1
|
Torné-Morató H, Pesenti L, Triphaty V, Pompa PP. Sensitivity-enhanced competitive lateral flow immunoassays by polycaprolactone electrospun stacking pad: Estrous determination in whole blood. Biosens Bioelectron 2025; 271:117080. [PMID: 39731824 DOI: 10.1016/j.bios.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Lateral flow assays (LFA) are widely adopted in point-of-care diagnostics across a spectrum of applications, due to their simplicity of use and cost-effectiveness. However, in complex biological matrices (e.g., whole blood), LFA sensitivity and analytical performance may be lower than those of laboratory-based techniques. Here, we introduce a polycaprolactone electrospun stacking pad designed to enhance the sensitivity of competitive LFAs. The stacking pad works as an automated pre-incubation step, promoting the analyte interaction with antibody conjugated gold nanoparticles, without affecting the test strip's flow dynamics. We assessed that the stacking pad allows accurate tuning of the flow rate, resulting in a significant increase in sensitivity in whole bovine blood, thereby achieving the required performance for the naked-eye detection of progesterone at the estrous threshold level (2 ng mL⁻1). The proposed method shows promising potential for broad adaptation to other immunoassays that demand enhanced sensitivity for on-site diagnostics.
Collapse
Affiliation(s)
- Helena Torné-Morató
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy; Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146, Genova, Italy
| | - Lucia Pesenti
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Vinay Triphaty
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
2
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
3
|
Xiao Y, Luo S, Qiu J, Zhang Y, Liu W, Zhao Y, Zhu Y, Deng Y, Lu M, Liu S, Lin Y, Huang A, Wang W, Hu X, Gu B. Highly sensitive SERS platform for pathogen analysis by cyclic DNA nanostructure@AuNP tags and cascade primer exchange reaction. J Nanobiotechnology 2024; 22:75. [PMID: 38408974 PMCID: PMC10895721 DOI: 10.1186/s12951-024-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.
Collapse
Affiliation(s)
- Yunju Xiao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
| | - Jiuxiang Qiu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510515, People's Republic of China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weijiang Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - YiTong Zhu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yangxi Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Mengdi Lu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Suling Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yong Lin
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Aiwei Huang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Wen Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
4
|
Xie M, Zhu Y, Li Z, Yan Y, Liu Y, Wu W, Zhang T, Li Z, Wang H. Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis. Talanta 2024; 268:125281. [PMID: 37832450 DOI: 10.1016/j.talanta.2023.125281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Rapid and reliable detection of pathogenic bacteria is absolutely essential for research in environmental science, food quality, and medical diagnostics. Surface-enhanced Raman spectroscopy (SERS), as an emerging spectroscopic technique, has the advantages of high sensitivity, good selectivity, rapid detection speed, and portable operation, which has been broadly used in the detection of pathogenic bacteria in different kinds of complex samples. However, the SERS detection method is also challenging in dealing with the detection difficulties of bacterial samples in complex matrices, such as interference from complex matrices, confusion of similar bacteria, and complexity of data processing. Therefore, researchers have developed some technologies to assist in SERS detection of bacteria, including both the front-end process of obtaining bacterial sample data and the back-end data processing process. The review summarizes the key steps for improving bacterial SERS signals in complex samples: separation, recognition, detection, and analysis, highlighting the principles of each step and the key roles for SERS pathogenic bacteria analysis, and the interconnectivity between each step. In addition, the current challenges in the practical application of SERS technology and the development trends are discussed. The purpose of this review is to deepen researchers' understanding of the various stages of using SERS technology to detect bacteria in complex sample matrices, and help them find new breakthroughs in different stages to facilitate the detection and control of bacteria in complex samples.
Collapse
Affiliation(s)
- Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yiting Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Tong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
5
|
Muhsin SA, Abdullah A, kobashigawa E, Al-Amidie M, Russell S, Zhang MZ, Zhang S, Almasri M. A microfluidic biosensor for the diagnosis of chronic wasting disease. MICROSYSTEMS & NANOENGINEERING 2023; 9:104. [PMID: 37609007 PMCID: PMC10440343 DOI: 10.1038/s41378-023-00569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
Cervids are affected by a neurologic disease that is always fatal to individuals and has population effects. This disease is called chronic wasting disease (CWD) and is caused by a misfolded prion protein. The disease is transmitted via contact with contaminated body fluids and tissue or exposure to the environment, such as drinking water or food. Current CWD diagnosis depends on ELISA screening of cervid lymph nodes and subsequent immunohistochemistry (IHC) confirmation of ELISA-positive results. The disease has proven to be difficult to control in part because of sensitivity and specificity issues with the current test regimen. We have investigated an accurate, rapid, and low-cost microfluidic microelectromechanical system (MEMS) biosensing device for the detection of CWD pathologic prions in retropharyngeal lymph nodes (RLNs), which is the current standard type of CWD diagnostic sample. The device consists of three novel regions for concentrating, trapping, and detecting the prion. The detection region includes an array of electrodes coated with a monoclonal antibody against pathologic prions. The experimental conditions were optimized using an engineered prion control antigen. Testing could be completed in less than 1 hour with high sensitivity and selectivity. The biosensor detected the engineered prion antigen at a 1:24 dilution, while ELISA detected the same antigen at a 1:8 dilution. The relative limit of detection (rLOD) of the biosensor was a 1:1000 dilution of a known strong positive RLN sample, whereas ELISA showed a rLOD of 1:100 dilution. Thus, the biosensor was 10 times more sensitive than ELISA, which is the currently approved CWD diagnostic test. The biosensor's specificity and selectivity were confirmed using known negative RPLN samples, a negative control antibody (monoclonal antibody against bovine coronavirus BCV), and two negative control antigens (bluetongue virus and Epizootic hemorrhagic disease virus). The biosensor's ability to detect pathogenic prions was verified by testing proteinase-digested positive RLN samples.
