1
|
Zhang T, Wang W, Li J, Ye X, Wang Z, Cui S, Shen S, Liang X, Chen YQ, Zhu S. Free fatty acid receptor 4 modulates dietary sugar preference via the gut microbiota. Nat Microbiol 2025; 10:348-361. [PMID: 39805952 DOI: 10.1038/s41564-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Sugar preference is a key contributor to the overconsumption of sugar and the concomitant increase in the incidence of diabetes. However, the exact mechanism of its development remains ambiguous. Here we show that the expression of free fatty acid receptor Ffar4, a receptor for long-chain fatty acids, is decreased in patients and mouse models with diabetes, which is associated with high sugar intake. Deletion of intestinal Ffar4 in mice resulted in reduced gut Bacteroides vulgatus and its metabolite pantothenate, leading to dietary sugar preference. Pantothenate promoted the secretion of GLP-1 which inhibited sugar preference by stimulating hepatic FGF21 release, which in turn regulates energy metabolism. These findings uncover a previously unappreciated role of Ffar4 in negatively regulating sugar preference and suggest B. vulgatus-derived pantothenate as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No.2 People's Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Shiwei Shen
- Wuxi No.2 People's Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, China.
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Mai-Lippold SA, Schultze J, Pollatos O. Interoceptive abilities impairment correlates with emotional eating and taste abnormalities in children with overweight and obesity. Appetite 2024; 194:107182. [PMID: 38154574 DOI: 10.1016/j.appet.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Weight problems in children are associated with emotional eating, which has been linked to interoceptive abilities. Previous research also shows altered olfactory and gustatory perception in children with obesity and overweight. Therefore, we aimed to investigate the connection of alterations in olfactory and gustatory perception to interoceptive abilities and emotional eating among children with obesity and overweight. 23 children with overweight and obesity and age-matched controls with normal weight (12-16 years old) underwent olfactory and gustatory testing. Interoceptive abilities were assessed, focusing on interoceptive accuracy and interoceptive sensibility. Children with overweight and obesity showed significantly higher accuracy for detection of sweet taste, but descriptively lower accuracy for all other taste qualities compared to normal weight children. We found no changes in olfactory abilities in children with overweight and obesity. Emotional eating scores were elevated for children with overweight and obesity, and interoceptive accuracy scores were significantly lower. In both groups, interoceptive accuracy was inversely correlated with emotional eating. Our results support prior findings of altered gustatory abilities in children with overweight and obesity. The observed link between impaired interoceptive processes and heightened emotional eating in this group implies that interventions for overweight in children could benefit from targeting interoceptive abilities. This study provides meaningful grounds for further investigations into the roles of taste, emotional eating, and interoceptive abilities for overweight in children and adolescents.
Collapse
Affiliation(s)
- Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Jasmin Schultze
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany.
| |
Collapse
|
3
|
Song X, Liu Y, Zhang X, Weng P, Zhang R, Wu Z. Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Mansuy-Aubert V, Ravussin Y. Short chain fatty acids: the messengers from down below. Front Neurosci 2023; 17:1197759. [PMID: 37483350 PMCID: PMC10359501 DOI: 10.3389/fnins.2023.1197759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Short-chain fatty acids (SCFAs), produced by the metabolism of dietary fibers in the gut, have wide-ranging effects locally and throughout the body. They modulate the enteric and central nervous systems, benefit anti-inflammatory pathways, and serve as energy sources. Recent research reveals SCFAs as crucial communicators between the gut and brain, forming the gut-brain axis. This perspective highlights key findings and discusses signaling mechanisms connecting SCFAs to the brain. By shedding light on this link, the perspective aims to inspire innovative research in this rapidly developing field.
