1
|
Yang L, Cai P, Jin X, Wang Z, Zhou HC, Huang N. Phenolic Resin-type Microporous Organic Polymers for High-Performance Carbon Dioxide Adsorption. Chem Asian J 2025:e202401288. [PMID: 39829112 DOI: 10.1002/asia.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Three new types of Si-centered porous organic polymer (Si-POPs) were successfully prepared using phenolic resin-type chemistry to form C-C bonds. This new family of microporous Si-POPs manifests as uniform, microporous, spherical particles with a high specific surface area. Notably, Si-POPs were engineered to possess varying numbers of hydroxyl (-OH) groups by altering the monomer in the synthetic process. Among these materials, the variant with the highest number of hydroxyl groups exhibited ultra-high CO2 adsorption capacity, reaching up to 4.3 mmol g-1 at 273 K and 1.0 bar, which surpasses the performance of most porous polymers. Furthermore, Si-POPs also demonstrated remarkable selectivity adsorption for carbon dioxide over nitrogen (17-50, IAST at 273 K and 1.0 bar). This study not only highlighted the superior CO2 adsorption properties of Si-POPs but also explored their potential application in selective gas adsorption.
Collapse
Affiliation(s)
- Liting Yang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Xuance Jin
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Zhengjie Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Ning Huang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
2
|
Syarifuddin S, Suryani S, Tahir D. Global advances and innovations in bacteria-based biosorption for heavy metal remediation: a bibliometric and analytical perspective. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025:vjae050. [PMID: 39886925 DOI: 10.1093/inteam/vjae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Industrialization and urbanization have significantly escalated the discharge of heavy metals into aquatic environments, posing serious ecological and public health risks. This study explores the global research landscape of bacterial biosorption for heavy metal removal, emphasizing advancements in methodologies and technologies that have redefined this field. A bibliometric analysis of 298 publications (1987-2024) was conducted to identify key trends, collaboration networks, and innovations. Notable advancements include the integration of nanotechnology, which has enhanced adsorption efficiency and selectivity for specific metals, and genetic engineering approaches that optimize bacterial strains for higher adsorption capacity. Furthermore, these developments have transformed traditional remediation strategies by providing cost-effective, sustainable, and scalable solutions for industries such as textiles, mining, and energy production. This study underscores the practical relevance of bacterial biosorption in wastewater treatment, achieving removal efficiencies exceeding 99% in some cases, as demonstrated by Aspergillus versicolor and Shewanella oneidensis MR-1. By bridging scientific innovation with environmental sustainability, this research highlights bacterial biosorption as a pivotal green technology, offering actionable insights for industrial applications and global sustainability goals.
Collapse
Affiliation(s)
| | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
3
|
Caliskan E, Shishatskiy S, Abetz V, Filiz V. Pioneering the preparation of porous PIM-1 membranes for enhanced water vapor flow. RSC Adv 2024; 14:9631-9645. [PMID: 38525056 PMCID: PMC10958458 DOI: 10.1039/d3ra08398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, porous polymers of intrinsic microporosity (PIM-1) membranes were prepared by non-solvent induced phase inversion (NIPS) and investigated for water vapor transport in view of their application in membrane distillation (MD). Due to the lack of high boiling point solvents for PIM-1 that are also water miscible, the mixture of tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) was found to be optimal for the formation of a membrane with a developed porous system both on the membrane surface and in the bulk. PIM-1 was synthesized by using low and high temperature methods to observe how molecular weight effects the membrane structure. Low molecular weight PIM-1 was produced at low temperatures, while high molecular weight PIM-1 was obtained at high temperatures. Several membranes were prepared, including PM-6, PM-9, and PM-11 from low molecular weight PIM-1, and PM-13 from high molecular weight PIM-1. Scanning electron microscopy (SEM) was used to image the surface and cross-section of different porous PIM-1 membranes. Among all the PIM-1 membranes (PM) obtained, PM-6, PM-9, PM-11 and PM-13 showed the most developed porous structure, while PM-13 showed large voids in the bulk of the membrane. Contact angle measurements showed that all PIM-1 porous membranes are highly hydrophobic. Liquid water flux measurements showed that PM-6, PM-9 and PM-11 showed minimal water fluxes due to small surface pore size, while PM-13 showed a high water flux due to a large surface pore size. Water vapor transport measurements showed high permeance values for all membranes, demonstrating the applicability of the developed membranes for MD. In addition, a thin film composite (TFC) membrane with PIM-1 selective layer was prepared and investigated for water vapor transport to compare with porous PIM-1 membranes. The TFC membrane showed an approximately 4-fold lower vapor permeance than porous membranes. Based on these results, we postulated that the use of porous PIM-1 membranes could be promising for MD due to their hydrophobic nature and the fact that the porous membranes allow vapor permeability through the membrane but not liquid water. The TFC membrane can be used in cases where the transfer of water-soluble contaminants must be absolutely avoided.