Collapse
Affiliation(s)
- Sura A. Muhsin
- University of Missouri–Columbia, Electrical Engineering and Computer Science, Columbia, MO USA
| | - Amjed Abdullah
- University of Missouri–Columbia, Electrical Engineering and Computer Science, Columbia, MO USA
| | - Estela kobashigawa
- University of Missouri–Columbia, College of Veterinary Medicine, Veterinary Medical Diagnostic Laboratory, Columbia, MO USA
| | - Muthana Al-Amidie
- University of Missouri–Columbia, Electrical Engineering and Computer Science, Columbia, MO USA
| | | | - Michael Z. Zhang
- University of Missouri–Columbia, College of Veterinary Medicine, Veterinary Medical Diagnostic Laboratory, Columbia, MO USA
| | - Shuping Zhang
- University of Missouri–Columbia, College of Veterinary Medicine, Veterinary Medical Diagnostic Laboratory, Columbia, MO USA
| | - Mahmoud Almasri
- University of Missouri–Columbia, Electrical Engineering and Computer Science, Columbia, MO USA
| |
Collapse
|
6
|
Bazsefidpar S, Freitas M, Pereira CR, Gutiérrez G, Serrano-Pertierra E, Nouws HPA, Matos M, Delerue-Matos C, Blanco-López MC. Fe 3O 4@Au Core-Shell Magnetic Nanoparticles for the Rapid Analysis of E. coli O157:H7 in an Electrochemical Immunoassay. BIOSENSORS 2023; 13:bios13050567. [PMID: 37232928 DOI: 10.3390/bios13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Escherichia coli (E. coli) O157:H7 is a pathogenic bacterium that causes serious toxic effects in the human gastrointestinal tract. In this paper, a method for its effective analytical control in a milk sample was developed. To perform rapid (1 h) and accurate analysis, monodisperse Fe3O4@Au magnetic nanoparticles were synthesized and used in an electrochemical sandwich-type magnetic immunoassay. Screen-printed carbon electrodes (SPCE) were used as transducers, and electrochemical detection was performed by chronoamperometry using a secondary horseradish peroxidase-labeled antibody and 3,3',5,5'-tetramethylbenzidine. This magnetic assay was used to determine the E. coli O157:H7 strain in the linear range from 20 to 2 × 106 CFU/mL, with a limit of detection of 20 CFU/mL. The selectivity of the assay was tested using Listeria monocytogenes p60 protein, and the applicability of the assay was assessed by analyzing a commercial milk sample, demonstrating the usefulness of the synthesized nanoparticles in the developed magnetic immunoassay.
Collapse
Affiliation(s)
- Shayesteh Bazsefidpar
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain
| | - Maria Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Clara R Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - María Matos
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
7
|
Wang J, Yang X, Hua X, Li Y, Jin B. Novel Ratiometric Electrochemical Biosensor for Determination of Cytokeratin 19 Fragment Antigen 21-1 (Cyfra-21-1) as a Lung Cancer Biomarker. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2181970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/01/2023]
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei, China
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People’s Hospital of Chuzhou, Chuzhou, China
| | - Xin Hua
- Department of Chemistry, Anhui University, Hefei, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei, China
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei, China
| |
Collapse
|
8
|
Zhang Y, Liu Y, Yang Y, Li L, Tao X, Song E. Rapid detection of pathogenic bacteria based on a universal dual-recognition FRET sensing system constructed with aptamer-quantum dots and lectin-gold nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
|
9
|
Ramya M, Senthil Kumar P, Rangasamy G, Uma Shankar V, Rajesh G, Nirmala K, Saravanan A, Krishnapandi A. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. CHEMOSPHERE 2022; 308:136416. [PMID: 36099991 DOI: 10.1016/j.chemosphere.2022.136416] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
10
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
11
|
Single Escherichia coli bacteria detection using a chemiluminescence digital microwell array chip. Biosens Bioelectron 2022; 215:114594. [DOI: 10.1016/j.bios.2022.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
|
12
|
Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02759-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
13
|
Cheng S, Tu Z, Zheng S, Cheng X, Han H, Wang C, Xiao R, Gu B. An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tags. Anal Chim Acta 2021; 1187:339155. [PMID: 34753577 DOI: 10.1016/j.aca.2021.339155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
A novel surface-enhanced Raman scattering (SERS)-based analytical technique was proposed to simultaneously detect two highly pathogenic bacteria, namely, Staphylococcus aureus (S. aureus) and Listeria monocytogenes (L. mono) by using a dual-recognition pattern with wheat germ agglutinin (WGA) and nucleic acid aptamers. WGA was modified onto Fe3O4@Au magnetic nanoparticles (MNPs) for the efficient capture of S. aureus and L. mono in complex samples (orange juice, extracts of lettuce, and human urine) within 15 min. The streptavidin (SA)/aptamers co-functionalized SERS tags were fabricated by covalent attaching two different Raman reporters and SA molecules onto 45 nm Au NPs and then conjugated with two biotin-aptamers that specifically bind to their target bacteria with high affinity and stability. The combined use of high-sensitive SERS tags, WGA-mediated magnetic enrichment, and SA-mediated aptamer conjugation remarkably improved the assay sensitivity. Under optimized conditions, the developed SERS biosensor can simultaneously detect the two target bacteria with high detection sensitivity (<6 cells/mL), favorable linear relation (10-107 cells/mL), and high accuracy (recovery rate <7.03%). Therefore, the proposed SERS platform is rapid, sensitive, easy to use, and thus show potential as a tool for the timely identification of pathogenic bacteria in real samples.
