1
|
Dahedl EK, Hancock TL, Kratz MA, Urakawa H. A combination cyanobacterial treatment approach using hydrogen peroxide and L-lysine successfully improved the removal efficiency of toxic cyanobacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123503. [PMID: 39672044 DOI: 10.1016/j.jenvman.2024.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Harmful cyanobacterial blooms have been increasing globally, introducing new challenges for protecting aquatic ecosystems and human health. A combined algaecide treatment, similar to combination antibiotic therapy, may more rapidly and effectively remove cyanobacteria by broad targeting of different growth mechanisms, reducing the recovery of bloom-forming cyanobacteria. To confirm this hypothesis, hydrogen peroxide (10.5 mg/L), L-lysine (8.2 mg/L), and mixed treatment (hydrogen peroxide: 8.4 mg/L; L-lysine: 6.7 mg/L) of both chemicals were examined for cyanobacterial removal in a 7-day mesocosm study. We found that both hydrogen peroxide and L-lysine effectively reduced cyanobacterial abundance to less than 1% at the end of the experiment. Mixed mesocosm phytoplankton communities responded similarly to hydrogen peroxide treatment throughout the sampling period. Microcystis abundance sharply dropped within 24 h (94% reduction) and Microcystis was no longer detected by day 7. Of the three treatments, the mixed treatment had the greatest impact on Microcystis abundance and gene expression. In lysine mesocosms, cyanobacteria were replaced by Chlorophyta, whereas the hydrogen peroxide and mixed treatments led to a shift toward the eustigmatophyte Nannochloropsis. Transcriptomics revealed that heterotrophic bacteria such as Exiguobacterium, which was resilient to hydrogen peroxide and mixed treatments, benefited from increased catalase expression, which helped mitigate oxidative stress and allowed them to dominate in bacterial succession. Lysine toxicity on microbial communities and taxa sensitivity likely stemmed from amino acid homeostasis disruptions as well as abnormal lysine riboswitch and degradation activity. Overall, a combination cyanobacterial treatment approach using hydrogen peroxide and L-lysine successfully improved the removal efficiency of toxic cyanobacteria.
Collapse
Affiliation(s)
- Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Taylor L Hancock
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA; School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA; School of Geosciences, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
2
|
Wang L, Yi Z, Zhang P, Xiong Z, Zhang G, Zhang W. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121707. [PMID: 38968883 DOI: 10.1016/j.jenvman.2024.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Addressing the threat of harmful cyanobacterial blooms (CyanoHABs) and their associated microcystins (MCs) is crucial for global drinking water safety. In this review, we comprehensively analyze and compares the physical, chemical, and biological methods and genetic engineering for MCs degradation in aquatic environments. Physical methods, such as UV treatments and photocatalytic reactions, have a high efficiency in breaking down MCs, with the potential for further enhancement in performance and reduction of hazardous byproducts. Chemical treatments using chlorine dioxide and potassium permanganate can reduce MC levels but require careful dosage management to avoid toxic by-products and protect aquatic ecosystems. Biological methods, including microbial degradation and phytoremediation techniques, show promise for the biodegradation of MCs, offering reduced environmental impact and increased sustainability. Genetic engineering, such as immobilization of microcystinase A (MlrA) in Escherichia coli and its expression in Synechocystis sp., has proven effective in decomposing MCs such as MC-LR. However, challenges related to specific environmental conditions such as temperature variations, pH levels, presence of other contaminants, nutrient availability, oxygen levels, and light exposure, as well as scalability of biological systems, necessitate further exploration. We provide a comprehensive evaluation of MCs degradation techniques, delving into their practicality, assessing the environmental impacts, and scrutinizing their efficiency to offer crucial insights into the multifaceted nature of these methods in various environmental contexts. The integration of various methodologies to enhance degradation efficiency is vital in the field of water safety, underscoring the need for ongoing innovation.