Collapse
Affiliation(s)
- Virginie Mansuy-Aubert
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yann Ravussin
- Laboratory of Energetics and Advanced Nutrition (LEAN), Department of Endocrinology, Metabolism and Cardiovascular Systems (EMC), Faculty of Science and Medicine, University of Fribourg (UNIFR), Fribourg, Switzerland
| |
Collapse
|
5
|
Ousey J, Boktor JC, Mazmanian SK. Gut microbiota suppress feeding induced by palatable foods. Curr Biol 2023; 33:147-157.e7. [PMID: 36450285 PMCID: PMC9839363 DOI: 10.1016/j.cub.2022.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Feeding behaviors depend on intrinsic and extrinsic factors including genetics, food palatability, and the environment.1,2,3,4,5 The gut microbiota is a major environmental contributor to host physiology and impacts feeding behavior.6,7,8,9,10,11,12 Here, we explored the hypothesis that gut bacteria influence behavioral responses to palatable foods and reveal that antibiotic depletion (ABX) of the gut microbiota in mice results in overconsumption of several palatable foods with conserved effects on feeding dynamics. Gut microbiota restoration via fecal transplant into ABX mice is sufficient to rescue overconsumption of high-sucrose pellets. Operant conditioning tests found that ABX mice exhibit intensified motivation to pursue high-sucrose rewards. Accordingly, neuronal activity in mesolimbic brain regions, which have been linked with motivation and reward-seeking behavior,3 was elevated in ABX mice after consumption of high-sucrose pellets. Differential antibiotic treatment and functional microbiota transplants identified specific gut bacterial taxa from the family S24-7 and the genus Lactobacillus whose abundances associate with suppression of high-sucrose pellet consumption. Indeed, colonization of mice with S24-7 and Lactobacillus johnsonii was sufficient to reduce overconsumption of high-sucrose pellets in an antibiotic-induced model of binge eating. These results demonstrate that extrinsic influences from the gut microbiota can suppress the behavioral response toward palatable foods in mice.
Collapse
Affiliation(s)
- James Ousey
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
7
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Subias-Gusils A, Álvarez-Monell A, Boqué N, Caimari A, Del Bas JM, Mariné-Casadó R, Solanas M, Escorihuela RM. Behavioral and Metabolic Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation in Obese Male Rats. Nutrients 2021; 13:nu13124474. [PMID: 34960026 PMCID: PMC8704884 DOI: 10.3390/nu13124474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Diet-induced obesity models are widely used to investigate dietary interventions for treating obesity. This study was aimed to test whether a dietary intervention based on a calorie-restricted cafeteria diet (CAF-R) and a polyphenolic compound (Oleuropein, OLE) supplementation modified sucrose intake, preference, and taste reactivity in cafeteria diet (CAF)-induced obese rats. CAF diet consists of high-energy, highly palatable human foods. Male rats fed standard chow (STD) or CAF diet were compared with obese rats fed CAF-R diet, alone or supplemented with an olive tree leaves extract (25 mg/kg*day) containing a 20.1% of OLE (CAF-RO). Biometric, food consumption, and serum parameters were measured. CAF diet increased body weight, food and energy consumption and obesity-associated metabolic parameters. CAF-R and CAF-RO diets significantly attenuated body weight gain and BMI, diminished food and energy intake and improved biochemical parameters such as triacylglycerides and insulin resistance which did not differ between CAF-RO and STD groups. The three cafeteria groups diminished sucrose intake and preference compared to STD group. CAF-RO also diminished the hedonic responses for the high sucrose concentrations compared with the other groups. These results indicate that CAF-R diet may be an efficient strategy to restore obesity-associated alterations, whilst OLE supplementation seems to have an additional beneficial effect on sweet taste function.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adam Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
9
|
Dietert RR. Microbiome First Approaches to Rescue Public Health and Reduce Human Suffering. Biomedicines 2021; 9:biomedicines9111581. [PMID: 34829809 PMCID: PMC8615664 DOI: 10.3390/biomedicines9111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
The is a sequential article to an initial review suggesting that Microbiome First medical approaches to human health and wellness could both aid the fight against noncommunicable diseases and conditions (NCDs) and help to usher in sustainable healthcare. This current review article specifically focuses on public health programs and initiatives and what has been termed by medical journals as a catastrophic record of recent failures. Included in the review is a discussion of the four priority behavioral modifications (food choices, cessation of two drugs of abuse, and exercise) advocated by the World Health Organization as the way to stop the ongoing NCD epidemic. The lack of public health focus on the majority of cells and genes in the human superorganism, the microbiome, is highlighted as is the "regulatory gap" failure to protect humans, particularly the young, from a series of mass population toxic exposures (e.g., asbestos, trichloroethylene, dioxin, polychlorinated