Collapse
Affiliation(s)
- Siyun Cheng
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zhijie Tu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shuai Zheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiaodan Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Han Han
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Chongwen Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China.
| |
Collapse
|
14
|
Lin X, Mei Y, He C, Luo Y, Yang M, Kuang Y, Ma X, Zhang H, Huang Q. Electrochemical Biosensing Interface Based on Carbon Dots-Fe 3O 4 Nanomaterial for the Determination of Escherichia coli O157:H7. Front Chem 2021; 9:769648. [PMID: 34869216 PMCID: PMC8640100 DOI: 10.3389/fchem.2021.769648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 can cause many food safety incidents, which seriously affect human health and economic development. Therefore, the sensitive, accurate, and rapid determination of E. coli O157:H7 is of great significance for preventing the outbreak and spread of foodborne diseases. In this study, a carbon dots-Fe3O4 nanomaterial (CDs-Fe3O4)-based sensitive electrochemical biosensor for E. coli O157:H7 detection was developed. The CDs have good electrical conductivity, and the surface of carbon dots contains abundant carboxyl groups, which can be used to immobilize probe DNA. Meanwhile, the CDs can be used as a reducing agent to prepare CDs-Fe3O4 nanomaterial. The Fe3O4 nanomaterial can improve the performance of the electrochemical biosensor; it also can realize the recovery of CDs-Fe3O4 due to its magnetism. As expected, the electrochemical biosensor has excellent specificity of E. coli O157:H7 among other bacteria. The electrochemical biosensor also exhibited good performance for detecting E. coli O157:H7 with the detection range of 10-108 CFU/ml, and the detection limit of this electrochemical biosensor was 6.88 CFU/ml (3S/N). Furthermore, this electrochemical biosensor was successfully used for monitoring E. coli O157:H7 in milk and water samples, indicating that this electrochemical biosensor has good application prospect. More importantly, this research can provide a new idea for the detection of other bacteria and viruses.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yanqiu Mei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Chen He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Ying Kuang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Huifang Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| |
Collapse
|
15
|
Abrantes-Coutinho VE, Santos AO, Moura RB, Pereira-Junior FN, Mascaro LH, Morais S, Oliveira TMBF. Systematic review on lectin-based electrochemical biosensors for clinically relevant carbohydrates and glycoconjugates. Colloids Surf B Biointerfaces 2021; 208:112148. [PMID: 34624598 DOI: 10.1016/j.colsurfb.2021.112148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Carbohydrates and glycoconjugates are involved in numerous natural and pathological metabolic processes, and the precise elucidation of their biochemical functions has been supported by smart technologies assembled with lectins, i.e., ubiquitous proteins of nonimmune origin with carbohydrate-specific domains. When lectins are anchored on suitable electrochemical transducers, sensitive and innovative bioanalytical tools (lectin-based biosensors) are produced, with the ability to screen target sugars at molecular levels. In addition to the remarkable electroanalytical sensitivity, these devices associate specificity, precision, stability, besides the possibility of miniaturization and portability, which are special features required for real-time and point-of-care measurements. The mentioned attributes can be improved by combining lectins with biocompatible 0-3D semiconductors derived from carbon, metal nanoparticles, polymers and their nanocomposites, or employing labeled biomolecules. This systematic review aims to substantiate and update information on the progress made with lectin-based biosensors designed for electroanalysis of clinically relevant carbohydrates and glycoconjugates (glycoproteins, pathogens and cancer biomarkers), highlighting their main detection principles and performance in highly complex biological milieus. Moreover, particular emphasis is given to the main advantages and limitations of the reported devices, as well as the new trends for the current demands. We believe that this review will support and encourage more cutting-edge research involving lectin-based electrochemical biosensors.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Rafael B Moura
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Lucia H Mascaro
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, 13565-905 São Carlos, SP, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
16
|
Yu S, Xu Q, Huang J, Yi B, Aguilar ZP, Xu H. Rapid and sensitive detection of Salmonella in milk based on hybridization chain reaction and graphene oxide fluorescence platform. J Dairy Sci 2021; 104:12295-12302. [PMID: 34538487 DOI: 10.3168/jds.2021-20713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Salmonella is a foodborne pathogen that has contributed to numerous food safety accidents worldwide, making it necessary to detect contamination at an early stage. A pair of specific primers based on the invA gene of Salmonella was designed for PCR. Target double-stranded DNA (dsDNA) from PCR was purified and denatured at high temperature to obtain target single-stranded DNA (ssDNA). Two carboxyfluorescein-labeled hairpin probes (H1-FAM and H2-FAM) were designed with complementary portions to the ssDNA sequence so that binding could trigger H1-FAM and H2-FAM hybridization chain reaction (HCR) to produce a long dsDNA complex. In this study, graphene oxide (GO) was used in the development of a homogeneous fluorescence detection platform for Salmonella. Using this HCR-GO assay platform, Salmonella detection was completed in 3.5 h. Salmonella was reliably and specifically detected with a limit of detection (LOD) of 4.2 × 101 cfu/mL in pure culture. Moreover, this new HCR-GO assay platform was successfully applied to the detection of Salmonella in artificially contaminated milk with a LOD of 4.2 × 102 cfu/mL.
