1
|
Nguyen CT, Le VP, Le TH, Kim JS, Back SH, Koo KI. Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers. J Funct Biomater 2025; 16:35. [PMID: 39852591 PMCID: PMC11766338 DOI: 10.3390/jfb16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes.
Collapse
Affiliation(s)
- Chanh-Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Jeong Sook Kim
- Department of Obstetrics and Gynecology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea;
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyo-in Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
2
|
Zhang P, Fan Z, Cheng P, Tian F, Wang Z, Han J. Dynamic hydrazone crosslinked salecan/chondroitin sulfate hydrogel platform as a promising wound healing Strategy: A comparative study on antibiotic and probiotic delivery. Int J Pharm 2024; 665:124667. [PMID: 39241931 DOI: 10.1016/j.ijpharm.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Natural polysaccharide-based active-ingredient carriers have been a source of great concern for a long time. In order to explore potential antibiotics and probiotics carriers, a novel injectable chondroitin sulfate/salecan (CS) hydrogel was constructed by forming dynamic hydrazone bonds. Scanning electron microscope (SEM), proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), bacteriostatic test, and rheological experiments were used to investigate the chemical structure, inherent morphology, and enzymatic corruption of the hydrogel in vitro. The resulting hydrogels exhibited ideal probiotics loading capacity, drug release behavior, excellent antimicrobial activity and variable properties. Crucially, owing to its exceptional biocompatibility and reversible crosslinking network, this hydrogel can function as a three-dimensional extracellular matrix for cells, enabling cells to maintain high vitality and proliferation, and promote wound healing. The aforementioned findings indicated that this novel hydrogel can be a promising candidate as an active-ingredient carrier and scaffold material for tissue engineering.
Collapse
Affiliation(s)
- Pan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Fang Tian
- Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
3
|
Debbi L, Machour M, Dahis D, Shoyhet H, Shuhmaher M, Potter R, Tabory Y, Goldfracht I, Dennis I, Blechman T, Fuchs T, Azhari H, Levenberg S. Ultrasound Mediated Polymerization for Cell Delivery, Drug Delivery, and 3D Printing. SMALL METHODS 2024; 8:e2301197. [PMID: 38376006 DOI: 10.1002/smtd.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Safe and accurate in situ delivery of biocompatible materials is a fundamental requirement for many biomedical applications. These include sustained and local drug release, implantation of acellular biocompatible scaffolds, and transplantation of cells and engineered tissues for functional restoration of damaged tissues and organs. The common practice today includes highly invasive operations with major risks of surgical complications including adjacent tissue damage, infections, and long healing periods. In this work, a novel non-invasive delivery method is presented for scaffold, cells, and drug delivery deep into the body to target inner tissues. This technology is based on acousto-sensitive materials which are polymerized by ultrasound induction through an external transducer in a rapid and local fashion without additional photoinitiators or precursors. The applicability of this technology is demonstrated for viable and functional cell delivery, for drug delivery with sustained release profiles, and for 3D printing. Moreover, the mechanical properties of the delivered scaffold can be tuned to the desired target tissue as well as controlling the drug release profile. This promising technology may shift the paradigm for local and non-invasive material delivery approach in many clinical applications as well as a new printing method - "acousto-printing" for 3D printing and in situ bioprinting.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Daniel Dahis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hagit Shoyhet
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ruth Potter
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Tabory
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Idit Goldfracht
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Itiel Dennis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tom Blechman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Theodor Fuchs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Haim Azhari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
4
|
Le HT, Phan HL, Lenshof A, Duong VT, Choi C, Cha C, Laurell T, Koo KI. Ultrasound standing wave spatial patterning of human umbilical vein endothelial cells for 3D micro-vascular networks formation. Biofabrication 2023; 16:015009. [PMID: 37844581 DOI: 10.1088/1758-5090/ad03be] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, the fabrication of micro-vascular networks is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix. The functionality of the matured microvasculature networks was demonstrated through the enhancement of cell-cell adhesion, angiogenesis process, and perfusion tests with microparticles, FITC-dextran, and whole mouse blood. Moreover, animal experiments exhibited the implantability including that the pre-existing blood vessels of the host sprout towards the preformed vessels of the scaffold over time and the microvessels inside the implanted scaffold matured from empty tubular structures to functional blood-carrying microvessels in two weeks.
