1
|
Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods 2025; 14:607. [PMID: 40002051 DOI: 10.3390/foods14040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Grape-derived phenolic compounds possess many health benefits, but their biological effectiveness and their effects on human health depend directly on bioaccessibility. Different physiological conditions, interactions with food compounds (proteins, lipids, and carbohydrates), and/or microbial transformations affect the solubilization and stability of phenolic compounds, thus altering their bioaccessibility and biological activity. Previously published review articles on grape-derived phenolic compounds have focused on characterization, transformation during winemaking, various applications, and health benefits, but the literature lacks a comprehensive overview of the bioaccessibility of these compounds during gastrointestinal digestion. In this context, models of gastrointestinal digestion and factors affecting the bioaccessibility of phenolic compounds were considered to understand the behavior of grape-derived phenolic compounds during digestion in the absence or presence of different food matrices. Finally, this review should enable the development of novel food products with targeted bioaccessibility of grape-derived phenolic compounds.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nemanja S Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia
| | - Milica M Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Bai Q, Li Q, Tan Z, Liu J. In situ characterization of silver nanoparticles sulfidation processes in aquatic solution by hollow fiber flow-field flow fractionation coupled with ICP-QQQ. Talanta 2024; 272:125738. [PMID: 38359717 DOI: 10.1016/j.talanta.2024.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
The sulfidation is considered as one of the most important environmental transformation processes of silver nanoparticles (AgNPs), which affects their transport, uptake and toxicity. Herein, based on the hollow fiber flow-field flow fractionation coupled with triple quadrupole inductively coupled plasma mass spectrometry (HF5-ICP-QQQ), we developed an efficient approach to accurately characterize the sulfidation process of AgNPs in aquatic solutions. HF5 could efficiently remove interferential ions and separate nanoparticles with different sizes online, and ICP-QQQ could accurately detect S element through monitoring 32S16O+ in mass shift mode. By the proposed method, two kinds of AgNPs, citrate-coated AgNPs and PVP-coated AgNPs, were selected as models to trace their transfer behaviors during the sulfidation. The results showed once AgNPs were exposed to Na2S solution, the overlapping fractograms of 32S16O+ and 107Ag+ were rapidly detected by HF5-ICP-QQQ to indicate the co-presence of Ag and S, and thus confirming the production of Ag2S and AgNPs underwent a rapid sulfidation process. There were substantial differences in the influence of the two coated agents on the stability of the particles under the conditions examined. In the presence of sulfide, PVP-coated AgNPs could maintain initial size distribution with higher stability, while the size distribution of citrate-coated AgNPs changed considerably. The developed HF5-ICP-QQQ method provides a reliable tool to identify and characterize the transformation process of AgNPs in aquatic solution, which contributed to a deeper understanding of the environmental fate and behavior of AgNPs with different coating.
Collapse
Affiliation(s)
- Qingsheng Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingcun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract. Sci Rep 2023; 13:15605. [PMID: 37731031 PMCID: PMC10511706 DOI: 10.1038/s41598-023-42675-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
On the global market, silver nanoparticles (Ag-NPs) are in high demand for their various applications in biomedicine, material engineering, and consumer products. This study highlighted the biosynthesis of the Ag-NPs using saw palmetto seed phenolic extract (SPS-phenolic extract), which contained vital antioxidant-phenolic compounds. Herein, central composite statistical design, response surface methodology, and sixteen runs were conducted to optimize Ag-NPs biosynthesis conditions for maximizing the production of Ag-NPs and their phenolic content. The best-produced SPS-Ag-NPs showed a surface plasmon resonance peak at 460 nm and nano-spherical sizes ranging from 11.17 to 38.32 nm using the UV spectrum analysis and TEM images, respectively. The produced SPS-Ag-NPs displayed a high negative zeta-potential value (- 32.8 mV) demonstrating their high stability. The FTIR analysis demonstrated that SPS-phenolic compounds were involved in sliver bio-reduction and in stabilizing, capping, and preventing Ag-NP aggregation. The thermogravimetric investigation revealed that the produced SPS-Ag-NPs have remarkable thermal stability. The produced SPS-Ag-NP exceeded total antioxidant activity (13.8 µmol Trolox equivalent) more than the SPS-phenolic extract (12.0 µmol Trolox equivalent). The biosynthesized SPS-Ag-NPs exhibited noticeably better antibacterial activity against multidrug-resistant Gram-negative E. coli and Gram-positive S. aureus compared to SPS-phenolic extract. Hence, the bio-synthesized SPS-Ag-NPs demonstrated great potential for use in biomedical and antimicrobial applications.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Chawla P, Sridhar K, Bains A. Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein-phenols enriched fruit smoothie. Food Res Int 2023; 171:113075. [PMID: 37330833 DOI: 10.1016/j.foodres.