biphenyls, triclosan, bisphenol A and other plasticizers, polyfluorinated compounds, herbicides, food emulsifiers, high fructose corn syrup, certain nanoparticles, endocrine disruptors, and obesogens). The combination of early life toxicity for the microbiome and connected human physiological systems (e.g., immune, neurological), plus a lack of attention to the importance of microbial rebiosis has facilitated rather than suppressed, the NCD epidemic. This review article concludes with a call to place the microbiome first and foremost in public health initiatives as a way to both rescue public health effectiveness and reduce the human suffering connected to comorbid NCDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes (Lond) 2021; 45:1644-1655. [PMID: 34031530 DOI: 10.1038/s41366-021-00855-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
The incidence of obesity has dramatically increased in recent years, and poses a public health challenge for which an effective and scalable intervention strategy is yet to be found. Our food choices are one of the primary drivers of obesity, where the overconsumption of energy from foods high in fat and sugar can be particularly problematic. Unfortunately, these same foods also tend to be highly palatable. We select foods more on their sensory properties than on any other factor, such as price, convenience, or healthfulness. Previous evidence from human sensory studies has suggested a depressed sense of taste in panelists with obesity. Evidence from animal models also demonstrates a clear deficiency in taste buds occurring with obesity, suggesting that damage to the taste system may result from an obese state. In this review only taste, as opposed to smell, will be examined. Here we seek to bring together evidence from a diverse array of human and animal studies into taste response, dietary intake, and physiology, to better understand changes in taste with obesity, with the goal of understanding whether taste may provide a novel target for intervention in the treatment of obesity.
Collapse
|
11
|
Abstract
Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW From single cells to entire organisms, biological entities are in constant communication with their surroundings, deciding what to 'allow' in, and what to reject. In very different ways, the immune and taste systems both fulfill this function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans to explore our understanding of the interplay between these systems. RECENT FINDINGS Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body. Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and composition. There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity, responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells throughout the body as a form of homeostatic control.
Collapse
Affiliation(s)
- Jason R Goodman
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Jeon S, Kim Y, Min S, Song M, Son S, Lee S. Taste Sensitivity of Elderly People Is Associated with Quality of Life and Inadequate Dietary Intake. Nutrients 2021; 13:nu13051693. [PMID: 34067560 PMCID: PMC8155931 DOI: 10.3390/nu13051693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Aging has been implicated in the alteration of taste acuity. Diet can affect taste sensitivity. We aimed to investigate the types of tastes altered in elderly Korean people and factors associated with taste alteration in relation to dietary intake and other factors. Elderly participants (≥65 years) and young adults were assessed to determine their recognition thresholds (RT) for sweet, salty, bitter, sour, and umami tastes. Elderly participants were further surveyed for dietary intake and non-nutritional factors. Five taste RTs were correlated with age, but only four taste RTs, except sweetness, differed between the elderly participants and young adults. Inadequate intake of iron, thiamin, folic acid, zinc, and phosphorus among the elderly participants was related to elevated taste RT levels, except for bitter taste. In both correlation and regression analyses, only salty and sour RTs were associated with energy, iron, thiamin, fiber, vitamin C, and riboflavin levels in the elderly participants. The elderly participants’ taste RTs exhibited strong associations with quality of life (QOL) but showed partial relationships with physical activity, number of medicine intakes, social gatherings, and education. Taste sensitivity may decrease with age, which is further influenced by insufficient dietary intake, especially iron and thiamin, and QOL.
Collapse
Affiliation(s)
- Soyeon Jeon
- Clinical Nutrition Program, Graduate School of Human Environmental Sciences, Yonsei University, Seoul 03722, Korea;
| | - Yeonhee Kim
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (Y.K.); (S.M.); (M.S.)
| | - Sohyun Min
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (Y.K.); (S.M.); (M.S.)
| | - Mina Song
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (Y.K.); (S.M.); (M.S.)
| | - Sungtaek Son
- Department of Applied Statistics, College of Economics and Commerce, Yonsei University, Seoul 03722, Korea;
| | - Seungmin Lee
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (Y.K.); (S.M.); (M.S.)
- Correspondence: ; Tel.: +82-2-2123-3118; Fax: +82-2-2123-3091
| |
Collapse
|
14
|
Abstract
The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.
