1
|
Zhang H, Zhu Z, Di Y, Luo J, Su X, Shen Y, Liu Q, Liu T, Xu X. Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches. BMC PLANT BIOLOGY 2024; 24:1269. [PMID: 39731027 DOI: 10.1186/s12870-024-05999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms. RESULTS This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places. Our findings indicate distinct expression patterns of key regulatory genes involved in TAG biosynthesis and lipid droplet formation, including transcriptional factors and structural genes such as ABI3 transcriptional factor, rate-limiting enzymes GPAT3/6/9 and DGAT2/3, and oleosin and caleosin homologs. Furthermore, our omics data suggest that these differences in gene expression are not the sole contributors to the diverse tuber compositions. Instead, complex interactions among highly regulated catalytic reactions, governing carbohydrate, protein, and species-specific metabolite metabolisms, such as starch and sucrose metabolic pathways, flavonoid and amino acids biosynthetic pathways, collectively contribute to the pronounced carbon anabolic differentiation primarily evident in TAG accumulation, as well as the starch properties in mature tubers. CONCLUSION This study offers new metabolic insights into the high-value underground non-photosynthetic tissues of Cyperaceae species, which harbors not only high biomass productivity but also abundant nutrients as favorable food or industrial sources in the modern agriculture. The detailed omics analyses aim to deepen our understanding of the Cyperaceae species, which may potentially broaden their application values and facilitate the molecular breeding of better varieties to ameliorate the food safety problem.
Collapse
Affiliation(s)
- Honglin Zhang
- College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhitao Zhu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200433, China
| | - Yining Di
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Jixun Luo
- School of Life Sciences, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Xianyue Su
- College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yong Shen
- College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Qing Liu
- Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Tao Liu
- College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xiaoyu Xu
- College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Macambira DVDC, Almeida Júnior JSD, Silveira CFDM, Sarrazin SLF, Moraes TMP, da Silva BA, Minervino AHH, Moraes WP, Barata LES. Antimicrobial Activity on Streptococcus mutans and Enterococcus faecalis of Cyperus articulatus Ethanolic Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:689. [PMID: 38475535 DOI: 10.3390/plants13050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Oral diseases are one of the biggest public health problems worldwide, caused by opportunistic pathogens such as Streptococcus mutans and Enterococcus faecalis. Cyperus articulatus (priprioca) is a plant conventionally used in traditional medicine in the Amazon region. However, little is known about the possible dentistry-related uses of extracts from the rhizomes and solid waste generated by the extraction of essential oils from this vegetable. This study aimed to investigate the chemical composition of volatile compounds and antimicrobial activity through the Minimum Inhibitory Concentration test (MIC and assessment of the toxicity by Hens Egg Test-Chorion Allantoic Membrane (HET-CAM) of the ethanolic extracts from Cyperus articulatus intact rhizomes and solid waste. We identified sesquiterpenes as the main constituents, strong antimicrobial activity of the ethanolic extract of intact rhizomes against S. mutans (MIC = 0.29 mg/mL), moderate antimicrobial activity against E. faecalis of the extract obtained from the solid waste (MIC = 1.17 mg/mL), and absence of toxicity for both tested extracts. The absence of irritation and the antibacterial activity of the ethanolic extract from C. articulatus rhizomes and solid waste reveal its potential for use in the alternative control of bacteria that cause oral infections and may present economic viability as a raw material for dental products.
Collapse
Affiliation(s)
| | - José Sousa de Almeida Júnior
- PhD Program Society, Nature and Development, Federal University of Western Pará (PPGSND-UFOPA), Santarém 68040-255, PA, Brazil
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, PA, Brazil
| | | | | | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, PA, Brazil
| | - Bruno Alexandre da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Instituto de Saúde Coletiva da UFOPA, Santarém 68040-255, PA, Brazil
| | | | - Waldiney Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, PA, Brazil
| | - Lauro Euclides Soares Barata
- PhD Program Society, Nature and Development, Federal University of Western Pará (PPGSND-UFOPA), Santarém 68040-255, PA, Brazil
| |
Collapse
|
3
|
Assis FFVD, Almeida Junior JSD, Moraes TMP, Varotti FDP, Moraes CC, Sartoratto A, Moraes WP, Minervino AHH. Antiplasmodial Activity of Hydroalcoholic Extract from Jucá ( Libidibia ferrea) Pods. Pharmaceutics 2023; 15:pharmaceutics15041162. [PMID: 37111647 PMCID: PMC10145024 DOI: 10.3390/pharmaceutics15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Malaria is an infectious and parasitic disease caused by protozoa of the genus Plasmodium, which affects millions of people in tropical and subtropical areas. Recently, there have been multiple reports of drug resistance in Plasmodium populations, leading to the search for potential new active compounds against the parasite. Thus, we aimed to evaluate the in vitro antiplasmodial activity and cytotoxicity of the hydroalcoholic extract of Jucá (Libidibia ferrea) in serial concentrations. Jucá was used in the form of a freeze-dried hydroalcoholic extract. For the cytotoxicity assay, the(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method with the WI-26VA4 human cell line was used. For the antiplasmodial activity, Plasmodium falciparum synchronized cultures were treated with serial concentrations (0.2 to 50 μg/mL) of the Jucá extract. In terms of the chemical composition of the Jucá extract, gas chromatography coupled to mass spectrometry measurements revealed the main compounds as ellagic acid, valoneic acid dilactone, gallotannin, and gallic acid. The Jucá hydroalcoholic extract did not show cytotoxic activity per MTT, with an IC50 value greater than 100 µg/mL. Regarding the antiplasmodial activity, the Jucá extract presented an IC50 of 11.10 µg/mL with a selective index of nine. Because of its antiplasmodial activity at the tested concentrations and low toxicity, the Jucá extract is presented as a candidate for herbal medicine in the treatment of malaria. To the best of our knowledge, this is the first report of antiplasmodial activity in Jucá.