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Phenol-protein interaction is considered an effective tool to improve the functional properties of vegan proteins. The present work aimed to evaluate the covalent interaction between kidney bean polyphenols with rice protein concentrate and studied their characteristics for quality improvement in vegan-based foods. The impact of interaction on the techno-functional properties of protein was evaluated and the nutritional composition revealed that kidney bean was rich in carbohydrates. Furthermore, a noticeable antioxidant activity (58.11 ± 1.075 %) due to the presence of phenols (5.5 mg GAE/g) was observed for the kidney bean extract. Moreover, caffeic acid and p-Coumaric acid were confirmed using ultra-pressure liquid chromatography and the amount was 194.43 and 0.9272 mg/kg, respectively. A range of rice protein- phenols complexes (PPC0.025, PPC0.050, PPC0.075, PPC0.1, PPC0.2, PPC 0.5, PPC1) were examined and PPC0.2 and PPC0.5 showed significantly (p < 0.05) higher binding efficiency with proteins via covalent interaction. The conjugation reveals changes in physicochemical properties of rice protein, including, reduced size (178.4 nm) and imparted negative charges (-19.5 mV) of the native protein. The presence of amide Ⅰ, Ⅱ, Ⅲ, was confirmed in native protein and protein-phenol complex with vibration bands, particularly at 3784.92, 1631.07, and 1234 cm-1, respectively. The X-ray diffraction pattern depicted a slight decrease in crystallinity after the complexation and scanning electron microscopy revealed the alteration in morphology from less to improved smoothness and continuous surface characteristics for the complex. Thermo gravimetric analysis revealed high thermal stability of the complex with a maximum weight loss at a temperature range of 400-500 °C. Protein-phenol complex added fruit-based smoothie was developed and it was found to be acceptable in terms of various sensory attributes including color & appearance, textural consistency, and mouthfeel as compared to the control smoothie. Overall, this study provided novel insights to understand the phenol-protein interactions and the possible use of the phenol-rice protein complex in the development of vegan-based food products.
Collapse
Affiliation(s)
- Prince Chawla
- Department Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
8
|
Matías-Reyes AE, Alvarado-Noguez ML, Pérez-González M, Carbajal-Tinoco MD, Estrada-Muñiz E, Fuentes-García JA, Vega-Loyo L, Tomás SA, Goya GF, Santoyo-Salazar J. Direct Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2450. [PMID: 37686958 PMCID: PMC10490419 DOI: 10.3390/nano13172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
Collapse
Affiliation(s)
- Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, UAEH, Mineral de la Reforma 42184, Mexico;
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Elizabeth Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Jesús A. Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Gerardo F. Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| |
Collapse
|
9
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|
10
|
Zdziobek P, Jodłowski GS, Strzelec EA. Biopreservation and Bioactivation Juice from Waste Broccoli with Lactiplantibacillus plantarum. Molecules 2023; 28:4594. [PMID: 37375149 DOI: 10.3390/molecules28124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The content of polyphenols, lactic acid, and antioxidant properties in fermented juice increases more at 30 °C than at 35 °C during the lactic fermentation process in butanol extract and broccoli juice. The concentration of polyphenols is expressed by phenolic acid equivalents as gallic acid-Total Phenolic Content (TPC), ferulic acid (CFA), p-cumaric acid (CPA), sinapic acid (CSA), and caffeic acid (CCA). The polyphenols present in fermented juice exhibit antioxidant properties and the ability to reduce free radicals using total antioxidant capacity (TAC) assay, while also the percentage of the DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging activity. Lactic acid concentration (LAC), total flavonoid content as quercetin equivalents (QC), and acidity increases during the work of Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in broccoli juice. The pH was monitored during the process of fermentation in both temperatures (30 °C and 35 °C). Densitometric measurements of lactic bacteria (LAB) showed increasing concentration at 30 °C and 35 °C after 100 h (~4 h), but the value concentration dropped after 196 h. The Gram staining showed only Gram-positive bacilli Lactobacillus plantarum ATCC 8014. The Fourier transform infrared (FTIR) spectrum for the fermented juice showed the characteristic carbon-nitrogen vibrations that may originate from glucosinolates or isothiocyanates. Among the fermentation gases, more CO2 was released from fermenters at 35 °C than at 30 °C. The biopreservation used Lactiplantibacillus plantarum to prevent the problem of food waste of plant origin. The probiotic bacteria used in fermentation have a very beneficial effect on health and the human body.
Collapse
Affiliation(s)
- Patryk Zdziobek
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| | - Grzegorz Stefan Jodłowski
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| | - Edyta Aneta Strzelec
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| |
Collapse
|
11
|
Li X, Duan Z, Chen X, Pan D, Luo Q, Gu L, Xu G, Li Y, Zhang H, Gong Q, Chen R, Gu Z, Luo K. Impairing Tumor Metabolic Plasticity via a Stable Metal-Phenolic-Based Polymeric Nanomedicine to Suppress Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300548. [PMID: 36917817 DOI: 10.1002/adma.202300548] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.
