1
|
Mottarlini F, Targa G, Rizzi B, Fumagalli F, Caffino L. Developmental activity-based anorexia alters hippocampal non-genomic stress response and induces structural instability and spatial memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111065. [PMID: 38901757 DOI: 10.1016/j.pnpbp.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
2
|
Afzal S, Dürrast N, Hassan I, Soleimanpour E, Tsai PL, Dieterich DC, Fendt M. Probing cognitive flexibility in Shank2-deficient mice: Effects of D-cycloserine and NMDAR signaling hub dynamics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111051. [PMID: 38849086 DOI: 10.1016/j.pnpbp.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) have a heterogeneous etiology but are largely associated with genetic factors. Robust evidence from recent human genetic studies has linked mutations in the Shank2 gene to idiopathic ASD. Modeling these Shank2 mutations in animal models recapitulates behavioral changes, e.g. impaired social interaction and repetitive behavior of ASD patients. Shank2-deficient mice exhibit NMDA receptor (NMDAR) hypofunction and associated behavioral deficits. Of note, NMDARs are strongly implicated in cognitive flexibility. Their hypofunction, e.g. observed in schizophrenia, or their pharmacological inhibition leads to impaired cognitive flexibility. However, the association between Shank2 mutations and cognitive flexibility is poorly understood. Using Shank2-deficient mice, we explored the role of Shank2 in cognitive flexibility measured by the attentional set shifting task (ASST) and whether ASST performance in Shank2-deficient mice can be modulated by treatment with the partial NMDAR agonist D-cycloserine (DCS). Furthermore, we investigated the effects of Shank2 deficiency, ASST training, and DCS treatment on the expression level of NMDAR signaling hub components in the orbitofrontal cortex (OFC), including NMDAR subunits (GluN2A, GluN2B, GluN2C), phosphoglycerate dehydrogenase and serine racemase. Surprisingly, Shank2 deficiency did not affect ASST performance or alter the expression of the investigated NMDAR signaling hub components. Importantly, however, DCS significantly improved ASST performance, demonstrating that positive NMDAR modulation facilitates cognitive flexibility. Furthermore, DCS increased the expression of GluN2A in the OFC, but not that of other NMDAR signaling hub components. Our findings highlight the potential of DCS as a pharmacological intervention to improve cognitive flexibility impairments downstream of NMDAR modulation and substantiate the key role of NMDAR in cognitive flexibility.
Collapse
Affiliation(s)
- Samia Afzal
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Nora Dürrast
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Iman Hassan
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Pei-Ling Tsai
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Targa G, Mottarlini F, Rizzi B, Taddini S, Parolaro S, Fumagalli F, Caffino L. Anorexia-Induced Hypoleptinemia Drives Adaptations in the JAK2/STAT3 Pathway in the Ventral and Dorsal Hippocampus of Female Rats. Nutrients 2024; 16:1171. [PMID: 38674862 PMCID: PMC11054075 DOI: 10.3390/nu16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Leptin is an appetite-regulating adipokine that is reduced in patients with anorexia nervosa (AN), a psychiatric disorder characterized by self-imposed starvation, and has been linked to hyperactivity, a hallmark of AN. However, it remains unknown how leptin receptor (LepR) and its JAK2-STAT3 downstream pathway in extrahypothalamic brain areas, such as the dorsal (dHip) and ventral (vHip) hippocampus, crucial for spatial memory and emotion regulation, may contribute to the maintenance of AN behaviors. Taking advantage of the activity-based anorexia (ABA) model (i.e., the combination of food restriction and physical activity), we observed reduced leptin plasma levels in adolescent female ABA rats at the acute phase of the disorder [post-natal day (PND) 42], while the levels increased over control levels following a 7-day recovery period (PND49). The analysis of the intracellular leptin pathway revealed that ABA rats showed an overall decrease of the LepR/JAK2/STAT3 signaling in dHip at both time points, while in vHip we observed a transition from hypo- (PND42) to hyperactivation (PND49) of the pathway. These changes might add knowledge on starvation-induced fluctuations in leptin levels and in hippocampal leptin signaling as initial drivers of the transition from adaptative mechanisms to starvation toward the maintenance of aberrant behaviors typical of AN patients, such as perpetuating restraint over eating.