Collapse
Affiliation(s)
- Esra Caliskan
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Sergey Shishatskiy
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
- Institute of Physical Chemistry, University of Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| |
Collapse
|
4
|
Xu R, Fan Y, Yang M, Song J. Determination of Sustainable Critical Flux through a Long-Term Membrane Resistance Model. Polymers (Basel) 2023; 15:polym15102319. [PMID: 37242894 DOI: 10.3390/polym15102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A long-term membrane resistance model (LMR) was established to determine the sustainable critical flux, which developed and simulated polymer film fouling successfully in a lab-scale membrane bioreactor (MBR) in this study. The total polymer film fouling resistance in the model was decomposed into the individual components of pore fouling resistance, sludge cake accumulation and cake layer compression resistance. The model effectively simulated the fouling phenomenon in the MBR at different fluxes. Considering the influence of temperature, the model was calibrated by temperature coefficient τ, and a good result was achieved to simulate the polymer film fouling at 25 and 15 °C. The relationship between flux and operation time was simulated and discussed through the model. The results indicated that there was an exponential correlation between flux and operation time, and the exponential curve could be divided into two parts. By fitting the two parts to two straight lines, respectively, the intersection of the two straight lines was regarded as the sustainable critical flux value. The sustainable critical flux obtained in this study was just 67% of the critical flux. The model in this study was proven to be in good agreement with the measurements under different fluxes and different temperatures. In addition, the sustainable critical flux was first proposed and calculated in this study, and it was shown that the model could be used to predict the sustainable operation time and sustainable critical flux, which provide more practical information for designing MBRs. This study is applicable to polymer films used in a wide variety of applications, and it is helpful for maintaining the long-term stable operation of polymer film modules and improving the efficiency of polymer film modules.
Collapse
Affiliation(s)
- Rongle Xu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yaobo Fan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinqiu Song
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Liu M, Lu Q, Yu W. The improvement of heavy metals removal by wood membrane in drinking water treatment: Comparison with polymer membrane and associated mechanism. CHEMOSPHERE 2023; 324:138297. [PMID: 36893869 DOI: 10.1016/j.chemosphere.2023.138297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The application of commercial membranes is limited by the secondary pollution such as the usage of toxic chemicals for the membrane preparation and the disposal of aged membranes. Therefore, the green and environmentally friendly membranes are extremely promising for the sustainable development of membrane filtration in water treatment. In this study, the comparison of wood membrane with the pore size of tens microns (μm) and polymer membrane with the pore size of 0.45 μm was made to study the heavy metals removal in drinking water treatment by gravity-driven membrane (GDM) filtration system, and there was an improvement in the removal of Fe, Cu and Mn by wood membrane. The sponge-like structure of fouling layer for wood membrane made the retention time of heavy metals prolonged in contrast to the cobweb-like structure of polymer membrane. The carboxylic group (-COOH) content of fouling layer for wood membrane was greater than that for polymer membrane. Additionally, the population abundance of heavy metal-capturing microbes on the surface of wood membrane was higher compared with polymer membrane. The wood membrane provides a promising route to producing facile, biodegradable and sustainable membrane as a green alternative to polymer membranes in heavy metal removal from drinking water.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qingxuan Lu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
6
|
Barambu NU, Bilad MR, Shamsuddin N, Samsuri S, Nordin NAHM, Arahman N. The Combined Effects of the Membrane and Flow Channel Development on the Performance and Energy Footprint of Oil/Water Emulsion Filtration. MEMBRANES 2022; 12:1153. [PMID: 36422145 PMCID: PMC9694986 DOI: 10.3390/membranes12111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Membrane filtration is a promising technology for oil/water emulsion filtration due to its excellent removal efficiency of microdroplets of oil in water. However, its performance is highly limited due to the fouling-prone nature of oil droplets on hydrophobic membranes. Membrane filtration typically suffers from a low flux and high pumping energy. This study reports a combined approach to tackling the membrane fouling challenge in oil/water emulsion filtration via a membrane and a flow channel development. Two polysulfone (PSF)-based lab-made membranes, namely PSF- PSF-Nonsolvent induced phase separation (NIPS) and PSF-Vapor-induced phase separation (VIPS), were selected, and the flow channel was modified into a wavy path. They were assessed for the filtration of a synthetic oil/water emulsion. The results showed that the combined membrane and flow channel developments enhanced the clean water permeability with a combined increment of 105%, of which 34% was attributed to the increased effective filtration area due to the wavy flow channel. When evaluated for the filtration of an oil/water emulsion, a 355% permeability increment was achieved from 43 for the PSF-NIPS in the straight flow channel to 198 L m-2 h-1 bar-1 for the PSF-VIPS in the wavy flow channel. This remarkable performance increment was achieved thanks to the antifouling attribute of the developed membrane and enhanced local mixing by the wavy flow channel to limit the membrane fouling. The increase in the filtration performance was translated into up to 78.4% (0.00133 vs. 0.00615 kWh m-3) lower in pumping energy. The overall findings demonstrate a significant improvement by adopting multi-pronged approaches in tackling the challenge of membrane fouling for oil/water emulsion filtration, suggesting the potential of this approach to be applied for other feeds.
Collapse
Affiliation(s)
- Nafiu Umar Barambu
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Shafirah Samsuri
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Nik Abdul Hadi Md Nordin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia
| |
Collapse
|