1
|
Ji M, Li J, Liu A, Ma D. Covalent organic frameworks-based materials for antibiotics fluorescence detection. Heliyon 2024; 10:e33118. [PMID: 39022085 PMCID: PMC11252977 DOI: 10.1016/j.heliyon.2024.e33118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Antibiotics play a vital role in safeguarding people's health since most bacterial infection can be efficiently controlled and cured by treating with suitable antibiotics. However, excessive use of antibiotics in husbandry and aquaculture leaded to the pollution of eco-environment. Thus, it is important to develop simple facile methods and effective functional materials for quick on-site analysis of antibiotics. Covalent organic frameworks (COFs), as a kind of porous crystalline covalent bond linked polymers, have demonstrated its power in multiple fields. Herein, we will discuss COFs-based materials utilized as antibiotics sensors with fluorescence method. For each sensor, we will mainly discuss the mechanism for antibiotics recognition, the preparation, characterization and fluorescence sensing performance of specific antibiotics. The mechanism to illustrate the interaction between sensors and antibiotics analytes would also be stressed.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, 100048, Beijing, China
| | - Jiani Li
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, 100048, Beijing, China
| | - Anan Liu
- Basic Experimental Centre for Natural Science, University of Science and Technology Beijing, Xueyuan Road 30, Beijing, 100083, China
| | - Dongge Ma
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, 100048, Beijing, China
| |
Collapse
|
2
|
Qiao R, Wang J, Hu H, Lu S. Covalent Organic Frameworks Based Electrocatalysts for Two-Electron Oxygen Reduction Reaction: Design Principles, Recent Advances, and Perspective. Molecules 2024; 29:2563. [PMID: 38893439 PMCID: PMC11173880 DOI: 10.3390/molecules29112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Hydrogen peroxide (H2O2) is an environmentally friendly oxidant with a wide range of applications, and the two-electron pathway (2e-) of the oxygen reduction reaction (ORR) for H2O2 production has attracted much attention due to its eco-friendly nature and operational simplicity in contrast to the conventional anthraquinone process. The challenge is to design electrocatalysts with high activity and selectivity and to understand their structure-activity relationship and catalytic mechanism in the ORR process. Covalent organic frameworks (COFs) provide an efficient template for the construction of highly efficient electrocatalysts due to their designable structure, excellent stability, and controllable porosity. This review firstly outlines the design principles of COFs, including the selection of metallic and nonmetallic active sites, the modulation of the electronic structure of the active sites, and the dimensionality modulation of the COFs, to provide guidance for improving the production performance of H2O2. Subsequently, representative results are summarized in terms of both metallic and metal-free sites to follow the latest progress. Moreover, the challenges and perspectives of 2e- ORR electrocatalysts based on COFs are discussed.
Collapse
Affiliation(s)
| | | | | | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Liao F, Lu Z, Wang Z. Spin-Steered Photosynthesis of H 2O 2 in Magnetic Single-Atom Modified Covalent Triazine Frameworks: A Density Functional Theory Study. Molecules 2024; 29:1840. [PMID: 38675659 PMCID: PMC11053565 DOI: 10.3390/molecules29081840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Covalent Organic Frameworks (COFs) demonstrate promising potential in the photocatalytic synthesis of H2O2 owing to favorable light absorption, superior charge separation, and considerable surface area. However, the efficiency of H2O2 photosynthesis is impeded by insufficient O2 adsorption sites and a high reaction barrier. In this work, various metal single atoms (Fe, Co, Ni) are introduced onto covalent triazine frameworks (CTFs) with N-N coordination sites to significantly enhance O2 adsorption and optimize H2O2 synthesis. Computational findings suggest that the presence of Fe, Co, and Ni not only enhances O2 adsorption but also exerts an influence on the reaction pathway of H2O2. Significantly, Fe exhibits a distinct advantage in modulating O2 adsorption through its unique electron spin state when compared to Co and Ni, as confirmed by crystal orbital Hamilton population (COHP) analysis. Additionally, this integration of metal atoms also improves light absorption and charge separation in CTFs. The study provides strategic insight into elevating H2O2 production by incorporating tailored metal single atoms into COFs.
Collapse
Affiliation(s)
- Feng Liao
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 515100, China; (F.L.); (Z.L.)
- Shenzhen Academy of Disaster Prevention and Reduction, Shenzhen 515100, China
| | - Zhao Lu
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 515100, China; (F.L.); (Z.L.)
- Research and Development Center, Shenzhen Foundation Engineering Co., Ltd., Shenzhen 515100, China
| | - Zhongliao Wang
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
4
|
Melero M, Díaz U, Llabrés i Xamena FX. Thiophene-Based Covalent Triazine Frameworks as Visible-Light-Driven Heterogeneous Photocatalysts for the Oxidative Coupling of Amines. Molecules 2024; 29:1637. [PMID: 38611916 PMCID: PMC11013671 DOI: 10.3390/molecules29071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous photocatalyst under visible light irradiation. The physico-chemical properties and composition of this material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis. The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable advantage for visible-light-driven photocatalysis.
Collapse
Affiliation(s)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Francesc X. Llabrés i Xamena
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| |
Collapse
|
5
|
Ye D, Liu L, Peng Q, Qiu J, Gong H, Zhong A, Liu S. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023; 28:4507. [PMID: 37298982 PMCID: PMC10254606 DOI: 10.3390/molecules28114507] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C-H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor-acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h-1 g-1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts.
Collapse
Affiliation(s)
- Dongnai Ye
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lei Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Qimin Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Jiabin Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| | - Aiguo Zhong
- Department of Pharmacy & Chemistry, Taizhou University, Taizhou 318000, China;
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.Y.); (Q.P.); (H.G.)
| |
Collapse
|
6
|
Tunable Donor-Acceptor Linear Conjugated Polymers Involving Cyanostyrylthiophene Linkages for Visible-Light-Driven Hydrogen Production. Molecules 2023; 28:molecules28052203. [PMID: 36903455 PMCID: PMC10004844 DOI: 10.3390/molecules28052203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
In this paper, an atom- and step-economic direct C-H arylation polymerization (DArP) strategy was developed to access cyanostyrylthiophene (CST)-based donor-acceptor (D-A) conjugated polymers (CPs) used for photocatalytic hydrogen production (PHP) from water reduction. The new CST-based CPs CP1-CP5 with varied building blocks were systematically studied by X-ray single-crystal analysis, FTIR, scanning electron microscopy, UV-vis, photoluminescence, transient photocurrent response, cyclic voltammetry measurements, and a PHP test, which showed that the phenyl-cyanostyrylthiophene-based CP3 exhibits a superior hydrogen evolution rate (7.60 mmol h-1 g-1) compared to other conjugated polymers. The structure-property-performance correlation results obtained in this study will provide an important guideline for the rational design of high-performance D-A CPs for PHP applications.
Collapse
|
7
|
Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
8
|
Ibrahim SRM, Omar AM, Bagalagel AA, Diri RM, Noor AO, Almasri DM, Mohamed SGA, Mohamed GA. Thiophenes-Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors. PLANTS (BASEL, SWITZERLAND) 2022; 11:539. [PMID: 35214871 PMCID: PMC8877444 DOI: 10.3390/plants11040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 05/03/2023]
Abstract
Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand-target interaction stability under simulated physiological conditions.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Diena M. Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | | | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|