Collapse
Affiliation(s)
- Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
- Center for Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| |
Collapse
|
4
|
Zhu R, Lan Y, Qian X, Zhao J, Wang G, Tian P, Chen W. Streptococcus salivarius subsp. thermophilus CCFM1312 enhanced mice resilience to activity-based anorexia. Food Funct 2024; 15:1431-1442. [PMID: 38224462 DOI: 10.1039/d3fo04663j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Probiotic intervention, already showing promise in the treatment of various psychiatric disorders like depression, emerges as a potential therapy for anorexia nervosa (AN) with minimal side effects. In this study, we established an activity-based anorexia (ABA) model to probe the pathogenesis of AN and assess the impact of probiotics on ABA mice. ABA resulted in a compensatory increase in duodenal ghrelin levels, impairing the regulation of feeding and the brain reward system. Intervention with Streptococcus salivarius subsp. thermophilus CCFM1312 ameliorated these ABA-induced effects, and the activation of neurons in the nucleus tractus solitarius (NTS) was observed following probiotic administration, revealing the advantageous role of probiotics in AN through the vagus nerve. Furthermore, our metabolomics analysis of cecal contents unveiled that S. salivarius subsp. thermophilus CCFM1312 modulated gut microbiota metabolism and thereby regulated intestinal ghrelin levels.
Collapse
Affiliation(s)
- Ran Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuming Lan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Mitchell JS, Anijärv TE, Levenstein JL, Hermens DF, Lagopoulos J. Excitatory and inhibitory neurometabolites in anorexia nervosa: A systematic review of proton magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2023; 152:105279. [PMID: 37307945 DOI: 10.1016/j.neubiorev.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The dysregulation of excitatory and inhibitory neurotransmission is considered a pathological marker of Anorexia Nervosa (AN), however, no systematic evaluation of the proton Magnetic Resonance Spectroscopy (1H-MRS) literature has been conducted to date. Accordingly, we conducted a systematic review of neurometabolite differences between individuals with AN and healthy controls (HC). A comprehensive database search (until June 2023) identified seven studies meeting inclusion criteria. Samples included adolescents and adults with similar mean age (AN: 22.20 HC: 22.60), and female percentages (AN: 98%; HC: 94%). The review found a considerable need for improving study design and the reporting of MRS sequence parameters and analysis. Reduced glutamate concentrations in the ACC and OCC, and reduced Glx concentrations in the ACC were reported by one and two studies, respectively. Lastly, only one study to date has quantified GABA concentrations, with no significant differences found. In conclusion, there is currently insufficient evidence of excitatory and inhibitory neurometabolites changes in AN. As the 1H-MRS literature in AN increases, the key questions herein proposed must be revisited.
Collapse
Affiliation(s)
- Jules S Mitchell
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia.
| | - Toomas E Anijärv
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Jacob L Levenstein
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| |
Collapse
|
6
|
Scherma M, Palmas MF, Pisanu A, Masia P, Dedoni S, Camoglio C, Fratta W, Carta AR, Fadda P. Induction of Activity-Regulated Cytoskeleton-Associated Protein and c-Fos Expression in an Animal Model of Anorexia Nervosa. Nutrients 2023; 15:3830. [PMID: 37686862 PMCID: PMC10490422 DOI: 10.3390/nu15173830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Anorexia nervosa (AN) is a complex eating disorder characterized by reduced caloric intake to achieve body-weight loss. Furthermore, over-exercise is commonly reported. In recent years, animal models of AN have provided evidence for neuroplasticity changes in specific brain areas of the mesocorticolimbic circuit, which controls a multitude of functions including reward, emotion, motivation, and cognition. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates several forms of synaptic plasticity and has been linked to neuropsychiatric illness. Since the role of Arc in AN has never been investigated, in this study we evaluated whether the anorexic-like phenotype reproduced by the activity-based anorexia (ABA) model may impact its expression in selected brain regions that belong to the mesocorticolimbic circuit (i.e., prefrontal cortex, nucleus accumbens, and hippocampus). The marker of neuronal activation c-Fos was also assessed. We found that the expression of both markers increased in all the analyzed brain areas of ABA rats in comparison to the control groups. Moreover, a negative correlation between the density of Arc-positive cells and body-weight loss was found. Together, our findings suggest the importance of Arc and neuroplasticity changes within the brain circuits involved in dysfunctional behaviors associated with AN.