Collapse
Affiliation(s)
- Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhuoran Yi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Le VV, Ko SR, Shin Y, Kim K, Ahn CY. Succession of particle-attached and free-living bacterial communities in response to microalgal dynamics induced by the biological cyanocide paucibactin A. CHEMOSPHERE 2024; 358:142197. [PMID: 38692365 DOI: 10.1016/j.chemosphere.2024.142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Microalgae, including cyanobacteria and eukaryotic algae, are hotspots of primary production and play a critical role in global carbon cycling. However, these species often form blooms that poses a threat to aquatic ecosystems. Although the use of bacteria-derived cyanocides is regarded as an environmentally friendly method for controlling cyanobacterial blooms, only a few studies have examined their potential impact on ecosystems. This study is the first to explore the response of particle-attached (PA) and free-living (FL) bacteria to the dynamics of microalgal communities induced by the biological cyanocide paucibactin A. The microalgal community dynamics were divided into two distinct phases [phase I (days 0-2) and phase II (days 3-7)]. In phase I, paucibactin A caused a sudden decrease in the cyanobacterial concentration. Phase II was characterized by increased growth of eukaryotic microalgae (Scenedesmus, Pediastrum, Selenastrum, and Coelastrum). The stability of the bacterial community and the contribution of stochastic processes to community assembly were more pronounced in phase II than in phase I. The microalgal dynamics triggered by paucibactin A coincided with the succession of the PA and FL bacterial communities. The lysis of cyanobacteria in phase I favored the growth of microbial organic matter degraders in both the PA (e.g., Aeromonas and Rheinheimera) and FL (e.g., Vogesella) bacterial communities. In phase II, Lacibacter, Phycisphaeraceae, and Hydrogenophaga in the PA bacterial community and Lacibacter, Peredibacter, and Prosthecobacter in the FL bacterial community showed increased relative abundances. Overall, the FL bacterial community exhibited greater sensitivity to the two sequential processes compared with the PA bacterial community. These results highlight the need for studies evaluating the impact of biological cyanocides on aquatic ecosystems when used to control natural cyanobacterial blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yuna Shin
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Yancey CE, Kiledal EA, Chaganti SR, Denef VJ, Errera RM, Evans JT, Hart LN, Isailovic D, James WS, Kharbush JJ, Kimbrel JA, Li W, Mayali X, Nitschky H, Polik CA, Powers MA, Premathilaka SH, Rappuhn NA, Reitz LA, Rivera SR, Zwiers CC, Dick GJ. The Western Lake Erie culture collection: A promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. HARMFUL ALGAE 2023; 126:102440. [PMID: 37290887 DOI: 10.1016/j.hal.2023.102440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 μg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.
Collapse
Affiliation(s)
- Colleen E Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - E Anders Kiledal
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Vincent J Denef
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Reagan M Errera
- National Oceanic and Atmospheric Administration (NOAA), Great Lakes Environmental Research Laboratory (GLERL), 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Jacob T Evans
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lauren N Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, United States of America; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - William S James
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jenan J Kharbush
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Helena Nitschky
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Catherine A Polik
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - McKenzie A Powers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - Nicole A Rappuhn
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Laura A Reitz
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sara R Rivera
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Claire C Zwiers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Gregory J Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America.
| |
Collapse
|
5
|
Zhang Y, Duy SV, Whalen JK, Munoz G, Gao X, Sauvé S. Cyanotoxins dissipation in soil: Evidence from microcosm assays. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131534. [PMID: 37146322 DOI: 10.1016/j.jhazmat.2023.131534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Cyanobacteria proliferate in warm, nutrient-rich environments, and release cyanotoxins into natural waters. If cyanotoxin-contaminated water is used to irrigate agricultural crops, this could expose humans and other biota to cyanotoxins. However, cyanotoxins may be degraded by the diverse microbial consortia, be adsorbed or otherwise dissipate in agricultural soil. This study investigates the disappearance and transformation of 9 cyanotoxins in controlled soil microcosms after 28 d. Six soil types were exposed to factorial combinations of light, redox conditions and microbial activity that influenced the recovery of anabaenopeptin-A (AP-A), anabaenopeptin-B (AP-B), anatoxin-a (ATX-a), cylindrospermopsin (CYN), and the microcystin (MC) congeners -LR, -LA, -LY, -LW, and -LF. Cyanotoxins estimated half-lives were from hours to several months, depending on the compound and soil conditions. Cyanotoxins were eliminated via biological reactions in aerobic and anaerobic soils, although anaerobic conditions accelerated the biological dissipation of ATX-a, CYN and APs. ATX-a was sensitive to photolytic degradation, but CYN, and MCs were not reduced through photochemical transformation. MC-LR and -LA were recovered after exposure to light, redox conditions and low microbial activity, suggesting that they persisted in extractable forms, compared to other cyanotoxins in soil. Cyanotoxin degradation products were identified using high-resolution mass spectrometry, revealing their potential degradation pathways in soil.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Xuesong Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