Collapse
Affiliation(s)
| | - José Sousa de Almeida Junior
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro-Oeste, Av. Sebastião G. Coelho, 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Camila Castilho Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade de Campinas-UNICAMP, Campinas 13148-218, Brazil
| | - Waldiney Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | | |
Collapse
|
4
|
Shao W, Wang X, Liu Z, Song X, Wang F, Liu X, Yu Z. Cyperotundone combined with adriamycin induces apoptosis in MCF-7 and MCF-7/ADR cancer cells by ROS generation and NRF2/ARE signaling pathway. Sci Rep 2023; 13:1384. [PMID: 36697441 PMCID: PMC9877033 DOI: 10.1038/s41598-022-26767-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Breast cancer has become the most prevalent cancer, globally. Adriamycin is a first-line chemotherapeutic agent, however, cancer cells acquire resistance to it, which is one of the most common causes of treatment failure. ROS and NRF2 are essential oxidative stress factors that play a key role in the oxidative stress process and are associated with cancer. Our goal is to create novel therapeutic drugs or chemical sensitizers that will improve chemotherapy sensitivity. The optimal concentration and duration for MCF-7 and MCF-7/ADR cells in ADR and CYT were determined using the CCK-8 assay. We found that ADR + CYT inhibited the activity of MCF-7 and MCF-7/ADR cells in breast cancer, as well as causing apoptosis in MCF-7 and MCF-7/ADR cells and blocking the cell cycle in the G0/G1 phase. ADR + CYT induces apoptosis in MCF-7 and MCF-7/ADR cells through ROS generation and the P62/NRF2/HO-1 signaling pathway. In breast cancer-bearing nude mice, ADR + CYT effectively suppressed tumor development in vivo. Overall, our findings showed that CYT in combination with ADR has potent anti-breast cancer cell activity both in vivo and in vitro, suggesting CYT as the main drug used to improve chemosensitivity.
Collapse
Affiliation(s)
- Wenna Shao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xinzhao Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.,RemeGen, Ltd, 58 Middle Beijing Road, Yantai Economic & Technological Development Area, Yantai, 264006, Shandong, People's Republic of China
| | - Zhaoyun Liu
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiang Song
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Fukai Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaoyu Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Zhiyong Yu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China. .,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Mittas D, Mawunu M, Magliocca G, Lautenschläger T, Schwaiger S, Stuppner H, Marzocco S. Bioassay-Guided Isolation of Anti-Inflammatory Constituents of the Subaerial Parts of Cyperus articulatus (Cyperaceae). Molecules 2022; 27:molecules27185937. [PMID: 36144672 PMCID: PMC9504922 DOI: 10.3390/molecules27185937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Based on data from a previous ethnobotanical study in northern Angola, phytochemical investigations into the methanolic rhizomes and roots extract of Cyperus articulatus, monitored by in vitro assays, resulted in the recovery of 12 sesquiterpenes, 3 stilbenes, 2 phenolic acids, 1 monoterpene, and 1 flavonoid. Among them, 14 compounds were isolated for the first time from this species. Their inhibitory potential against nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, was evaluated in LPS-treated J774A.1 murine macrophages. Especially, both stilbene dimer trans-scirpusin B and trimer cyperusphenol B showed promising inhibitory activity against the production of the inflammatory mediator, NO, in a concentration-dependent manner (10−1 µM). The obtained data are the first results confirming the anti-inflammatory potential of C. articulatus and support its indigenous use as a traditional remedy against inflammation-related disorders.