Collapse
Affiliation(s)
- Shuang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Bo Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
17
|
Petrucci S, Costa C, Broyles D, Dikici E, Daunert S, Deo S. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends Food Sci Technol 2021; 115:409-421. [PMID: 34267423 DOI: 10.1016/j.tifs.2021.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
With the rise in outbreaks of pathogenic bacteria in both food and water resulting in an increased instance of infection, there is a growing public health problem in both developed and developing countries. In this increasing threat the most effective method for control and prevention is rapid and cost-effective detection. Research has shifted in recent years towards the development of rapid and on-site assays for the detection of these kinds of bacteria. However, there are still some limitations in the implementation of these assays in the field. This article discusses the current on-site detection methods. Current scope of advancements and limitations in the development or use of these on-site technologies for food and waterborne bacterial detection is evaluated in this study. With the continued development of these technologies, on-site detection will continue to impact many areas of public health. As these methods continue to improve and diversify further, on-site detection could become more widely implemented in food and water analysis.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Connor Costa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| |
Collapse
|
18
|
Rani A, Ravindran VB, Surapaneni A, Mantri N, Ball AS. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int J Food Microbiol 2021; 349:109233. [PMID: 34022616 DOI: 10.1016/j.ijfoodmicro.2021.109233] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7, a Shiga-producing E. coli is a major pathogenic E. coli strain which since the early 1980s has become a crucial food and water-borne pathogen. Several management strategies can be applied to control the spread of infection; however early diagnosis represents the optimum preventive strategy to minimize the infection. Therefore, it is crucial to detect this pathogen in a fast and efficient manner in order to reduce the morbidity and mortality. Currently used gold standard tests rely on culture and pre-enrichment of E. coli O157:H7 from the contaminated source; they are time consuming and laborious. Molecular methods such as polymerase chain reaction are sensitive; however, they require expensive instrumentation. Therefore, there is a requirement for Accurate, Sensitive, Specific, User friendly, Rapid, Equipment free and Deliverable (ASSURED) detection methods for use in the laboratory and in the field. Emerging technologies such as isothermal amplification methods, biosensors, surface enhanced Raman Spectroscopy, paper-based diagnostics and smartphone-based digital methods are recognized as new approaches in the field of E. coli O157:H7 diagnostics and are discussed in this review. Mobile PCR and CRISPR-Cas diagnostic platforms have been identified as new tools in E. coli O157:H7 POC diagnostics with the potential for implementation by industry. This review describes advances and progress in the field of E. coli O157:H7 diagnosis in the context of food and water industry. The focus is on emerging high throughput point-of-care (POC) E. coli O157:H7 diagnostics and the requirement for the transformation to service routine diagnostics in the food and water industry.
Collapse
Affiliation(s)
- Alka Rani
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia.
| | - Vivek B Ravindran
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia; South East Water, Frankston, Victoria 3199, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, School of Science, RMIT University, Bundoora West, Victoria 3083, Australia
| |
Collapse
|
19
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
20
|
Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020; 165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, MD, 21250, United States.
| |
Collapse
|
21
|
An on-site, highly specific immunosensor for Escherichia coli detection in field milk samples from mastitis-affected dairy cattle. Biosens Bioelectron 2020; 165:112366. [DOI: 10.1016/j.bios.2020.112366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
|
22
|
Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5561. [PMID: 32998409 PMCID: PMC7582323 DOI: 10.3390/s20195561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Microbiological safety of the human environment and health needs advanced monitoring tools both for the specific detection of bacteria in complex biological matrices, often in the presence of excessive amounts of other bacterial species, and for bacteria quantification at a single cell level. Here, we discuss the existing electrochemical approaches for bacterial analysis that are based on the biospecific recognition of whole bacterial cells. Perspectives of such assays applications as emergency-use biosensors for quick analysis of trace levels of bacteria by minimally trained personnel are argued.
Collapse
Affiliation(s)
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark; (R.B.J.); (S.S.)
| |
Collapse
|
23
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Fatema K, Liu Y, Cho KY, Oh WC. Comparative Study of Electrochemical Biosensors Based on Highly Efficient Mesoporous ZrO 2-Ag-G-SiO 2 and In 2O 3-G-SiO 2 for Rapid Recognition of E. coli O157:H7. ACS OMEGA 2020; 5:22719-22730. [PMID: 32954119 PMCID: PMC7495462 DOI: 10.1021/acsomega.0c00895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 05/05/2023]
Abstract
Here, we reported an innovative and electrochemical biosensor for the rapid detection of Escherichia coli O157:H7. We fabricated the mesoporous ZrO2-Ag-G-SiO2 (ZAGS) and In2O3-G-SiO2 (IGS) sensors, and cyclic voltammetry (CV) was employed to detect the bacteria. The development of these portable sensors addresses the challenges of conventional time-consuming and more expensive laboratory-based analyses. Hence, the biosensors were highly selective to detect E. coli. The sensor could recognize an individual E. coli cell in 1 μL of sample volume within 30 s. E. coli live cells tied down on sample nanoparticles worked toward the definite acquirement of E. coli. The high thickness of negative charge on the surface of E. coli cells effectively regulated the concentration of dominant part charge carriers in the mesoporous channel, allowing a continuous check of E. coli concentration in a known sample. The signal current decreased linearly, while the E. coli concentration increased from 1.0 × 101 to 1.0 × 1010 CFU/mL. ZAGS and IGS biosensors could detect E. coli in the range from 101 to 1010 CFU/mL. ZAGS and IGS biosensors in this investigation showed great specificity, reproducibility, stability, and selectivity and are expected to have a great impact on applications in the detection of foodborne pathogens.
Collapse
Affiliation(s)
- Kamrun
Nahar Fatema
- Department
of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam 356-706, South Korea
| | - Yin Liu
- College
of Materials Science and Engineering, Anhui
University of Science & Technology, Huainan 232001, P. R. China
| | - Kwang Youn Cho
- Korea Institute
of
Ceramic Engineering and Technology, Soho-ro, Jinju-si, Gyeongsangnam-do 153801, South Korea
| | - Won-Chun Oh
- Department
of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam 356-706, South Korea
- College
of Materials Science and Engineering, Anhui
University of Science & Technology, Huainan 232001, P. R. China
| |
Collapse
|
25
|
|
26
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
27
|
Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 2020; 209:343-362. [PMID: 32246198 PMCID: PMC7248053 DOI: 10.1007/s00430-020-00668-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Since the discovery of antibiotics in the first quarter of the twentieth century, their use has been the principal approach to treat bacterial infection. Modernized medicine such as cancer therapy, organ transplantation or advanced major surgeries require effective antibiotics to manage bacterial infections. However, the irresponsible use of antibiotics along with the lack of development has led to the emergence of antimicrobial resistance which is considered a serious global threat due to the rise of multidrug-resistant bacteria (Wang et al. in Antibiotic resistance: a rundown of a global crisis, pp. 1645-1658, 2018). Currently employed diagnostics techniques are microscopy, colony counting, ELISA, PCR, RT-PCR, surface-enhanced Raman scattering and others. These techniques provide satisfactory selectivity and sensitivity (Joung et al. in Sens Actuators B Chem 161:824-831, 2012). Nevertheless, they demand specialized personnel and expensive and sophisticated machinery which can be labour-intensive and time-consuming, (Malvano et al. in Sensors (Switzerland) 18:1-11, 2018; Mantzila et al. in Anal Chem 80:1169-1175, 2008). To get around these problems, new technologies such as biosensing and lab-on-a-chip devices have emerged in the last two decades. Impedimetric immunosensors function by applying electrochemical impedance spectroscopy to a biosensor platform using antibodies or other affinity proteins such as Affimers (Tiede et al. in Elife 6(c):1-35, 2017) or other binding proteins (Weiss et al. in Electrochim Acta 50:4248-4256, 2005) as bioreceptors, which provide excellent sensitivity and selectivity. Pre-enrichment steps are not required and this allows miniaturization and low-cost. In this review different types of impedimetric immunosensors are reported according to the type of electrode and their base layer materials, either self-assembled monolayers or polymeric layers, composition and functionalization for different types of bacteria, viruses, fungi and disease biomarkers. Additionally, novel protein scaffolds, both antibody derived and non-antibody derived, used to specifically target the analyte are considered.