6
|
Chaffin JD, Westrick JA, Furr E, Birbeck JA, Reitz LA, Stanislawczyk K, Li W, Weber PK, Bridgeman TB, Davis TW, Mayali X. Quantification of microcystin production and biodegradation rates in the western basin of Lake Erie. LIMNOLOGY AND OCEANOGRAPHY 2022; 67:1470-1483. [PMID: 36248197 PMCID: PMC9543754 DOI: 10.1002/lno.12096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial biomass forecasts currently cannot predict the concentrations of microcystin, one of the most ubiquitous cyanotoxins that threaten human and wildlife health globally. Mechanistic insights into how microcystin production and biodegradation by heterotrophic bacteria change spatially and throughout the bloom season can aid in toxin concentration forecasts. We quantified microcystin production and biodegradation during two growth seasons in two western Lake Erie sites with different physicochemical properties commonly plagued by summer Microcystis blooms. Microcystin production rates were greater with elevated nutrients than under ambient conditions and were highest nearshore during the initial phases of the bloom, and production rates were lower in later bloom phases. We examined biodegradation rates of the most common and toxic microcystin by adding extracellular stable isotope-labeled microcystin-LR (1 μg L-1), which remained stable in the abiotic treatment (without bacteria) with minimal adsorption onto sediment, but strongly decreased in all unaltered biotic treatments, suggesting biodegradation. Greatest biodegradation rates (highest of -8.76 d-1, equivalent to the removal of 99.98% in 18 h) were observed during peak bloom conditions, while lower rates were observed with lower cyanobacteria biomass. Cell-specific nitrogen incorporation from microcystin-LR by nanoscale imaging mass spectrometry showed that a small percentage of the heterotrophic bacterial community actively degraded microcystin-LR. Microcystin production and biodegradation rates, combined with the microcystin incorporation by single cells, suggest that microcystin predictive models could be improved by incorporating toxin production and biodegradation rates, which are influenced by cyanobacterial bloom stage (early vs. late bloom), nutrient availability, and bacterial community composition.
Collapse
Affiliation(s)
- Justin D. Chaffin
- F.T. Stone Laboratory and Ohio Sea GrantThe Ohio State UniversityPut‐In‐BayOhioUSA
| | - Judy A. Westrick
- Lumigen Instrument CenterWayne State UniversityDetroitMichiganUSA
| | - Elliot Furr
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
| | | | - Laura A. Reitz
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Present address:
Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Keara Stanislawczyk
- F.T. Stone Laboratory and Ohio Sea GrantThe Ohio State UniversityPut‐In‐BayOhioUSA
| | - Wei Li
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| | - Peter K. Weber
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| | | | - Timothy W. Davis
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
| | - Xavier Mayali
- Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreCaliforniaUSA
| |
Collapse
|
7
|
Le VV, Ko SR, Kang M, Lee SA, Oh HM, Ahn CY. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119079. [PMID: 35245623 DOI: 10.1016/j.envpol.2022.119079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The excessive proliferation of Microcystis aeruginosa can lead to ecological damage, economic losses, and threaten animal and human health. For controlling Microcystis blooms, microorganism-based methods have attracted much attention from researchers because of their eco-friendliness and species-specificity. Herein, we first found that a Paucibacter strain exhibits algicidal activity against M. aeruginosa and microcystin degradation capability. The algicidal activity of DH15 (2.1 × 104 CFU/ml) against M. aeruginosa (2 × 106 cells/ml) was 94.9% within 36 h of exposure. DH15 also degraded microcystin (1.6 mg/L) up to 62.5% after 72 h. We demonstrated that the algicidal activity of DH15 against M. aeruginosa can be mediated by physical attachment and indirect attack: (1) Both washed cells and cell-free supernatant could kill M. aeruginosa efficiently; (2) Treatment with DH15 cell-free supernatants caused oxidative stress, altered the fatty acid profile, and damaged photosynthetic system, carbohydrate, and protein metabolism in M. aeruginosa. The combination of direct and indirect attacks supported that strain DH15 exerts high algicidal activity against M. aeruginosa. The expression of most key genes responsible for photosynthesis, antioxidant activity, microcystin synthesis, and other metabolic pathways in M. aeruginosa was downregulated. Strain DH15, with its microcystin degradation capacity, can overcome the trade-off between controlling Microcystis blooms and increasing microcystin concentration. Our findings suggest that strain DH15 possesses great potential to control outbreaks of Microcystis blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|