Collapse
Affiliation(s)
- Huong Thi Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
5
|
Duong VT, Nguyen CT, Phan HL, Le VP, Dang TT, Choi C, Seo J, Cha C, Back SH, Koo KI. Double-layered blood vessels over 3 mm in diameter extruded by the inverse-gravity technique. Biofabrication 2023; 15:045022. [PMID: 37659401 DOI: 10.1088/1758-5090/acf61f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it. This technique produced an extruded mixture of human aortic smooth muscle cells (HASMCs) and type-I collagen as a tubular structure with an inner diameter of 3.5 mm. After a 21 day maturation period, the maximal burst pressure, longitudinal breaking force, and circumferential breaking force of the HASMC TEVG were 416 mmHg, 0.69 N, and 0.89 N, respectively. The HASMC TEVG was endothelialised with human umbilical vein endothelial cells to form a tunica intima that simulated human vessels. Besides subcutaneous implantability on mice, the double-layered blood vessels showed a considerably lower adherence of platelets and red blood cells once exposed to heparinised mouse blood and were considered nonhaemolytic. The proposed IG extrusion technique can be applied in various fields requiring multilayered materials with large diameters.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Chanh Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Cholong Choi
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongmo Seo
- Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
6
|
Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable Acoustic Holography using Medium-Sound-Speed Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301489. [PMID: 37283454 PMCID: PMC10427405 DOI: 10.1002/advs.202301489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Acoustic holography offers the ability to generate designed acoustic fields to manipulate microscale objects. However, the static nature or large aperture sizes of 3D printed acoustic holographic phase plates limits the ability to rapidly alter generated fields. In this work, a programmable acoustic holography approach is demonstrated by which multiple discrete or continuously variable acoustic targets can be created. Here, the holographic phase plate encodes multiple images, where the desired field is produced by modifying the sound speed of an intervening fluid media. Its flexibility is demonstrated in generating various acoustic patterns, including continuous line segments, discrete letters and numbers, using this method as a sound speed indicator and fluid identification tool. This programmable acoustic holography approach has the advantages of generating reconfigurable and designed acoustic fields, with broad potential in microfluidics, cell/tissue engineering, real-time sensing, and medical ultrasound.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jizhen Wang
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - William S. Harley
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Peter V. S. Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| | - David J. Collins
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| |
Collapse
|
7
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
8
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
9
|
Wang Z, Rich J, Hao N, Gu Y, Chen C, Yang S, Zhang P, Huang TJ. Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. MICROSYSTEMS & NANOENGINEERING 2022; 8:45. [PMID: 35498337 PMCID: PMC9051122 DOI: 10.1038/s41378-022-00374-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Nanocarrier and exosome encapsulation has been found to significantly increase the efficacy of targeted drug delivery while also minimizing unwanted side effects. However, the development of exosome-encapsulated drug nanocarriers is limited by low drug loading efficiencies and/or complex, time-consuming drug loading processes. Herein, we have developed an acoustofluidic device that simultaneously performs both drug loading and exosome encapsulation. By synergistically leveraging the acoustic radiation force, acoustic microstreaming, and shear stresses in a rotating droplet, the concentration, and fusion of exosomes, drugs, and porous silica nanoparticles is achieved. The final product consists of drug-loaded silica nanocarriers that are encased within an exosomal membrane. The drug loading efficiency is significantly improved, with nearly 30% of the free drug (e.g., doxorubicin) molecules loaded into the nanocarriers. Furthermore, this acoustofluidic drug loading system circumvents the need for complex chemical modification, allowing drug loading and encapsulation to be completed within a matter of minutes. These exosome-encapsulated nanocarriers exhibit excellent efficiency in intracellular transport and are capable of significantly inhibiting tumor cell proliferation. By utilizing physical forces to rapidly generate hybrid nanocarriers, this acoustofluidic drug loading platform wields the potential to significantly impact innovation in both drug delivery research and applications.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
10
|
Ozcelik A, Aslan Z. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles. BIOMICROFLUIDICS 2022; 16:014103. [PMID: 35154554 PMCID: PMC8816518 DOI: 10.1063/5.0081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
Miniaturization of systems and processes provides numerous benefits in terms of cost, reproducibility, precision, minimized consumption of chemical reagents, and prevention of contamination. The field of microfluidics successfully finds a place in a plethora of applications, including on-chip nanoparticle synthesis. Compared with the bulk approaches, on-chip methods that are enabled by microfluidic devices offer better control of size and uniformity of fabricated nanoparticles. However, these microfluidic devices generally require complex and expensive fabrication facilities that are not readily available in low-resourced laboratories. Here, a low-cost and simple acoustic device is demonstrated by generating acoustic streaming flows inside glass capillaries through exciting different flexural modes. At distinct frequencies, the flexural modes of the capillary result in different oscillation profiles that can insert harmonic forcing into the fluid. We explored these flexural modes and identified the modes that can generate strong acoustic streaming vortices along the glass capillary. Then, we applied these modes for fluid mixing using an easy-to-fabricate acoustofluidic device architecture. This device is applied in the fabrication of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles. The acoustic device consists of a thin glass capillary and two polydimethylsiloxane adaptors that are formed using three-dimensional printed molds. By controlling the flow rates of the polymer and water solutions, PLGA nanoparticles with diameters between 65 and 96 nm are achieved with polydispersity index values ranging between 0.08 and 0.18. Owing to its simple design and minimal fabrication requirements, the proposed acoustofluidic mixer can be applied for microfluidic fluid mixing applications in limited resource settings.