Collapse
Affiliation(s)
- Maria Scherma
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Maria Francesca Palmas
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Augusta Pisanu
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), 09042 Cagliari, Italy;
| | - Paolo Masia
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Simona Dedoni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Chiara Camoglio
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Walter Fratta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Anna R. Carta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Paola Fadda
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), 09042 Cagliari, Italy;
| |
Collapse
|
7
|
Seifried L, Soleimanpour E, Dieterich DC, Fendt M. Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits. Cells 2023; 12:cells12091212. [PMID: 37174612 PMCID: PMC10177518 DOI: 10.3390/cells12091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cognitive flexibility refers to the ability to adapt flexibly to changing circumstances. In laboratory mice, we investigated whether cognitive flexibility is higher in pubertal mice than in adult mice, and whether this difference is related to the expression of distinct NMDA receptor subunits. Using the attentional set shifting task as a measure of cognitive flexibility, we found that cognitive flexibility was increased during puberty. This difference was more pronounced in female pubertal mice. Further, the GluN2A subunit of the NMDA receptor was more expressed during puberty than after puberty. Pharmacological blockade of GluN2A reduced the cognitive flexibility of pubertal mice to adult levels. In adult mice, the expression of GluN2A, GluN2B, and GluN2C in the orbitofrontal cortex correlated positively with performance in the attentional set shifting task, whereas in pubertal mice this was only the case for GluN2C. In conclusion, the present study confirms the observation in humans that cognitive flexibility is higher during puberty than in adulthood. Future studies should investigate whether NMDA receptor subunit-specific agonists are able to rescue deficient cognitive flexibility, and whether they have the potential to be used in human diseases with deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Lisa Seifried
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
- Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
- Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
8
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
9
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
10
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
11
|
Mottarlini F, Targa G, Bottan G, Tarenzi B, Fumagalli F, Caffino L. Cortical reorganization of the glutamate synapse in the activity-based anorexia rat model: Impact on cognition. J Neurochem 2022; 161:350-365. [PMID: 35257377 PMCID: PMC9313878 DOI: 10.1111/jnc.15605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Bottan
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Benedetta Tarenzi
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
12
|
Frintrop L, Trinh S, Seitz J, Kipp M. The Role of Glial Cells in Regulating Feeding Behavior: Potential Relevance to Anorexia Nervosa. J Clin Med 2021; 11:jcm11010186. [PMID: 35011927 PMCID: PMC8745326 DOI: 10.3390/jcm11010186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Eating behavior is controlled by hypothalamic circuits in which agouti-related peptide-expressing neurons when activated in the arcuate nucleus, promote food intake while pro-opiomelanocortin-producing neurons promote satiety. The respective neurotransmitters signal to other parts of the hypothalamus such as the paraventricular nucleus as well as several extra-hypothalamic brain regions to orchestrate eating behavior. This complex process of food intake may be influenced by glia cells, in particular astrocytes and microglia. Recent studies showed that GFAP+ astrocyte cell density is reduced in the central nervous system of an experimental anorexia nervosa model. Anorexia nervosa is an eating disorder that causes, among the well-known somatic symptoms, brain volume loss which was associated with neuropsychological deficits while the underlying pathophysiology is unknown. In this review article, we summarize the findings of glia cells in anorexia nervosa animal models and try to deduce which role glia cells might play in the pathophysiology of eating disorders, including anorexia nervosa. A better understanding of glia cell function in the regulation of food intake and eating behavior might lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-(0)-381-494-8406
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
13
|
Spadini S, Ferro M, Lamanna J, Malgaroli A. Activity-based anorexia animal model: a review of the main neurobiological findings. J Eat Disord 2021; 9:123. [PMID: 34600568 PMCID: PMC8487535 DOI: 10.1186/s40337-021-00481-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. AIM In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. METHOD The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. RESULTS The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. CONCLUSIONS These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.