Collapse
Affiliation(s)
- Xiaoling Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Yinggang Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
12
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
13
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023; 15:pharmaceutics15030927. [PMID: 36986788 PMCID: PMC10051097 DOI: 10.3390/pharmaceutics15030927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Natural ingredients are gaining increasing attention from manufacturers following consumers’ concerns about the excessive use of synthetic ingredients. However, the use of natural extracts or molecules to achieve desirable qualities throughout the shelf life of foodstuff and, upon consumption, in the relevant biological environment is severely limited by their poor performance, especially with respect to solubility, stability against environmental conditions during product manufacturing, storage, and bioavailability upon consumption. Nanoencapsulation can be seen as an attractive approach with which to overcome these challenges. Among the different nanoencapsulation systems, lipids and biopolymer-based nanocarriers have emerged as the most effective ones because of their intrinsic low toxicity following their formulation with biocompatible and biodegradable materials. The present review aims to provide a survey of the recent advances in nanoscale carriers, formulated with biopolymers or lipids, for the encapsulation of natural compounds and plant extracts.
Collapse
|
15
|
Donn P, Barciela P, Perez-Vazquez A, Cassani L, Simal-Gandara J, Prieto MA. Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules 2023; 13:biom13030427. [PMID: 36979363 PMCID: PMC10046334 DOI: 10.3390/biom13030427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Verbascum sinuatum (V. sinuatum) is a plant belonging to the Scrophulariaceae family that has been used as an ingredient in traditional medicine infusions for the treatment of many diseases. The aerial part of this plant is a source of bioactive compounds, especially polyphenols and iridoids. Moreover, antioxidant activity studies have shown that V. sinuatum phenolic and flavonoid composition is higher than those in other plants of the same genus. V. sinuatum bioactive compound composition could vary according to the harvesting location, growing conditions of the plants, sample preparation methods, type and concentration of the extraction solvent, and the extraction methods. The obtention of these compounds can be achieved by different extraction techniques, most commonly, maceration, heat assisted extraction, and infusion. Nevertheless, since conventional extraction techniques have several drawbacks such as long times of extraction or use of large amounts of solvents, the use of green extraction techniques is suggested, without affecting the efficiency of the extraction. Moreover, V. sinuatum bioactive compounds have several biological activities, such as antioxidant, anticancer, cardiovascular, antimicrobial, antidiabetic, and neuroprotective activities, that may be increased by encapsulation. Since the bioactive compounds extracted from V. sinuatum present good potential as functional food ingredients and in the development of drugs or cosmetics, this review gives an approach of the possible incorporation of these compounds in the food and pharmacological industries.
Collapse
Affiliation(s)
- Pauline Donn
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Ana Perez-Vazquez
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence:
| |
Collapse
|
16
|
Almeida B, Domingues C, Mascarenhas-Melo F, Silva I, Jarak I, Veiga F, Figueiras A. The Role of Cyclodextrins in COVID-19 Therapy-A Literature Review. Int J Mol Sci 2023; 24:2974. [PMID: 36769299 PMCID: PMC9918006 DOI: 10.3390/ijms24032974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the disease, how to prevent and treat it, and to limit and hamper its global dissemination. Considering the above, the search for prophylactic approaches has led to a revolution in the reglementary pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way. Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being pursued. However, their physicochemical characteristics or reported adverse events have sometimes limited their use. Hence, nanotechnology has been employed to potentially overcome some of these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored, and the potential application of cyclodextrins to increase their promising application against COVID-19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.
Collapse
Affiliation(s)
- Beatriz Almeida
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Silva
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
17
|
Andishmand H, Azadmard-Damirchi S, Hamishekar H, Torbati M, Kharazmi MS, Savage GP, Tan C, Jafari SM. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel. Adv Colloid Interface Sci 2023; 311:102833. [PMID: 36610103 DOI: 10.1016/j.cis.2022.102833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Pomegranate fruit is getting more attention due to its positive health effects, and pomegranate peel (PP) is its main byproduct. PP has the potential to be converted from environmentally polluting waste to wealth due to its rich phenolic compounds such as ellagitannins, proanthocyanidins, and flavonoids with antioxidant, antimicrobial, and health effects. These phenolics are susceptible to environmental conditions such as heat, light, and pH as well as in vivo conditions of gastrointestinal secretions. Some phenolics of PP, e.g., ellagitannins could interfere with food ingredients and thus reduce their beneficial effects. Also, ellagitannins could form complexes with salivary glycoproteins, then a feeling of astringency taste. In this article, nano-delivery systems such as nanoparticles, nanoemulsions, and vesicular nanocarriers, designed and fabricated for PP bioactive compounds in recent years have been reviewed. Among them, lipid-based nano carriers i.e., solid lipid nanoparticles, nanostructured lipid carriers, and vesicular nanocarriers have low toxicity, large-scale production feasibility, easy synthesis, and high biocompatibility. So, it seems that the extraction and purification of bioactives from pomegranate wastes and nanoencapsulating them with cost effective and generally recognized as safe (GRAS) materials can be a bright prospect in enhancing the quality, safety, shelf life and health benefits of pomegranate products.
