1
|
Gollie JM, Patel SS, Harris-Love MO, Cohen SD, Blackman MR. Fatigability and the Role of Neuromuscular Impairments in Chronic Kidney Disease. Am J Nephrol 2022; 53:253-263. [PMID: 35344954 PMCID: PMC9871956 DOI: 10.1159/000523714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The combination of neuromuscular impairments plus psychosocial aspects of chronic kidney disease (CKD) may predispose these patients to greater risk for experiencing increased levels of fatigability. There has been extensive clinical and scientific interest in the problem of fatigue in CKD and end-stage kidney disease (ESKD) patients, whereas less attention has been directed to understanding fatigability. Accordingly, the primary purposes of this review are to (1) discuss fatigue and fatigability and their potential interactions in patients with CKD and ESKD, (2) provide evidence for increased fatigability in CKD and ESKD patients, (3) examine how commonly experienced neuromuscular impairments in CKD and ESKD patients may contribute to the severity of performance fatigability, and (4) highlight preliminary evidence on the effects of exercise as a potential clinical treatment for targeting fatigability in this population. SUMMARY Fatigue is broadly defined as a multidimensional construct encompassing a subjective lack of physical and/or mental energy that is perceived by the individual to interfere with usual or desired activities. In contrast, fatigability is conceptualized within the context of physical activity and is quantified as the interactions between reductions in objective measures of performance (i.e., performance fatigability) and perceptual adjustments regulating activity performance (i.e., perceived fatigability). We propose herein a conceptual model to extend current understandings of fatigability by considering the interactions among fatigue, perceived fatigability, and performance fatigability. Neuromuscular impairments reported in patients with CKD and ESKD, including reductions in force capacity, skeletal muscle atrophy, mitochondrial dysfunction, abnormal skeletal muscle excitability, and neurological complications, may each contribute to the greater performance fatigability observed in these patients. KEY MESSAGES Considering the interactions among fatigue, perceived fatigability, and performance fatigability provides a novel conceptual framework to advance the understanding of fatigability in CKD and ESKD patients. Measures of fatigability may provide valuable clinical insights into the overall health status of CKD and ESKD patients. Existing data suggest that CKD and ESKD patients are at greater risk of experiencing increased fatigability, partly due to neuromuscular impairments associated with reduced kidney function. Further investigations are warranted to determine the potential clinical role fatigability measures can play in monitoring the health of CKD and ESKD patients, and in identifying potential treatments targeting fatigability in this patient population.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Health, Human Function and Rehabilitation Sciences, George Washington University, Washington, DC, USA
| | - Samir S. Patel
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA;,Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Scott D. Cohen
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA;,Departments of Medicine and Rehabilitation Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Harris-Love MO, Gollie JM, Keogh JWL. Eccentric Exercise: Adaptations and Applications for Health and Performance. J Funct Morphol Kinesiol 2021; 6:96. [PMID: 34842737 PMCID: PMC8628948 DOI: 10.3390/jfmk6040096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled "Eccentric Exercise: Adaptations and Applications for Health and Performance". The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation.
Collapse
Affiliation(s)
- Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Geriatric Research Education and Clinical Center, VA Eastern Colorado Healthcare System, Aurora, CO 80045, USA
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
| | - Jared M. Gollie
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Health, Human Function, and Rehabilitation Sciences, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Justin W. L. Keogh
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia;
- Sports Performance Research Centre New Zealand, Auckland University of Technology, Auckland 1010, New Zealand
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|