1
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
2
|
Pan J, Zhang Y, He L, Wu Y, Xiao W, Zhang J, Xu Y. STRIP2 is regulated by the transcription factor Sp1 and promotes lung adenocarcinoma progression via activating the PI3K/AKT/mTOR/MYC signaling pathway. Genomics 2024; 116:110923. [PMID: 39191354 DOI: 10.1016/j.ygeno.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) generally have poor prognosis. The role of striatin-interacting protein 2 (STRIP2) in LUAD remain unclear. METHODS Liquid chromatography-mass spectrometry analyses were used to screen the STRIP2-binding proteins and co-immunoprecipitation verified these interactions. A dual luciferase reporter assay explored the transcription factor activating STRIP2 transcription. Xenograft and lung metastasis models assessed STRIP2's role in tumor growth and metastasis in vivo. RESULTS STRIP2 is highly expressed in LUAD tissues and is linked to poor prognosis. STRIP2 expression in LUAD cells significantly promoted cell proliferation, invasion, and migration in vitro and in vivo. Mechanistically, STRIP2 boosted the PI3K/AKT/mTOR/MYC cascades by binding AKT. In addition, specificity protein 1, potently activated STRIP2 transcription by binding to the STRIP2 promoter. Blocking STRIP2 reduces tumor growth and lung metastasis in xenograft models. CONCLUSIONS Our study identifies STRIP2 is a key driver of LUAD progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Junfan Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Liu He
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Yue Wu
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Weijin Xiao
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Jing Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
3
|
Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G, Verykios VS, Nikolaou M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J Pers Med 2024; 14:931. [PMID: 39338186 PMCID: PMC11433587 DOI: 10.3390/jpm14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Aging is a fundamental biological process characterized by a progressive decline in physiological functions and an increased susceptibility to diseases. Understanding aging at the molecular level is crucial for developing interventions that could delay or reverse its effects. This review explores the integration of machine learning (ML) with multi-omics technologies-including genomics, transcriptomics, epigenomics, proteomics, and metabolomics-in studying the molecular hallmarks of aging to develop personalized medicine interventions. These hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Using ML to analyze big and complex datasets helps uncover detailed molecular interactions and pathways that play a role in aging. The advances of ML can facilitate the discovery of biomarkers and therapeutic targets, offering insights into personalized anti-aging strategies. With these developments, the future points toward a better understanding of the aging process, aiming ultimately to promote healthy aging and extend life expectancy.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, Sismanoglio General Hospital, Sismanogliou 37, National and Kapodistrian University of Athens, 15126 Athens, Greece
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Christos Hitas
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Georgia Vamvakou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Vassilios S Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| |
Collapse
|
4
|
Wang M, Zhou J, Xu G, Tang Y. Exploration of the Synergistic Regulation Mechanism in Cerebral Ganglion and Heart of Eriocheir sinensis on Energy Metabolism and Antioxidant Homeostasis Maintenance under Alkalinity Stress. Antioxidants (Basel) 2024; 13:986. [PMID: 39199232 PMCID: PMC11351887 DOI: 10.3390/antiox13080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
(1) The development and utilization of the vast saline-alkali land worldwide is an important way to solve the worsening food crisis. Eriocheir sinensis, due to its strong osmotic regulation capability and its characteristics of being suitable for culturing in alkaline water, has become a potential aquaculture species in saline-alkali water. The brain and heart are the key tissues for signal transduction and energy supply under environmental stress. (2) This study is the first to explore the synergistic regulatory molecular mechanism by integrated analysis on cerebral ganglion proteomics and heart metabolomics of Eriocheir sinensis under alkalinity stress. (3) The results indicate that the cerebral ganglion and heart of E. sinensis were closely related in response to acute alkalinity stress. The differential regulatory pathways mainly involved regulation of energy metabolism, amino acid metabolism, and homeostasis maintenance. Importantly, alkalinity stress induced the regulation of antioxidants and further adjusted longevity and rhythm in the cerebral ganglion and heart, reflecting that the cerebral ganglion and heart may be the key tissues for the survival of Eriocheir sinensis under an alkalinity environment. (4) This study provides a theoretical reference for research on the regulation mechanism of E. sinensis under alkalinity condition and contributes to the development of aquaculture in saline-alkali water.
Collapse
Affiliation(s)
- Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
5
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
6
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
7
|
Zanfardino P, Amati A, Doccini S, Cox SN, Tullo A, Longo G, D'Erchia A, Picardi E, Nesti C, Santorelli FM, Petruzzella V. OPA1 mutation affects autophagy and triggers senescence in autosomal dominant optic atrophy plus fibroblasts. Hum Mol Genet 2024; 33:768-786. [PMID: 38280232 DOI: 10.1093/hmg/ddae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Indexed: 01/29/2024] Open
Abstract
In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Longo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Annamaria D'Erchia
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
8
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
9
|
Liu X, Mei W, Zhang P, Zeng C. PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacol Res 2024; 202:107123. [PMID: 38432445 DOI: 10.1016/j.phrs.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have significantly enhanced the treatment outcomes in non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, the occurrence of acquired resistance to EGFR-TKIs is an unavoidable outcome observed in these patients. Disruption of the PI3K/AKT/mTOR signaling pathway can contribute to the emergence of resistance to EGFR TKIs in lung cancer. The emergence of PIK3CA mutations following treatment with EGFR-TKIs can lead to resistance against EGFR-TKIs. This review provides an overview of the current perspectives regarding the involvement of PI3K/AKT/mTOR signaling in the development of lung cancer. Furthermore, we outline the state-of-the-art therapeutic strategies targeting the PI3K/AKT/mTOR signaling pathway in lung cancer. We highlight the role of PIK3CA mutation as an acquired resistance mechanism against EGFR-TKIs in EGFR-mutant NSCLC. Crucially, we explore therapeutic strategies targeting PIK3CA-mediated resistance to EGFR TKIs in lung cancer, aiming to optimize the effectiveness of treatment.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| |
Collapse
|
10
|
De SK. Novel Pyrazino[2,3-b] Pyrazines as mTOR Kinase Inhibitors for Treating Cancer and other Diseases. Curr Med Chem 2024; 31:5657-5659. [PMID: 37493157 DOI: 10.2174/0929867331666230726112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This paper describes the synthesis of some heteroaryl compounds and compositions comprising an effective amount of one or more such compounds and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway, comprising administering an adequate amount of a heteroaryl compound to a patient in need thereof. These compounds are mTOR/PI3K/Akt pathway inhibitors.
Collapse
Affiliation(s)
- Surya K De
- Department of Chemistry, Conju-Probe, San Diego, California, USA
- Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
11
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Fu W, Wu G. Design of negative-regulating proteins of Rheb/mTORC1 with much-reduced sizes of the tuberous sclerosis protein complex. Protein Sci 2023; 32:e4731. [PMID: 37462942 PMCID: PMC10382911 DOI: 10.1002/pro.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|