Collapse
Affiliation(s)
- Domenic Mittas
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Monizi Mawunu
- University of Kimpa Vita, Province of Uíge, Rua Henrique Freitas No. 1, Bairro Popular, Uíge, Angola
| | - Giorgia Magliocca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Thea Lautenschläger
- Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-51250758409
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| |
Collapse
|
6
|
Pelegrín CJ, Ramos M, Jiménez A, Garrigós MC. Chemical Composition and Bioactive Antioxidants Obtained by Microwave-Assisted Extraction of Cyperus esculentus L. By-products: A Valorization Approach. Front Nutr 2022; 9:944830. [PMID: 35873445 PMCID: PMC9305069 DOI: 10.3389/fnut.2022.944830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Tiger nut is highly appreciated in the Mediterranean basin by the large number of nutritional advantages offered by a beverage, called "horchata," which is directly obtained from the tuber of Cyperus esculentus L. However, the current tiger nut harvesting and processing practices generate a large number of residues, mainly a solid by-product after processing and the plant that remains spread out in the fields. In this work the plant residues have been fully characterized to get a clear picture of the possibilities for its valorization to generate products with high added value. Several analytical techniques have been applied to obtain data to assess the real possibilities of these residues in advanced applications in the food, packaging and nutrition sectors. Results on the compositional and elemental analysis, monosaccharide composition, phenolic concentration, and antioxidant capacity were obtained from the dry powder (DP). The high content of α-cellulose (47.2 ± 1.8%) in DP could open new possibilities for these residues as raw material in the production of cellulose nanoentities. Many essential minerals with nutritional interest (Na, Mg, Ca, Mn, Fe, Cu, and Zn) and free sugars (xylose, arabinose, glucose, and galacturonic acid) were identified in the DP making it an interesting source of valuable nutrients. The total carbohydrate content was 171 ± 31 mg gdm -1. In addition, microwave-assisted extraction (MAE) was used to obtain extracts rich in polyphenolic compounds. A Box-Behnken design (BBD) was used, and the optimal extraction conditions predicted by the model were 80°C, 18 min, ethanol concentration 40% (v/v), and solvent volume 77 mL, showing an extraction yield of 2.27 ± 0.09%, TPC value was 136 ± 3 mg GAE 100 gdm -1 and antioxidant capacity by the ABTS method was 8.41 ± 0.09 μmol trolox gdm -1. Other assays (FRAP and DPPH) were also tested, confirming the high antioxidant capacity of DP extracts. Some polyphenols were identified and quantified: p-coumaric (7.67 ± 0.16 mg 100 gdm -1), ferulic (4.07 ± 0.01 mg 100 gdm -1), sinapinic (0.50 ± 0.01 mg 100 gdm -1) and cinnamic acids (1.10 ± 0.03 mg 100 gdm -1), 4-hydroxybenzaldehyde (1.28 ± 0.06 mg 100 gdm -1), luteolin (1.03 ± 0.01 mg 100 gdm -1), and naringenin (0.60 ± 0.01 mg 100 gdm -1). It can be concluded that C. esculentus L. residues obtained from the tiger nut harvesting and horchata processing could be an important source of high value compounds with potential uses in different industrial sectors, while limiting the environmental hazards associated with the current agricultural practices.
Collapse
Affiliation(s)
| | | | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
7
|
Anti-Inflammatory Potential of the Oleoresin from the Amazonian Tree Copaifera reticulata with an Unusual Chemical Composition in Rats. Vet Sci 2021; 8:vetsci8120320. [PMID: 34941847 PMCID: PMC8706095 DOI: 10.3390/vetsci8120320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Copaifera reticulata Ducke is a popularly known species known as copaíba that is widely spread throughout the Amazon region. The tree yields an oleoresin which is extensively used in local traditional medicine mainly as an anti-inflammatory and antinociceptive agent. The aim of the present study was to assess the anti-inflammatory potential of this oleoresin obtained from a national forest in the central Amazon which presented an unusual chemical composition. The chemical composition of volatile compounds of oleoresin was analyzed by gas chromatography-mass spectrometry. The acute toxicity assay was performed with a single dose of 2000 mg/kg. The anti-inflammatory potential was evaluated by carrageenan-induced paw edema and air pouch assays using four different C. reticulata oleoresin concentrations (10, 100, and 400 mg/kg). The exudate was evaluated for nitrite concentration through the colorimetric method and for TNF-α, IL-1β, and PGE2 by ELISA. C. reticulata oleoresin collected in the Amazonian summer contained six major sesquiterpene compounds (β-bisabolene, cis-eudesma-6,11-diene, trans-α-bergamotene, β-selinene, α-selinene, and β-elemene) and was nontoxic at a dose of 2000 mg/kg, showing low acute toxicity. Different from oleoresin obtained from other sites of the Brazilian Amazon, the major volatile compound found was β-Bisabolene with 25.15%. This β-Bisabolene-rich oleoresin reduced the formation of paw edema induced by carrageenan and reduced the global number of cells in the air pouch assay, as well as exudate volume and nitrite, TNF-α, IL-1β, and prostaglandin E2 levels (p < 0.05). C. reticulata oleoresin with a high β-Bisabolene concentration showed anti-inflammatory activity, reducing vascular permeability and consequently edema formation, and thus reducing cell migration and the production of inflammatory cytokine, confirming its traditional use by local Amazonian communities.
Collapse
|