1
|
Sparacino L, Antonacci Y, Bara C, Valenti A, Porta A, Faes L. A Method to Assess Granger Causality, Isolation and Autonomy in the Time and Frequency Domains: Theory and Application to Cerebrovascular Variability. IEEE Trans Biomed Eng 2024; 71:1454-1465. [PMID: 38055366 DOI: 10.1109/tbme.2023.3340011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Concepts of Granger causality (GC) and Granger autonomy (GA) are central to assess the dynamics of coupled physiologic processes. While causality measures have been already proposed and applied in time and frequency domains, measures quantifying self-dependencies are still limited to the time-domain formulation and lack of clear spectral representation. METHODS We embed into the linear parametric framework for computing GC from a driver X to a target process Y a measure of Granger Isolation (GI) quantifying the part of the dynamics of Y not originating from X, and a new spectral measure of GA assessing frequency-specific patterns of self-dependencies in Y. The measures are illustrated in theoretical simulations and applied to time series of arterial pressure and cerebral blood flow obtained in syncope subjects and healthy controls. RESULTS Simulations show that GI is complementary to GC but not trivially related to it, while GA reflects the regularity of the internal dynamics of the target process. In the application to cerebrovascular interactions, spectral GA quantified the physiological response to postural stress of slow cerebral blood flow oscillations, while spectral GC and GI detected an altered response to orthostasis in syncope subjects, likely related to impaired cerebral autoregulation. CONCLUSION AND SIGNIFICANCE The new spectral measures of GI and GA are useful complements to GC for the analysis of interacting oscillatory processes, and detect pathophysiological responses to postural stress which cannot be traced in the time domain. The thorough assessment of causality, isolation and autonomy opens new perspectives for the analysis of coupled processes in both physiological and clinical investigations.
Collapse
|
2
|
Chen L, Tang C, Wang Z, Zhang L, Gu B, Liu X, Ming D. Enhancing Motor Sequence Learning via Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): An EEG Study. IEEE J Biomed Health Inform 2024; 28:1285-1296. [PMID: 38109248 DOI: 10.1109/jbhi.2023.3344176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Motor learning plays a crucial role in human life, and various neuromodulation methods have been utilized to strengthen or improve it. Transcutaneous auricular vagus nerve stimulation (taVNS) has gained increasing attention due to its non-invasive nature, affordability and ease of implementation. Although the potential of taVNS on regulating motor learning has been suggested, its actual regulatory effect has yet been fully explored. Electroencephalogram (EEG) analysis provides an in-depth understanding of cognitive processes involved in motor learning so as to offer methodological support for regulation of motor learning. To investigate the effect of taVNS on motor learning, this study recruited 22 healthy subjects to participate a single-blind, sham-controlled, and within-subject serial reaction time task (SRTT) experiment. Every subject involved in two sessions at least one week apart and received a 20-minute active/sham taVNS in each session. Behavioral indicators as well as EEG characteristics during the task state, were extracted and analyzed. The results revealed that compared to the sham group, the active group showed higher learning performance. Additionally, the EEG results indicated that after taVNS, the motor-related cortical potential amplitudes and alpha-gamma modulation index decreased significantly and functional connectivity based on partial directed coherence towards frontal lobe was enhanced. These findings suggest that taVNS can improve motor learning, mainly through enhancing cognitive and memory functions rather than simple movement learning. This study confirms the positive regulatory effect of taVNS on motor learning, which is particularly promising as it offers a potential avenue for enhancing motor skills and facilitating rehabilitation.
Collapse
|
3
|
Pernice R, Sparacino L, Bari V, Gelpi F, Cairo B, Mijatovic G, Antonacci Y, Tonon D, Rossato G, Javorka M, Porta A, Faes L. Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls. Auton Neurosci 2022; 242:103021. [PMID: 35985253 DOI: 10.1016/j.autneu.2022.103021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 10/31/2022]
Abstract
We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing orthostatic syncope in response to prolonged postural stress, and in healthy controls. The spectral measures of total, causal and instantaneous coupling between HP and SAP, and between MAP and CBFV, are averaged in the low-frequency band of the spectrum to focus on specific rhythms, and over all frequencies to get time-domain measures. The analysis of cardiovascular interactions indicates that postural stress induces baroreflex involvement, and its prolongation induces baroreflex dysregulation in syncope subjects. The analysis of cerebrovascular interactions indicates that the postural stress enhances the total coupling between MAP and CBFV, and challenges cerebral autoregulation in syncope subjects, while the strong sympathetic activation elicited by prolonged postural stress in healthy controls may determine an increased coupling from CBFV to MAP during late tilt. These results document that the combination of time-domain and spectral measures allows us to obtain an integrated view of cardiovascular and cerebrovascular regulation in healthy and diseased subjects.
Collapse
Affiliation(s)
- Riccardo Pernice
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesca Gelpi
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Yuri Antonacci
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, Bldg. 17, 90128 Palermo, Italy
| | - Davide Tonon
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Gianluca Rossato
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Michal Javorka
- Department of Physiology and the Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Alberto Porta
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy.
| |
Collapse
|
4
|
Baccalá LA, Sameshima K. Partial Directed Coherence and the Vector Autoregressive Modelling Myth and a Caveat. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:845327. [PMID: 36926097 PMCID: PMC10012995 DOI: 10.3389/fnetp.2022.845327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022]
Abstract
Here we dispel the lingering myth that Partial Directed Coherence is a Vector Autoregressive (VAR) Modelling dependent concept. In fact, our examples show that it is spectral factorization that lies at its heart, for which VAR modelling is a mere, albeit very efficient and convenient, device. This applies to Granger Causality estimation procedures in general and also includes instantaneous Granger effects. Care, however, must be exercised for connectivity between multivariate data generated through nonminimum phase mechanisms as it may possibly be incorrectly captured.
Collapse
Affiliation(s)
- Luiz A Baccalá
- Laboratório de Comunicações e Sinais, Departamento de Telecomunicações e Controle, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - Koichi Sameshima
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Papana A. Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1570. [PMID: 34945876 PMCID: PMC8700128 DOI: 10.3390/e23121570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022]
Abstract
The study of the interdependence relationships of the variables of an examined system is of great importance and remains a challenging task. There are two distinct cases of interdependence. In the first case, the variables evolve in synchrony, connections are undirected and the connectivity is examined based on symmetric measures, such as correlation. In the second case, a variable drives another one and they are connected with a causal relationship. Therefore, directed connections entail the determination of the interrelationships based on causality measures. The main open question that arises is the following: can symmetric correlation measures or directional causality measures be applied to infer the connectivity network of an examined system? Using simulations, we demonstrate the performance of different connectivity measures in case of contemporaneous or/and temporal dependencies. Results suggest the sensitivity of correlation measures when temporal dependencies exist in the data. On the other hand, causality measures do not spuriously indicate causal effects when data present only contemporaneous dependencies. Finally, the necessity of introducing effective instantaneous causality measures is highlighted since they are able to handle both contemporaneous and causal effects at the same time. Results based on instantaneous causality measures are promising; however, further investigation is required in order to achieve an overall satisfactory performance.
Collapse
Affiliation(s)
- Angeliki Papana
- Department of Economics, University of Macedonia, 54636 Thessaloniki, Greece
| |
Collapse
|