Collapse
Affiliation(s)
- Hashem Andishmand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishekar
- Drug applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MoammadAli Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Geoffrey P Savage
- Food Group, Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
18
|
Indiarto R, Rahimah S, Subroto E, Putri NAG, Pangawikan AD. Antioxidant activity and characteristics of a cocoa drink formulated with encapsulated green coffee extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2144883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Souvia Rahimah
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Nur Alifia Gardiantini Putri
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Aldila Din Pangawikan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
19
|
Mutukwa D, Taziwa RT, Khotseng L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244469. [PMID: 36558321 PMCID: PMC9785588 DOI: 10.3390/nano12244469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/31/2023]
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts has been receiving tremendous attention as an alternative to conventional physical and chemical methods. The Lamiaceae plant family is one of the largest herbal families in the world and is famous for its aromatic and polyphenolic biomolecules that can be utilised as reducing and stabilising agents during the synthesis of ZnO NPs. This review will go over the synthesis and how synthesis parameters affect the Lamiaceae-derived ZnO NPs. The Lamiaceae-mediated ZnO NPs have been utilised in a variety of applications, including photocatalysis, antimicrobial, anticancer, antioxidant, solar cells, and so on. Owing to their optical properties, ZnO NPs have emerged as potential catalysts for the photodegradation of organic dyes from wastewater. Furthermore, the low toxicity, biocompatibility, and antibacterial activity of ZnO against various bacteria have led to the application of ZnO NPs as antibacterial agents. Thus, this review will focus on the application of Lamiaceae-mediated ZnO NPs for the photodegradation of organic dyes and antibacterial applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond T. Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
20
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
21
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
23
|
Tang W, Wei Y, Lu W, Chen D, Ye Q, Zhang C, Chen Y, Xiao C. Fabrication, characterization of carboxymethyl konjac glucomannan/ovalbumin-naringin nanoparticles with improving in vitro bioaccessibility. Food Chem X 2022; 16:100477. [PMID: 36277870 PMCID: PMC9583030 DOI: 10.1016/j.fochx.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Naringin is potential functional and therapeutic ingredient, has low bioavailability because of poor aqueous solubility. In this study, an ovalbumin (OVA)-carboxymethyl konjac glucomannan (CKGM) nano-delivery system was developed to enhance the bioavailability of naringin. The effects of proportion (OVA: CKGM), pH and naringin concentration were studied on the formation, encapsulation efficiency (EE) and bioaccessibility of OVA/CKGM-Naringin nanoparticles (OVA/CKGM-Naringin NPs). Its morphology and size were viewed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The cross-linkage between OVA and CKGM was verified by Fourier Transform Infrared Spectroscopy (FTIR) and Fluorescence Intensity analysis. The size of OVA/CKGM-Naringin NPs were 463.83 ± 18.50 nm (Polydispersity Index-PDI, 0.42 ± 0.05). It indicated that 2:1 of OVA: CKGM, pH 3 and 7 mg/mL of naringin concentration were optimized processing parameters of OVA/CKGM-Naringin NPs with EE (97.90 ± 2.97 %) and remarkably improved bioaccessibility (85.01 ± 2.52 %). The OVA/CKGM-Naringin NPs was energy efficiently prepared and verified as an ideal carrier of naringin.
Collapse
Affiliation(s)
- Weimin Tang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yanjun Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wenjing Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Di Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Qin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Cen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yufeng Chen
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| | - Chaogeng Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| |
Collapse
|
24
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
25
|
Pratap Singh D, Packirisamy G. Biopolymer based edible coating for enhancing the shelf life of horticulture products. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100085. [PMID: 35415673 PMCID: PMC8991528 DOI: 10.1016/j.fochms.2022.100085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
As per the report of the United Nations, half of the fruits and vegetables loses annually. Industries are trying to reduce the postharvest loss by using coatings. Wax coating is the most preferred way to preserve fruits and veggies. Sometimes wax is mixed with some chemical compounds that are known to be carcinogenic. Recently many edible films have been developed using natural polymers to enhance the shelf life of food. The edible films act as a barrier between the food and the external environment to prevent the direct interaction of food with atmospheric gases and microbes, which reduce the rate of respiration, keeping the food fresh for an extended period. But, the cost of edible biofilms is high and restricted at the industrial level; the local fruits and vegetable vendors are not able to buy such costly biofilms. We have developed the solution for dip-coating and nanofiber coating using a blend of silk fibroin, PVA, honey and curcumin, which is a cost-effective method for fruits and vegetable vendors. The material used for coating is FDA approved. The techniques utilized for synthesizing the biofilm are electrospinning and dip-coating. Coating found to increase the shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
26
|
Szewczyk A, Brzezińska-Rojek J, Ośko J, Majda D, Prokopowicz M, Grembecka M. Antioxidant-Loaded Mesoporous Silica-An Evaluation of the Physicochemical Properties. Antioxidants (Basel) 2022; 11:antiox11071417. [PMID: 35883907 PMCID: PMC9312088 DOI: 10.3390/antiox11071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
The dangerous effects of oxidative stress can be alleviated by antioxidants—substances with the ability to prevent damage caused by reactive oxygen species. The adsorption of antioxidants onto nanocarriers is a well-known method that might protect them against rough environ-mental conditions. The aim of this study was to investigate the adsorption and desorption of gallic acid (GA), protocatechuic acid (PCA), chlorogenic acid (CGA), and 4-hydroxybenzoic acid (4-HBA) using commercially available mesoporous silica materials (MSMs), both parent (i.e., SBA-15 and MCM-41) and surface functionalized (i.e., SBA-NH2 and SBA-SH). The MSMs loaded with active compounds were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), thermoporometry (TPM), and powder X-ray diffraction (XRD). High-performance liquid chromatography (HPLC-CAD) was used to evaluate the performance of the adsorption and desorption processes. The antioxidant potential was investigated using the Folin−Ciocalteu (FC) spectrophotometric method. Among the studied MSMs, the highest adsorption of GA was observed for amine-modified SBA-15 mesoporous silica. The adsorption capacity of SBA-NH2 increased in the order of PCA, 4-HBA < GA < CGA. Different desorption effectiveness levels of the adsorbed compounds were observed with the antioxidant capacity preserved for all investigated compounds.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
| | - Joanna Brzezińska-Rojek
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
- Correspondence: (M.P.); (M.G.)