Collapse
Affiliation(s)
- Adem Ozcelik
- Mechanical Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Zeynep Aslan
- Mechanical Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
11
|
Akther A, Walsh EP, Reineck P, Gibson BC, Ohshima T, Abe H, McColl G, Jenkins NL, Hall LT, Simpson DA, Rezk AR, Yeo LY. Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. Anal Chem 2021; 93:16133-16141. [PMID: 34813284 DOI: 10.1021/acs.analchem.1c03893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diamond nitrogen-vacancy (NV) centers constitute a promising class of quantum nanosensors owing to the unique magneto-optic properties associated with their spin states. The large surface area and photostability of diamond nanoparticles, together with their relatively low synthesis costs, make them a suitable platform for the detection of biologically relevant quantities such as paramagnetic ions and molecules in solution. Nevertheless, their sensing performance in solution is often hampered by poor signal-to-noise ratios and long acquisition times due to distribution inhomogeneities throughout the analyte sample. By concentrating the diamond nanoparticles through an intense microcentrifugation effect in an acoustomicrofluidic device, we show that the resultant dense NV ensembles within the diamond nanoparticles give rise to an order-of-magnitude improvement in the measured acquisition time. The ability to concentrate nanoparticles under surface acoustic wave (SAW) microcentrifugation in a sessile droplet is, in itself, surprising given the well-documented challenge of achieving such an effect for particles below 1 μm in dimension. In addition to a demonstration of their sensing performance, we thus reveal in this work that the reason why the diamond nanoparticles readily concentrate under the SAW-driven recirculatory flow can be attributed to their considerably higher density and hence larger acoustic contrast compared to those for typical particles and cells for which the SAW microcentrifugation flow has been shown to date.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ella P Walsh
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Nicole L Jenkins
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Liam T Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
13
|
Novotny J, Lenshof A, Laurell T. Acoustofluidic platforms for particle manipulation. Electrophoresis 2021; 43:804-818. [PMID: 34719049 DOI: 10.1002/elps.202100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
There is an increasing interest in acoustics for microfluidic applications. This field, commonly known as acoustofluidics involves the interaction of ultrasonic standing waves with fluids and dispersed microparticles. The combination of microfluidics and the so-called acoustic standing waves (ASWs) led to the development of integrated systems for contact-less on-chip cell and particle manipulation where it is possible to move and spatially localize these particles based on the different acoustophysical properties. While it was initially suggested that the acoustic forces could be harmful to the cells and could impact cell viability, proliferation, or function via phenotypic or even genotypic changes, further studies disproved such claims. This review is summarizing some interesting applications of acoustofluidics in the manipulations of biomaterials, such as cells or subcellular vesicles, in works published mainly within the last 5 years.
Collapse
Affiliation(s)
- Jakub Novotny
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Johnson K, Melchert D, Gianola DS, Begley M, Ray TR. Recent progress in acoustic field-assisted 3D-printing of functional composite materials. MRS ADVANCES 2021; 6:636-643. [PMID: 34532078 PMCID: PMC8439201 DOI: 10.1557/s43580-021-00090-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
Acoustic forces are an attractive pathway to achieve directed assembly for multi-phase materials via additive processes. Programmatic integration of microstructure and structural features during deposition offers opportunities for optimizing printed component performance. We detail recent efforts to integrate acoustic focusing with a direct-ink-write mode of printing to modulate material transport properties (e.g. conductivity). Acoustic field-assisted printing, operating under a multi-node focusing condition, supports deposition of materials with multiple focused lines in a single-pass printed line. Here, we report the demonstration of acoustic focusing in concert with diffusive self-assembly to rapidly assembly and print multiscale, mm-length colloidal solids on a timescale of seconds to minutes. These efforts support the promising capabilities of acoustic field-assisted deposition-based printing to achieve spatial control of printed microstructures with deterministic, long-range ordering across multiple length scales.
Collapse
Affiliation(s)
- Keith Johnson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Drew Melchert
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Daniel S. Gianola
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Matthew Begley
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI
| |
Collapse
|
15
|
Liu G, Lei J, Cheng F, Li K, Ji X, Huang Z, Guo Z. Ultrasonic Particle Manipulation in Glass Capillaries: A Concise Review. MICROMACHINES 2021; 12:876. [PMID: 34442498 PMCID: PMC8398087 DOI: 10.3390/mi12080876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022]
Abstract
Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and a high acoustic quality factor, making it an excellent material for constructing chambers for ultrasonic resonators. Over the past several decades, glass capillaries are increasingly designed for a variety of UPMs, e.g., patterning, focusing, trapping and transporting of micron or submicron particles. Herein, we review established and emerging glass capillary-transducer devices, describing their underlying mechanisms of operation, with special emphasis on the application of glass capillaries with fluid channels of various cross-sections (i.e., rectangular, square and circular) on UPM. We believe that this review will provide a superior guidance for the design of glass capillary-based UPM devices for acoustic tweezers-based research.
Collapse
Affiliation(s)
- Guotian Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Feng Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Kemin Li
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
| | - Zhigang Huang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongning Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (G.L.); (F.C.); (K.L.); (X.J.); (Z.H.); (Z.G.)
- Guangzhou Key Laboratory of Non-Traditional Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|