Collapse
Affiliation(s)
- Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
14
|
Skowron K, Kurnik-Łucka M, Jurczyk M, Aleksandrovych V, Stach P, Dadański E, Kuśnierz-Cabala B, Jasiński K, Węglarz WP, Mazur P, Podlasz P, Wąsowicz K, Gil K. Is the Activity-Based Anorexia Model a Reliable Method of Presenting Peripheral Clinical Features of Anorexia Nervosa? Nutrients 2021; 13:2876. [PMID: 34445036 PMCID: PMC8399373 DOI: 10.3390/nu13082876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Anorexia nervosa (AN) causes the highest number of deaths among all psychiatric disorders. Reduction in food intake and hyperactivity/increased anxiety observed in AN are also the core features of the activity-based anorexia animal model (ABA). Our aim was to assess how the acute ABA protocol mimics common AN complications, including gonadal and cardiovascular dysfunctions, depending on gender, age, and initial body weight, to form a comprehensive description of ABA as a reliable research tool. Wheel running, body weight, and food intake of adolescent female and male rats were monitored. Electrocardiography, heart rate variability, systolic blood pressure, and magnetic resonance imaging (MRI) measurements were performed. Immediately after euthanasia, tissue fragments and blood were collected for further analysis. Uterine weight was 2 times lower in ABA female rats, and ovarian tissue exhibited a reduced number of antral follicles and decreased expression of estrogen and progesterone receptors. Cardiovascular measurements revealed autonomic decompensation with prolongation of QRS complex and QT interval. The ABA model is a reliable research tool for presenting the breakdown of adaptation mechanisms observed in severe AN. Cardiac and hormonal features of ABA with underlying altered neuroendocrine pathways create a valid phenotype of a human disease.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Michał Jurczyk
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Paulina Stach
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Emil Dadański
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| | - Beata Kuśnierz-Cabala
- Department of Diagnostics, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Krzysztof Jasiński
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (K.J.); (W.P.W.)
| | - Władysław P. Węglarz
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (K.J.); (W.P.W.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (P.P.); (K.W.)
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (P.P.); (K.W.)
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (M.K.-Ł.); (M.J.); (V.A.); (P.S.); (E.D.); (K.G.)
| |
Collapse
|
15
|
From Desire to Dread-A Neurocircuitry Based Model for Food Avoidance in Anorexia Nervosa. J Clin Med 2021; 10:jcm10112228. [PMID: 34063884 PMCID: PMC8196668 DOI: 10.3390/jcm10112228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anorexia nervosa is a severe psychiatric illness associated with food avoidance. Animal models from Berridge et al. over the past decade showed that environmental ambience, pleasant or fear inducing, can trigger either appetitive (desire) or avoidance (dread) behaviors in animals via frontal cortex, nucleus accumbens dopamine D1 and D2 receptors, and hypothalamus. Those mechanisms could be relevant for understanding anorexia nervosa. However, models that translate animal research to explain the psychopathology of anorexia nervosa are sparse. This article reviews animal and human research to find evidence for whether this model can explain food avoidance behaviors in anorexia nervosa. Research on anorexia nervosa suggests fear conditioning to food, activation of the corticostriatal brain circuitry, sensitization of ventral striatal dopamine response, and alterations in hypothalamic function. The results support the applicability of the animal neurocircuitry derived model and provide directions to further study the pathophysiology that underlies anorexia nervosa.
Collapse
|