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
- Correspondence: (M.P.); (M.G.)
| |
Collapse
|
27
|
Wen C, Zhang J, Zhang H, Duan Y. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods 2022; 11:foods11121701. [PMID: 35741899 PMCID: PMC9223235 DOI: 10.3390/foods11121701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The health effects of bioactive substances in the human body are affected by several factors, including food processing conditions, storage conditions, light and heat, among others. These factors greatly limit the stability and bioavailability of bioactive substances. These problems can be solved by a novel protein-based nanocarrier technology, which has the excellent potential to enhance solubility, bioavailability, and the controlled release of bioactive substances. In addition, plant protein has the advantages of economy, environmental protection, and high nutrition compared to animal protein. In this review, the preparation, characterization, and application of plant protein-based nanocarriers are summarized. The research deficiency and future prospects of plant protein nanocarriers are emphasized.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
- Correspondence: (J.Z.); (Y.D.)
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (J.Z.); (Y.D.)
| |
Collapse
|
28
|
Implementation of Sustainable Development Goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Salem MF, Tayel AA, Alzuaibr FM, Bakr RA. Innovative Approach for Controlling Black Rot of Persimmon Fruits by Means of Nanobiotechnology from Nanochitosan and Rosmarinic Acid-Mediated Selenium Nanoparticles. Polymers (Basel) 2022; 14:2116. [PMID: 35631998 PMCID: PMC9143107 DOI: 10.3390/polym14102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022] Open
Abstract
The protection of persimmon fruits (Diospyros kaki L.) from postharvest fungal infestation with Alternaria alternata (A. alternate; black rot) is a major agricultural and economic demand worldwide. Edible coatings (ECs) based on biopolymers and phytocompounds were proposed to maintain fruit quality, especially with nanomaterials' applications. Chitosan nanoparticles (NCt), rosmarinic acid bio-mediated selenium nanoparticles (RA/SeNPs) and their composites were produced, characterized and evaluated as ECs for managing persimmon black rot. The constructed NCt, RA/SeNPs and NCt/RA/SeNPs composite had diminished particles' size diameters. The ECs solution of 1% NCt and NCt/RA/SeNPs composite led to a significant reduction of A. alternata radial growth in vitro, with 77.4 and 97.2%, respectively. The most powerful ECs formula contained 10 mg/mL from NCt/RA/SeNPs composite, which significantly reduced fungal growth than imazalil fungicide. The coating of persimmon with nanoparticles-based ECs resulted in a significant reduction of black rot disease severity and incidence in artificially infected fruits; the treatment with 1% of NCt/RA/SeNPs could completely (100%) hinder disease incidence and severity in coated fruits, whereas imazalil reduced them by 88.6 and 73.4%, respectively. The firmness of fruits is greatly augmented after ECs treatments, particularly with formulated coatings with 1% NCt/RA/SeNPs composite, which maintain fruits firmness by 85.7%. The produced ECs in the current study, based on NCt/RA/SeNPs composite, are greatly recommended as innovatively constructed human-friendly matrix to suppress the postharvest destructive fungi (A. alternata) and maintain the shelf-life and quality of persimmon fruits.