Collapse
Affiliation(s)
- J. Leva-Bueno
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, LS2 9JS England, UK
| | - P. A. Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| |
Collapse
|
28
|
Razmi N, Hasanzadeh M, Willander M, Nur O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. BIOSENSORS 2020; 10:E54. [PMID: 32443629 PMCID: PMC7277213 DOI: 10.3390/bios10050054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/21/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a pathogenic strain of Escherichia coli which has issued as a public health threat because of fatal contamination of food and water. Therefore, accurate detection of pathogenic E. coli is important in environmental and food quality monitoring. In spite of their advantages and high acceptance, culture-based methods, enzyme-linked immunosorbent assays (ELISAs), polymerase chain reaction (PCR), flow cytometry, ATP bioluminescence, and solid-phase cytometry have various drawbacks, including being time-consuming, requiring trained technicians and/or specific equipment, and producing biological waste. Therefore, there is necessity for affordable, rapid, and simple approaches. Electrochemical biosensors have shown great promise for rapid food- and water-borne pathogen detection. Over the last decade, various attempts have been made to develop techniques for the rapid quantification of E. coli O157:H7. This review covers the importance of E. coli O157:H7 and recent progress (from 2015 to 2020) in the development of the sensitivity and selectivity of electrochemical sensors developed for E. coli O157:H7 using different nanomaterials, labels, and electrochemical transducers.
Collapse
Affiliation(s)
- Nasrin Razmi
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran;
| | - Magnus Willander
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| | - Omer Nur
- Physics and Electronics, Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden;
| |
Collapse
|
29
|
Lee HB, Meeseepong M, Trung TQ, Kim BY, Lee NE. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens Bioelectron 2020; 156:112133. [PMID: 32174559 DOI: 10.1016/j.bios.2020.112133] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Conformable, wearable biosensor-integrated systems are a promising approach to non-invasive and quantitative on-body detection of biomarkers in body fluids. However, realizing such a system has been slowed by the difficulty of fabricating a soft affinity-based biosensor patch capable of precise on-body fluid handling with minimal wearer intervention and a simple measurement protocol. Herein, we demonstrate a conformable, wearable lab-on-a-patch (LOP) platform composed of a stretchable, label-free, impedimetric biosensor and a stretchable microfluidic device for on-body detection of the hormone biomarker, cortisol. The all-in-one, stretchable microfluidic device can precisely collect and deliver sweat for cortisol quantitation and offers one-touch operation of reagent delivery for simultaneous electrochemical signal generation and washing. Three-dimensional nanostructuring of the Au working electrode enables the high sensitivity required to detect the pM-levels of cortisol in sweat. Our integrated LOP detected sweat cortisol quantitatively and accurately during exercise. This LOP will open a new horizon for non-invasive, highly sensitive, and quantitative on-body immunodetection for wearable personal diagnostics.
Collapse
Affiliation(s)
- Han-Byeol Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Bo-Yeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea.
| |
Collapse
|
30
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
31
|
Detection of the Plant Pathogen Pseudomonas Syringae pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy. SENSORS 2019; 19:s19245411. [PMID: 31835291 PMCID: PMC6960962 DOI: 10.3390/s19245411] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/26/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
Abstract
The present work describes an impedimetric immunosensor for Pseudomonas syringae pv. lachrymans (Psl) detection. This pathogen infects many crop species causing considerable yield losses, thus fast and cheap detection method is in high demand. In the assay, the gold disc electrode was modified with 4-aminothiophenol (4-ATP), glutaraldehyde (GA), and anti-Psl antibodies, and free-sites were blocked with bovine serum albumin (BSA). Sensor development was characterized by cyclic voltammetry (CV) and antigen detection by electrochemical impedance spectroscopy (EIS) measurements. Seven analyzed strains of Psl were verified as positive by the reference method (PCR) and this immunoassay, proving sensor specificity. Label-free electrochemical detection was in the linear range 1 × 103–1.2 × 105 CFU/mL (colony-forming unit) with an R2 coefficient of 0.992 and a detection limit (LOD) of 337 CFU/mL. The sensor did not interfere with negative probes like buffers and other bacteria. The assay was proven to be fast (10 min detection) and easy in preparation. The advantage was the simplicity and availability of the verified analyte (whole bacteria) as the method does not require sample pretreatment (e.g., DNA isolation). EIS biosensing technique was chosen as one of the simplest and most sensitive with the least destructive influence on the probes compared to other electrochemical methods.
Collapse
|
32
|
Brosel-Oliu S, Abramova N, Uria N, Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection - A review. Anal Chim Acta 2019; 1088:1-19. [PMID: 31623704 DOI: 10.1016/j.aca.2019.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023]
Abstract
Application of the impedance spectroscopy technique to detection of bacteria has advanced considerably over the last decade. This is reflected by the large amount of publications focused on basic research and applications of impedance biosensors. Employment of modern technologies to significantly reduce dimension of impedimetric devices enable on-chip integration of interdigitated electrode arrays for low-cost and easy-to-use sensors. This review is focused on publications dealing with interdigitated electrodes as a transducer unit and different bacteria detection systems using these devices. The first part of the review deals with the impedance technique principles, paying special attention to the use of interdigitated electrodes, while the main part of this work is focused on applications ranging from bacterial growth monitoring to label-free specific bacteria detection.