Collapse
|
15
|
Potential therapeutic applications of the gut microbiome in obesity: from brain function to body detoxification. Int J Obes (Lond) 2020; 44:1818-1831. [PMID: 32523034 DOI: 10.1038/s41366-020-0618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
The prevalence of obesity is rising every year and associated comorbidities such as cardiovascular diseases are among the leading causes of death worldwide. The gut microbiota has recently emerged as a potential target for therapeutic applications to prevent and treat those comorbidities. In this review, we focus on three conditions related to obesity in which the use of gut microbiota modulators could have benefits; mood disorders, eating behaviors, and body detoxification of persistent organic pollutants (POPs). On one hand, modulation of gut-derived signals to the brain in a context of obesity is involved in the development of neuroinflammation and can subsequently alter behaviors. An altered gut microbiome could change these signals and alleviate their consequences. On the other hand, obesity is associated with an increased accumulation of lipophilic contaminants, such as POPs. Targeting the microbiota could help body detoxication by reducing bioavailability, enhancing degradation by bioremediation or their excretion through the enterohepatic circulation. Thus, a supplementation of prebiotics, probiotics, or synbiotics could represent a complementary strategy to current ones, such as medication and lifestyle modifications, to decrease depression, alter eating behaviors, and lower body burden of pollutants considering the actual obesity epidemic our society is facing.
Collapse
|
16
|
Basson AR, LaSalla A, Lam G, Kulpins D, Moen EL, Sundrud MS, Miyoshi J, Ilic S, Theriault BR, Cominelli F, Rodriguez-Palacios A. Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci Rep 2020; 10:5039. [PMID: 32193395 PMCID: PMC7081340 DOI: 10.1038/s41598-020-60900-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With >70,000 yearly publications using mouse data, mouse models represent the best engrained research system to address numerous biological questions across all fields of science. Concerns of poor study and microbiome reproducibility also abound in the literature. Despite the well-known, negative-effects of data clustering on interpretation and study power, it is unclear why scientists often house >4 mice/cage during experiments, instead of ≤2. We hypothesized that this high animal-cage-density practice abounds in published literature because more mice/cage could be perceived as a strategy to reduce housing costs. Among other sources of 'artificial' confounding, including cyclical oscillations of the 'dirty-cage/excrement microbiome', we ranked by priority the heterogeneity of modern husbandry practices/perceptions across three professional organizations that we surveyed in the USA. Data integration (scoping-reviews, professional-surveys, expert-opinion, and 'implementability-score-statistics') identified Six-Actionable Recommendation Themes (SART) as a framework to re-launch emerging protocols and intuitive statistical strategies to use/increase study power. 'Cost-vs-science' discordance was a major aspect explaining heterogeneity, and scientists' reluctance to change. With a 'housing-density cost-calculator-simulator' and fully-annotated statistical examples/code, this themed-framework streamlines the rapid analysis of cage-clustered-data and promotes the use of 'study-power-statistics' to self-monitor the success/reproducibility of basic and translational research. Examples are provided to help scientists document analysis for study power-based sample size estimations using preclinical mouse data to support translational clinical trials, as requested in NIH/similar grants or publications.
Collapse
Affiliation(s)
- Abigail R Basson
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gretchen Lam
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika L Moen
- Department of Biomedical Data Science, Geisel School of Medicine, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Sanja Ilic
- Department of Human Sciences and Nutrition, The Ohio State University, Columbus, OH, USA
| | | | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA.
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Abstract
The sensation of flavour reflects the complex integration of aroma, taste, texture, and chemesthetic (oral and nasal irritation cues) from a food or food component. Flavour is a major determinant of food palatability—the extent to which a food is accepted or rejected—and can profoundly influence diet selection, nutrition, and health. Despite recent progress, there are still gaps in knowledge on how taste and flavour cues are detected at the periphery, conveyed by the brainstem to higher cortical levels and then interpreted as a conscious sensation. Taste signals are also projected to central feeding centers where they can regulate hunger and fullness. Individual differences in sensory perceptions are also well known and can arise from genetic variation, environmental causes, or a variety of metabolic diseases, such as obesity, metabolic syndrome, and cancer. Genetic taste/smell variation could predispose individuals to these same diseases. Recent findings have also opened new avenues of inquiry, suggesting that fatty acids and carbohydrates may provide nutrient-specific signals informing the gut and brain of the nature of the ingested nutrients. This special issue on “Taste, Nutrition, and Health” presents original research communications and comprehensive reviews on topics of broad interest to researchers and educators in sensory science, nutrition, physiology, public health, and health care.
Collapse
|