Collapse
Affiliation(s)
- Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt;
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh City 33516, Egypt
| | | | - Ramadan A. Bakr
- Plant Pathology Branch, Department of Agricultural Botany, Faculty of Agriculture, University of Menoufia, Shibin El-Kom 32514, Egypt;
| |
Collapse
|
30
|
Han H, Jiao Y, Chang Y, Cheng Y, Shi L. Glycosylation of Zein Hydrolysate as a Nanocarrier for Lutein Delivery: Preparation and Stability. Front Pharmacol 2022; 13:905059. [PMID: 35586048 PMCID: PMC9108384 DOI: 10.3389/fphar.2022.905059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lutein is a functional carotenoid that has a wide range of physiological benefits in humans. However, it easily degrades and becomes inactivated during storage and processing, resulting in low bioavailability. The development of new nanocarriers can effectively improve the stability and biological activity of lutein. In this study, zein hydrolysate (ZH) carriers were glycosylated with glucosamine (GLU) under the action of transglutaminase, and lutein-loaded glycosylated ZH nanoparticles (GZH-LUT) were constructed by liquid–liquid dispersion. The results showed that the GZH-LUT particles had a narrow size distribution in the range of 200–300 nm and a decreased zeta potential and polydispersity index. In particular, GZH trapped lutein more efficiently than ZH. In addition, GZH-LUT had better physical and chemical properties, including better water solubility, oxidative stability, and environmental stability than free lutein and ZH-LUT. These results indicate that glycosylated zein hydrolysate has the potential to be used as a novel protein-based nanocarrier to enhance the solubility and stability of lutein, which can further improve its bioavailability.
Collapse
|
31
|
Kumar I, Gangwar C, Yaseen B, Pandey PK, Mishra SK, Naik RM. Kinetic and Mechanistic Studies of the Formation of Silver Nanoparticles by Nicotinamide as a Reducing Agent. ACS OMEGA 2022; 7:13778-13788. [PMID: 35559139 PMCID: PMC9088940 DOI: 10.1021/acsomega.2c00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
Here, in the present study, silver nanoparticles (SNPs) in the size range 6-10 nm have been synthesized by a chemical reduction method using nicotinamide (NTA), an anti-inflammatory agent, and cetyltrimethylammonium bromide (CTAB), a good stabilizing agent, to preparing the nanoparticles in the 6-10 nm size range. Kinetic studies on the formation of SNPs have been performed spectrophotometrically at 410 nm (strong plasmon band) in aqueous medium as a function of [AgNO3], [NTA], [NaOH], and [CTAB]. The plot of ln(A ∞ - A t ) versus time exhibited a straight line and the pseudo-first-order rate constants of different variables were calculated from its slope. On the basis of experimental findings, a plausible mechanism was proposed for the formation of SNPs colloid. From the mechanism, it is proved that the reduction of silver ions proceeded through the formation of silver oxide in colloidal form by their reaction with hydroxide ions and NTA after performing their function and readily undergo hydrolysis to form nicotinic acid as a hydrolysis product with the release of ammonia gas. The preliminary characterization of the SNPs was carried out by using a UV-visible spectrophotometer. The detailed characterization of SNPs was also carried out using other experimental techniques such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD). SNPs show a remarkable catalytic activity of up to 90% for the reduction of the cationic dye methylene blue.
Collapse
Affiliation(s)
- Indresh Kumar
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Chinky Gangwar
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Bushra Yaseen
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Pradeep Kumar Pandey
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Sheo K. Mishra
- Department
of Physics, Indira Gandhi National Tribal
University, Amarkantak 484887, Madhya Pradesh, India
| | - Radhey Mohan Naik
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
- Email for R.M.N.:
| |
Collapse
|
32
|
Sanz Del Olmo N, García JC, Gómez R, de la Mata FJ, Ortega P. Heterofunctional carbosilane polyphenolic dendrons: new antioxidants platforms. RSC Adv 2022; 12:10280-10288. [PMID: 35424993 PMCID: PMC8972098 DOI: 10.1039/d1ra08224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in different human pathophysiological processes. ROS, together with nitrogen reactive species, generated as by-products of cellular metabolism or external factors, affects intracellular redox homeostasis. Redox-active groups found in proteins and other compounds such as polyphenols are involved in maintaining intracellular redox homeostasis. In this work, a new family of heterofunctional first-generation carbosilane dendrons functionalised with different polyphenols at the focal point and dimethylammonium groups at the periphery has been obtained through two synthetic strategies: reductive amination and straightforward amidation reaction. Their antioxidant activity has been evaluated through two spectrophotometric methods: ferric reducing antioxidant power (FRAP) assay and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay to establish a correlation between the number of hydroxyl groups and the antioxidant activity. Combination of carbosilane dendritic structures and polyphenol to obtain new scavenging systems.![]()
Collapse
Affiliation(s)
- Natalia Sanz Del Olmo
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - Juan Carlos García
- University of Alcala. Department of Biology of Systems, Biochemistry and Molecular Biology Unit Madrid Spain
| | - Rafael Gómez
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Instituto de investigación sanitaria Ramón y Cajal (IRyCIS) 28871 Alcalá de Henares Madrid Spain .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute "Ramón y Cajal" for Health Research (IRYCIS) Spain
| |
Collapse
|
33
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
34
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
35
|
Rambaran TF. A patent review of polyphenol nano-formulations and their commercialization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
37
|
Niu L, Li Z, Fan W, Zhong X, Peng M, Liu Z. Nano-Strategies for Enhancing the Bioavailability of Tea Polyphenols: Preparation, Applications, and Challenges. Foods 2022; 11:foods11030387. [PMID: 35159537 PMCID: PMC8834201 DOI: 10.3390/foods11030387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Tea polyphenols (TPs) are among the most abundant functional compounds in tea. They exhibit strong antioxidant, anti-inflammatory, and anti-cancer effects. However, their instability and low bioavailability limits their applications. Nanotechnology, which involves the use of nanoscale substances (sizes ranging from 1 to 100 nm) to improve the properties of substances, provides a solution for enhancing the stability and bioavailability of TPs. We reviewed the preparation, performance, effects, and applications of different types of TPs nanocarriers. First, we introduced the preparation of different nanocarriers, including nanoparticles, nanoemulsions, nanomicelles, and nanolipids. Then, we discussed various applications of tea polyphenol-loaded nanocarriers in functional ingredient delivery, food quality improvement, and active food packaging. Finally, the challenges and future development directions of TPs nanocarriers were elucidated. In conclusion, a nano-strategy may be the “key” to break the application barriers of TPs. Therefore, the use of nano-strategies for the safe, stable, and efficient release of TPs is the direction of future research.