Collapse
Affiliation(s)
- Sergi Brosel-Oliu
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Natalia Abramova
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain; Lab. Artificial Sensors Syst., ITMO University, Kronverskiy pr.49, 197101, St.Petersburg, Russia
| | - Naroa Uria
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Andrey Bratov
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain.
| |
Collapse
|
33
|
Fast fluorometric enumeration of E. coli using passive chip. J Microbiol Methods 2019; 164:105680. [DOI: 10.1016/j.mimet.2019.105680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
|
34
|
Masigol M, Fattahi N, Barua N, Lokitz BS, Retterer ST, Platt TG, Hansen RR. Identification of Critical Surface Parameters Driving Lectin-Mediated Capture of Bacteria from Solution. Biomacromolecules 2019; 20:2852-2863. [PMID: 31150217 DOI: 10.1021/acs.biomac.9b00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized. Here, experimental parameters including polymer areal chain density, lectin molecular weight, and lectin coupling buffer were systematically varied to identify parameters driving highest azlactone conversions and corresponding lectin surface densities. To introduce physical nanostructures into the attachment layer, nanopillar arrays (NPAs) of varied heights (300 and 2100 nm) were then used to provide an underlying surface template for the functional polymer layer. Capture of Escherichia coli on lectin-polymer surfaces coated over both flat and NPA surfaces was then investigated. For flat polymer interfaces, bacteria were detected on the surface after incubation at a solution concentration of 103 cfu/mL, and a corresponding detection limit of 1.7 × 103 cfu/mL was quantified. This detection limit was 1 order of magnitude lower than control lectin surfaces functionalized with standard, carbodiimide coupling chemistry. NPA surfaces containing 300 nm tall pillars further improved the detection limit to 2.1 × 102 cfu/mL, but also reduced the viability of captured cells. Finally, to investigate the impact of cell surface parameters on capture, we used Agrobacterium tumefaciens cells genetically modified to allow manipulation of exopolysaccharide adhesin production levels. Statistical analysis of surface capture levels revealed that lectin surface density was the primary factor driving capture, as opposed to exopolysaccharide adhesin expression. These findings emphasize the critical importance of the synthetic interface and the development of surfaces that combine high lectin densities with tailored physical features to drive high levels of capture. These insights will aid in design of biofunctional interfaces with physicochemical surface properties favorable for capture and isolation of bacteria cells from solutions.
Collapse
|
35
|
Mikušová Z, Farka Z, Pastucha M, Poláchová V, Obořilová R, Skládal P. Amperometric Immunosensor for Rapid Detection of Honeybee Pathogen
Melissococcus Plutonius. ELECTROANAL 2019. [DOI: 10.1002/elan.201900252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zuzana Mikušová
- CEITEC MUMasaryk University Kamenice 5 625 00 Brno Czech Republic
- Department of BiochemistryMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Zdeněk Farka
- CEITEC MUMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Matěj Pastucha
- CEITEC MUMasaryk University Kamenice 5 625 00 Brno Czech Republic
- Department of BiochemistryMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Veronika Poláchová
- CEITEC MUMasaryk University Kamenice 5 625 00 Brno Czech Republic
- Department of BiochemistryMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Radka Obořilová
- Department of BiochemistryMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC MUMasaryk University Kamenice 5 625 00 Brno Czech Republic
- Department of BiochemistryMasaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
36
|
Contreras-Naranjo JE, Aguilar O. Suppressing Non-Specific Binding of Proteins onto Electrode Surfaces in the Development of Electrochemical Immunosensors. BIOSENSORS 2019; 9:E15. [PMID: 30669262 PMCID: PMC6468902 DOI: 10.3390/bios9010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Electrochemical immunosensors, EIs, are systems that combine the analytical power of electrochemical techniques and the high selectivity and specificity of antibodies in a solid phase immunoassay for target analyte. In EIs, the most used transducer platforms are screen printed electrodes, SPEs. Some characteristics of EIs are their low cost, portability for point of care testing (POCT) applications, high specificity and selectivity to the target molecule, low sample and reagent consumption and easy to use. Despite all these attractive features, still exist one to cover and it is the enhancement of the sensitivity of the EIs. In this review, an approach to understand how this can be achieved is presented. First, it is necessary to comprise thoroughly all the complex phenomena that happen simultaneously in the protein-surface interface when adsorption of the protein occurs. Physicochemical properties of the protein and the surface as well as the adsorption phenomena influence the sensitivity of the EIs. From this point, some strategies to suppress non-specific binding, NSB, of proteins onto electrode surfaces in order to improve the sensitivity of EIs are mentioned.
Collapse
Affiliation(s)
- Jesús E Contreras-Naranjo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| |
Collapse
|
37
|
Li J, Jiang H, Rao X, Liu Z, Zhu H, Xu Y. Point-of-Care Testing of Pathogenic Bacteria at the Single-Colony Level via Gas Pressure Readout Using Aptamer-Coated Magnetic CuFe 2O 4 and Vancomycin-Capped Platinum Nanoparticles. Anal Chem 2019; 91:1494-1500. [PMID: 30586297 DOI: 10.1021/acs.analchem.8b04584] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Pressure measurements are performed everyday with simple devices, and in the field of analytical chemistry the pressure-based signaling strategy offers two important advantages, signal amplification and particular applicability in point-of-care settings. Herein, by using vancomycin (Van)-functionalized platinum nanoparticles (PtNPs@Van) and aptamer-coated magnetic CuFe2O4 nanoprobes dual-recognition units integrated with a catalyzed breakdown of H2O2 for O2 generation, we demonstrated that gas pressure can be used as a readout means for highly sensitive pathogenic bacteria identification and quantification. Using Staphylococcus aureus ( S. aureus) as a test case, integration of the molecular dual-recognition component with the catalyzed gas-generation reaction leads to a significant pressure change (Δ P), and the correlation between the concentration of S. aureus and the Δ P signal was found to be linear from 5.0 to 1.0 × 104 cfu/mL with a detection limit of 1.0 cfu/mL. Other nontarget bacteria show negative results, verifying the high specificity of the present strategy. When employed to assay S. aureus in saliva and milk samples, the approach shows recoveries from 93.3% to 107.1% with relative standard derivation (RSD) less than 8.8%. By the integration of catalyzed gas-generation reaction with the designed molecular recognition event, obviously the pressure-based signaling strategy could facilitate pathogenic bacteria identification and quantification not only in the laboratory but also in point-of-care settings, which could have great potential in the application of food safety and infectious disease diagnosis.
