermatitis: Effects on disease prevalence. Hum Immunol 2020; 82:121-123. [PMID: 33309189 DOI: 10.1016/j.humimm.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to a length of 8-10 amino acids optimal for binding by HLA class I molecules. Although these two enzymes may work separately, but they may also form a heterodimer of enhanced trimming efficiency. We have earlier described a role for ERAP1 single nucleotide polymorphism rs26618 and HLA-C*05:01 as risk factors for atopic dermatitis (AD). Here, we examined whether ERAP2 single nucleotide polymorphism rs2248374, determining the presence or absence of the functional form of enzyme, would influence the rs26618 effect. Out of nine rs2248374 - rs26618 genotypic combinations, only one, rs2248374*A/A - rs26618*C/C, was associated with a risk of AD. Interestingly, the odds ratio increased from 1.10 (CI95%: 0.72; 1.69; p = 0.657) for ERAP2 rs2248374*A/A and 1.88 (CI95%: 1.07; 3.28; p = 0.025) for ERAP1 rs26618*C/C to 3.36 (CI95%: 1.41; 8.01; p = 0.004) for their combination, therefore revealing a synergistic effect.
Collapse
Affiliation(s)
- Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - Joanna Narbutt
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Aleksandra Lesiak
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Piotr Kuna
- 2nd Chair of Internal Diseases, Medical University of Łódź, Poland; N. Barlicki Medical University Hospital, Łódź, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
27
|
Kuiper JJW, Venema WJ. HLA-A29 and Birdshot Uveitis: Further Down the Rabbit Hole. Front Immunol 2020; 11:599558. [PMID: 33262772 PMCID: PMC7687429 DOI: 10.3389/fimmu.2020.599558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
HLA class I alleles constitute established risk factors for non-infectious uveitis and preemptive genotyping of HLA class I alleles is standard practice in the diagnostic work-up. The HLA-A29 serotype is indispensable to Birdshot Uveitis (BU) and renders this enigmatic eye condition a unique model to better understand how the antigen processing and presentation machinery contributes to non-infectious uveitis or chronic inflammatory conditions in general. This review will discuss salient points regarding the protein structure of HLA-A29 and how key amino acid positions impact the peptide binding preference and interaction with T cells. We discuss to what extent the risk genes ERAP1 and ERAP2 uniquely affect HLA-A29 and how the discovery of a HLA-A29-specific submotif may impact autoantigen discovery. We further provide a compelling argument to solve the long-standing question why BU only affects HLA-A29-positive individuals from Western-European ancestry by exploiting data from the 1000 Genomes Project. We combine novel insights from structural and immunopeptidomic studies and discuss the functional implications of genetic associations across the HLA class I antigen presentation pathway to refine the etiological basis of Birdshot Uveitis.
Collapse
Affiliation(s)
- Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Wouter J. Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
28
|
Lozach PY. Cell Biology of Viral Infections. Cells 2020; 9:cells9112431. [PMID: 33171736 PMCID: PMC7694952 DOI: 10.3390/cells9112431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|