Collapse
Affiliation(s)
- Li Niu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.); (X.Z.)
| | - Ziqiang Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.); (X.Z.)
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.); (X.Z.)
| | - Miao Peng
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.); (X.Z.)
- Correspondence: (M.P.); (Z.L.)
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (M.P.); (Z.L.)
| |
Collapse
|
38
|
Shah ST, Chowdhury ZZ, Johan MRB, Badruddin IA, Khaleed HMT, Kamangar S, Alrobei H. Surface Functionalization of Magnetite Nanoparticles with Multipotent Antioxidant as Potential Magnetic Nanoantioxidants and Antimicrobial Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030789. [PMID: 35164054 PMCID: PMC8840749 DOI: 10.3390/molecules27030789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g−1. Virtual screenings of the MPAO’s potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.
Collapse
Affiliation(s)
- Syed Tawab Shah
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
- Correspondence: or ; Tel.: +60-37-967-2929 or +60-10-267-5621
| | - Mohd. Rafie Bin Johan
- Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.S.); (M.R.B.J.)
| | - Irfan Anjum Badruddin
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (I.A.B.); (S.K.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - H. M. T. Khaleed
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Medina 42351, Saudi Arabia;
| | - Sarfaraz Kamangar
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (I.A.B.); (S.K.)
| | - Hussein Alrobei
- Department of Mechanical Engineering, Faculty of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| |
Collapse
|
39
|
Nishimoto-Sauceda D, Romero-Robles LE, Antunes-Ricardo M. Biopolymer nanoparticles: a strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:41-52. [PMID: 34460939 DOI: 10.1002/jsfa.11512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are abundant in nature and have multiple beneficial effects on human health due to their antioxidant, anti-inflammatory, antithrombotic, antiallergenic, anticancer, and antiatherosclerotic properties. For this reason, phenolics are becoming relevant functional ingredients for several industries, mainly the food industry, derived from food consumer exigencies and regulations. However, the use of their beneficial properties still presents some limitations, such as chemical instability under environmental and processing conditions, which leads to structural changes and compromises their biological activities. They also present poor water solubility and sensitivity to pH changes, decreasing their bioavailability in the organism. The technologies for extraction and stabilization of these compounds have evolved rapidly in the development of different delivery systems to encapsulate sensitive active molecules. Biopolymeric nanoparticles are biodegradable polymer-based colloidal systems with sizes ranging from 1 to 1000 nm, and different techniques can be carried out to develop them. These systems have emerged as a green and effective alternative to improve stability, bioavailability, and biological effects of phenolic compounds. This comprehensive review aims to present an overview of recent advances in encapsulation processes of phenolic compounds within biopolymer nanoparticles as delivery systems and the impact on their physicochemical properties and biological effects after encapsulation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| |
Collapse
|
40
|
Khan F, Oh D, Chandika P, Jo DM, Bamunarachchi NI, Jung WK, Kim YM. Inhibitory activities of phloroglucinol-chitosan nanoparticles on mono- and dual-species biofilms of Candida albicans and bacteria. Colloids Surf B Biointerfaces 2021; 211:112307. [PMID: 34971906 DOI: 10.1016/j.colsurfb.2021.112307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Phloroglucinol (PG) was encapsulated into chitosan nanoparticles (CSNPs) using a simple ionic gelification technique, and the inhibitory activity of the resulting nanoparticles on microbial mono- and dual-species biofilms was investigated. PG-CSNPs were determined to be spherical with a rough surface, and had an average diameter and zeta potential of 414.0 ± 48.5 nm and 21.1 ± 1.2 mV, respectively. The rate of PG release from the loaded CSNPs was found to increase in acidic environment. The loading capacity and encapsulation efficiency of PG to CSNPs were determined to be 18.74% and 22.4%, respectively. The prepared PG-CSNPs exhibited inhibitory effects on mono-species biofilms such as Candida albicans, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus mutans, and dual-species such as C. albicans-K. pneumoniae/S. aureus/S. mutans. The PG-CSNPs were found to be more effective in inhibiting and eradicating mono- and dual-species biofilms than pure PG. In addition, PG-CSNPs were found to enhance the efficacy of several antimicrobial drugs against mature mono- and dual-species biofilms. This work demonstrates that PG-CSNPs may provide an alternative method for treating infections caused by biofilm-forming pathogens.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dokyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Pathum Chandika