Collapse
|
38
|
Matta LL, Alocilja EC. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk. J Food Prot 2018; 81:1941-1949. [PMID: 30452292 DOI: 10.4315/0362-028x.jfp-18-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Rapid detection of bacterial contamination in the food supply chain is critically important for food safety monitoring. Reliable extraction and concentration of bacteria from complex matrices is required to achieve high detection sensitivity, especially in situations of low contamination and infective dose. Carbohydrate ligands that attach to microbial cell-surface epitopes are promising economical and biocompatible substitutes for cell-targeting ligands and antibodies. Two different carbohydrate ligands immobilized onto magnetic nanoparticles (MNPs) were easily suspended in liquid food (milk) and allowed expedient extraction of microbes within minutes, without the need for centrifugation or loss in capture capacity. In this pilot study, 25-mL samples of undiluted milk were spiked with 5 mg of MNPs and artificially contaminated with bacteria at 3 to 5 log CFU/mL. MNPs and bacteria formed MNP-cell complexes, which were rapidly separated from the milk matrix with a simple magnet to allow supernatant removal. MNP-cell complexes were then concentrated by resuspension in 1 mL of fresh milk and plated per Bacteriological Analytical Manual procedures. Capture was carried out in vitamin D, 2% reduced fat, and fat-free milk spiked with Salmonella Enteritidis, Escherichia coli O157:H7, and Bacillus cereus for a combined total of 18 experiments (three replicates each). An additional eight experiments were conducted to investigate the effect of competitive bacteria on capture. All experiments were carried out over several months to account for environmental variations. Capture efficiency, on a log basis, for all combinations of milk and bacteria was 73 to 90%. Long-term exposure of the MNPs to milk did not markedly affect capture efficiency. These carbohydrate-functionalized MNPs have potential as nonspecific receptors for rapid extraction of bacteria from complex liquids, opening the door to discovery of biocompatible ligands that can reliably target pathogens in our food.
Collapse
Affiliation(s)
- Leann Lerie Matta
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| |
Collapse
|
39
|
Jasim I, Shen Z, Mlaji Z, Yuksek NS, Abdullah A, Liu J, Dastider SG, El-Dweik M, Zhang S, Almasri M. An impedance biosensor for simultaneous detection of low concentration of Salmonella serogroups in poultry and fresh produce samples. Biosens Bioelectron 2018; 126:292-300. [PMID: 30445304 DOI: 10.1016/j.bios.2018.10.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023]
Abstract
This paper reports the design, fabrication and testing of a microfluidic based impedance biosensor for rapid and simultaneous detection of three Salmonella serogroups. The microfluidic device consists of three microchannels, each one includes a region for focusing the Salmonella cells into the centerline of the microchannel and direct them toward the sensing region to obtain highly concentrated samples using positive dielectrophoresis force. A region for bacteria sensing consists of interdigitated electrode (IDE) array with 10 pairs of fingers. Three types of Salmonella antibodies (type B, D and E) were mixed separately with the cross-linker (Sulfo-LC-SPDP) to enhance the immobalization of the antibodies to the detection electrodes. The electrode surfaces was then functionalized with the three mixtures, one for each channel. As target antigen binds to the antibody, it results in impedance change. The Salmonella samples were spiked with Salmonella type B, introduced into the biosensor via the sample inlet into the focusing region, and then toward the sensing region where they bind to the immobilized antibody, causing a change in the impedance. The performance of the devices was tested using single Salmonella serotype B and two Salmonella serotypes B, and D, with a limit of detection of 7 cells/ml. The biosensor was also able to differentiate live from dead bacteria eliminating the false positive results. Finally, the device was also able to detect Salmonella selectively when other type of pathogen was present.