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
41
|
Zanghaneh E, Mirzaei H, Jafari SM, Javadi A, Afshar Mogaddam MR. Spirulina platensis extract nanoliposomes: preparation, characterization and application to white cheese. J AOAC Int 2021; 105:827-834. [PMID: 34904627 DOI: 10.1093/jaoacint/qsab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ultrafiltration cheese is produced in large scale from treated and pasteurized treated and pasteurized milk with mesophilic starter and to expand its shelf life preservatives addition is needed. OBJECTIVE The purpose of the present study was preparation of encapsulate Spirulina platensis algae nanoliposomes to evaluate the characteristics of the nanoliposomes loaded with Spirulina extract (SE-NLs). In addition, the chemical and microbiological properties of white cheese produced with SE-NLs were studied. METHODS Nanoliposomes are composed of lecithin and cholesterol, used for the encapsulation of SE. The SE-NLs were prepared using the thin layer hydration method. The characteristics of produced SE-NLs including particle size, zeta potential, morphology and the encapsulation efficiency (EE) was studied during 4 weeks in different storage conditions (4 °C and 25 °C). In addition, the effect of SE and SE-NLs on the chemical and microbiological properties of white cheese was evaluated during 60 days of ripening. RESULTS The results showed that the nanoliposomes loaded with 3 mg/g of SE had the optimum formulation due to the higher EE, smaller particle size, and higher negatively charged zeta potential. The quality of the produced nanoliposomes decreased by increasing the time of storage but the SE-NLs stored at 4 °C were more stable and possessed higher EE and smaller particle sizes. While the chemical composition of the cheeses manufactured by the nanoliposome loaded with 3 mg/g SE- NLs were comparable to that of control cheese at 60 days of ripening, it showed a significant inhibitory effect on Staphylococcus aureus and Listeria monocytogenes after 30 days. CONCLUSION The utilization of SE-NLs can be considered as a natural antimicrobial and an alternative to the use of synthetic preservatives in the production of white cheese. HIGHLIGHTS Nanoliposomes of Spirulina platensis extracts was prepared.UF white cheese prepared by nanoliposomes and then were evaluated.
Collapse
Affiliation(s)
- Esmaiel Zanghaneh
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Clinical Biochemistry, School of medicine, Golestan University of Medical Sciences, Golestan
| | - Afshin Javadi
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
42
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
43
|
Rahnemoon P, Sarabi-Jamab M, Bostan A, Mansouri E. Nano-encapsulation of pomegranate (Punica granatum L.) peel extract and evaluation of its antimicrobial properties on coated chicken meat. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
46
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|
47
|
Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021; 26:3483. [PMID: 34201125 PMCID: PMC8227701 DOI: 10.3390/molecules26123483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Amira Namsi
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Norbert Latruffe
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| |
Collapse
|
48
|
New Nanomaterials with Intrinsic Antioxidant Activity by Surface Functionalization of Niosomes with Natural Phenolic Acids. Pharmaceutics 2021; 13:pharmaceutics13060766. [PMID: 34063874 PMCID: PMC8224007 DOI: 10.3390/pharmaceutics13060766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Nanoantioxidants have emerged as smart devices able to provide improved stability and biocompatibility and sustained and targeted release of conventional antioxidants. In the current research, a new family of nanoantioxidants has been developed by covalently grafting gallic (GA), caffeic (CF) and ferulic (FR) acid on the surfaces of Tween 80 niosomes. First, empty and curcumin (CUR)-loaded vesicles were prepared using a thin-layer evaporation technique and then functionalized with phenolic acids using carbodiimide chemistry. Nanoantioxidants obtained were characterized in terms of size, polydispersity index, zeta potential, and loading efficiency. Their antioxidant activity was studied by ABTS and DPPH assays. Surface functionalization of empty and CUR-loaded vesicles provided stable vesicles with intrinsic antioxidant properties. In vitro antioxidant assays highlighted that vesicles functionalized with FR or GA exhibited better antioxidant activity compared to CF-grafted niosomes. Furthermore, vesicles loaded with CUR and functionalized with GA and CF showed an enhanced scavenging ability of ABTS and DPPH radicals, compared to the single antioxidant-loaded formulations, highlighting an important synergic effect of CUR when used in combination with GA ad CF.
Collapse
|
49
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
50
|
Hui X, Wu G, Han D, Gong X, Stipkovits L, Wu X, Tang S, Brennan MA, Brennan CS. Bioactive compounds from blueberry and blackcurrant powder alter the physicochemical and hypoglycaemic properties of oat bran paste. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|