Collapse
Affiliation(s)
- Ibrahem Jasim
- Department of Electrical and Computer Engineering, University of Missouri, 411 S. 6th St., room 201, Columbia, MO 65211, USA
| | - Zhenyu Shen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zahar Mlaji
- Department of Electrical and Computer Engineering, University of Missouri, 411 S. 6th St., room 201, Columbia, MO 65211, USA
| | | | - Amjed Abdullah
- Department of Electrical and Computer Engineering, University of Missouri, 411 S. 6th St., room 201, Columbia, MO 65211, USA
| | - Jiayu Liu
- Department of Electrical and Computer Engineering, University of Missouri, 411 S. 6th St., room 201, Columbia, MO 65211, USA
| | | | - Majed El-Dweik
- Co-Operative Research and Life Physical Sciences, Lincoln University, Jefferson City, MO 65101, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Mahmoud Almasri
- Department of Electrical and Computer Engineering, University of Missouri, 411 S. 6th St., room 201, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Hermann CA, Duerkop A, Baeumner AJ. Food Safety Analysis Enabled through Biological and Synthetic Materials: A Critical Review of Current Trends. Anal Chem 2018; 91:569-587. [PMID: 30346696 DOI: 10.1021/acs.analchem.8b04598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cornelia A Hermann
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| | - Axel Duerkop
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| | - Antje J Baeumner
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| |
Collapse
|
41
|
Shoute LCT, Anwar A, MacKay S, Abdelrasoul GN, Lin D, Yan Z, Nguyen AH, McDermott MT, Shah MA, Yang J, Chen J, Li XS. Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola. Sci Rep 2018; 8:12396. [PMID: 30120328 PMCID: PMC6098051 DOI: 10.1038/s41598-018-30167-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2017] [Accepted: 07/01/2018] [Indexed: 12/01/2022] Open
Abstract
Sclerotinia stem rot, caused by the fungal pathogen Sclerotinia sclerotiorum, is a destructive disease of canola and many other broadleaf crops. The primary inoculum responsible for initiating Sclerotinia epidemics is airborne ascospores released from the apothecia of sclerotia. Timely detection of the presence of airborne ascospores can serve as an early-warning system for forecasting and management of the disease. A major challenge is to develop a portable and automated device which can be deployed onsite to detect and quantify the presence of minute quantities of ascospores in the air and serves as a unit in a network of systems for forecasting of the epidemic. In this communication, we present the development of an impedimetric non-Faradaic biosensor based on anti-S. sclerotiorum polyclonal antibodies as probes to selectively capture the ascospores and sense their binding by an impedance based interdigitated electrode which was found to directly and unambiguously correlate the number of ascospores on sensor surface with the impedance response.
Collapse
Affiliation(s)
- Lian C T Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Afreen Anwar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Scott MacKay
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Gaser N Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Donghai Lin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Zhimin Yan
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Anh H Nguyen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Mark T McDermott
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Jian Yang
- InnoTech Alberta, Vegreville, AB, T9C 1T4, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Xiujie S Li
- InnoTech Alberta, Vegreville, AB, T9C 1T4, Canada.
| |
Collapse
|
42
|
Nurliyana MR, Sahdan M, Wibowo K, Muslihati A, Saim H, Ahmad S, Sari Y, Mansor Z. The Detection Method ofEscherichia coliin Water Resources: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/995/1/012065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
|
43
|
Khan MS, Misra SK, Dighe K, Wang Z, Schwartz-Duval AS, Sar D, Pan D. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosens Bioelectron 2018; 110:132-140. [PMID: 29605712 DOI: 10.1016/j.bios.2018.03.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 101-105 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Zhen Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA; Department of Materials Science and Engineering, University of Illinois-Urbana Champaign, IL, USA; Carle Illinois College of Medicine, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Huang F, Zhang H, Wang L, Lai W, Lin J. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen. Biosens Bioelectron 2017; 100:583-590. [PMID: 29032045 DOI: 10.1016/j.bios.2017.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 102 to 107 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity.
Collapse
Affiliation(s)
- Fengchun Huang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, 17 East Qinghua Road, Beijing 100083, China
| | - Huilin Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, 17 East Qinghua Road, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, 17 East Qinghua Road, Beijing 100083, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhan Lin
- Key Laboratory on Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, 17 East Qinghua Road, Beijing 100083, China.
| |
Collapse
|
45
|
A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode. Talanta 2017; 178:122-128. [PMID: 29136801 DOI: 10.1016/j.talanta.2017.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 01/31/2023]
Abstract
Previous studies have confirmed that cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) serves as a powerful biomarker in non-small cell lung cancer (NSCLC). Herein, we report for the first time a label-free electrochemical immunosensor for sensitive and selective detection of tumor marker CYFRA21-1. In this work, three-dimensional graphene @ gold nanoparticles (3D-G@Au) nanocomposite was modified on the glassy carbon electrode (GCE) surface to enhance the conductivity of immunosensor. The anti-CYFRA21-1 captured and fixed on the modified GCE through the cross-linking of chitosan (CS), glutaraldehyde (GA) and anti-CYFRA21-1. The differential pulse voltammetry (DPV) peak current change due to the specific interaction between anti-CYFRA21-1 and CYFRA21-1 on the modified electrode surface was utilized to detect CYFRA21-1. Under optimized conditions, the proposed electrochemical immunosensor was employed to detect CYFRA21-1 and exhibited a wide linear range of 0.25-800ngmL-1 and low detection limit of 100pgmL-1 (S/N = 3). Moreover, the recovery rates of serum samples were in the range from 95.2% to 108.7% and the developed immunosensor also shows a good correlation (less than 6.6%) with enzyme-linked immunosorbent assay (ELISA) in the detection of clinical serum samples. Therefore, it is expected that the proposed immunosensor based on a 3D-G@Au has great potential in clinical medical diagnosis of CYFRA21-1.
Collapse
|
46
|
Rapid Waterborne Pathogen Detection with Mobile Electronics. SENSORS 2017; 17:s17061348. [PMID: 28598391 PMCID: PMC5492157 DOI: 10.3390/s17061348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/16/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022]
Abstract
Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal–oxide–semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.
Collapse
|
47
|
Li L, Chen Z, Wang S, Jin X, Yang L, Liu G, Zhao J. Highly selective detection of Escherichia coli O157:H7 based on micro-gapped interdigitated electrode arrays. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Le Li
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhaochangchi Chen
- Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, P. R. China
| | - Shujuan Wang
- Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science & Technology, Shanghai, P. R. China
| | - Xin Jin
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Lixia Yang
- Department of Scientific Research, Changsha Institute for Food and Drug Control, Changsha, P. R. China
| | - Guangyao Liu
- Hunan Yuantai Biotechnology Co. Ltd., Changsha, PR China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
48
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
49
|
Yu M, Wang H, Fu F, Li L, Li J, Li G, Song Y, Swihart MT, Song E. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles. Anal Chem 2017; 89:4085-4090. [PMID: 28287715 DOI: 10.1021/acs.analchem.6b04958] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 108 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.
Collapse
Affiliation(s)
- Mengqun Yu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Hong Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Fei Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Jing Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Gan Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| |
Collapse
|
50
|
Arya SK, Estrela P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017; 116:125-131. [DOI: 10.1016/j.ymeth.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022] Open
|