1
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Long-term Immunity of a Microneedle Array Patch of SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620289. [PMID: 39484497 PMCID: PMC11527120 DOI: 10.1101/2024.10.25.620289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
COVID-19 vaccines effectively prevent symptomatic infection and severe disease, including hospitalization and death. However, unequal vaccine distribution during the pandemic, especially in low- and middle-income countries, has led to the emergence of vaccine-resistant strains. This underscores the need for alternative, safe, and thermostable vaccine platforms, such as dissolved microneedle array patches (MAP) delivering a subunit vaccine, which eliminate the need for cold chain and trained healthcare personnel. This study demonstrates that the SARS-CoV-2 S1 monomer with RS09, a TLR-4 agonist peptide, serves as an optimal protein subunit immunogen. This combination stimulates a stronger S1-specific immune response, resulting in binding to the membrane-bound spike on the cell surface and ACE2-binding inhibition, compared to the monomer S1 alone or trimer S1, regardless of RS09. MAP delivery of the rS1RS09 subunit vaccine elicited higher and longer-lasting immunity compared to conventional intramuscular injection. S1-specific IgG levels remained significantly elevated for up to 70 weeks post-administration. Additionally, different doses of 5, 15, and 45 μg of MAP vaccines induced robust and sustained Th2-prevalent immune responses, suggesting a dose-sparing effect and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants at 15 and 45 μ g dose. Moreover, gamma irradiation as a terminal sterilization method did not significantly affect immunogenicity, with irradiated vaccines maintaining comparable efficacy to non-irradiated ones. The stability of MAP vaccines was evaluated after long-term storage at room temperature and refrigeration for 19 months, showing minimal protein degradation. Further, after an additional one-month of storage at elevated temperature (42°C), rS1RS09 in both non-irradiated and irradiated MAP degraded less than 3%, while the liquid subunit vaccine degraded over 23%. Overall, these results indicate that gamma irradiation sterilized MAP-rS1RS09 vaccines maintain stability during extended storage without refrigeration, supporting their potential for mass production and widespread use in global vaccination efforts.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Khalid K, Lim HX, Hwang JS, Poh CL. The Development of Epitope-Based Recombinant Protein Vaccines against SARS-CoV-2. AAPS J 2024; 26:93. [PMID: 39138686 DOI: 10.1208/s12248-024-00963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
The COVID-19 pandemic continues to cause infections and deaths, which are attributable to the SARS-CoV-2 Omicron variant of concern (VOC). Moderna's response to the declining protective efficacies of current SARS-CoV-2 vaccines against Omicron was to develop a bivalent booster vaccine based on the Spike (S) protein from the Wuhan and Omicron BA.4/BA.5 strains. This approach, while commendable, is unfeasible in light of rapidly emerging mutated viral strains. PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2024. Articles included focused on specific themes such as the clinical history of recombinant protein vaccine development against different diseases, including COVID-19, the production of recombinant protein vaccines using different host expression systems, aspects to consider in recombinant protein vaccine development, and overcoming problems associated with large-scale recombinant protein vaccine production. In silico approaches to identify conserved and immunogenic epitopes could provide broad protection against SARS-CoV-2 VOCs but require validation in animal models. The recombinant protein vaccine development platform has shown a successful history in clinical development. Recombinant protein vaccines incorporating conserved epitopes may utilize a number of expression systems, such as yeast (Saccharomyces cerevisiae), baculovirus-insect cells (Sf9 cells), and Escherichia coli (E. coli). Current multi-epitope subunit vaccines against SARS-CoV-2 utilizing synthetic peptides are unfeasible for large-scale immunizations. Recombinant protein vaccines based on conserved and immunogenic proteins produced using E. coli offer high production yields, convenient purification, and cost-effective production of large-scale vaccine quantities capable of protecting against the SARS-CoV-2 D614G strain and its VOCs.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia.
| |
Collapse
|
3
|
Liu R, Natekar JP, Kim KH, Pathak H, Bhatnagar N, Raha JR, Park BR, Guglani A, Shin CH, Kumar M, Kang SM. Multivalent and Sequential Heterologous Spike Protein Vaccinations Effectively Induce Protective Humoral Immunity against SARS-CoV-2 Variants. Vaccines (Basel) 2024; 12:362. [PMID: 38675744 PMCID: PMC11053539 DOI: 10.3390/vaccines12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of new SARS-CoV-2 variants continues to cause challenging problems for the effective control of COVID-19. In this study, we tested the hypothesis of whether a strategy of multivalent and sequential heterologous spike protein vaccinations would induce a broader range and higher levels of neutralizing antibodies against SARS-CoV-2 variants and more effective protection than homologous spike protein vaccination in a mouse model. We determined spike-specific IgG, receptor-binding inhibition titers, and protective efficacy in the groups of mice that were vaccinated with multivalent recombinant spike proteins (Wuhan, Delta, Omicron), sequentially with heterologous spike protein variants, or with homologous spike proteins. Trivalent (Wuhan + Delta + Omicron) and sequential heterologous spike protein vaccinations were more effective in inducing serum inhibition activities of receptor binding to spike variants and virus neutralizing antibody titers than homologous spike protein vaccination. The higher efficacy of protection was observed in mice with trivalent and sequential heterologous spike protein vaccination after a challenge with a mouse-adapted SARS-CoV-2 MA10 strain compared to homologous spike protein vaccination. This study provides evidence that a strategy of multivalent and sequential heterologous variant spike vaccination might provide more effective protection against emerging SARS-CoV-2 variants than homologous spike vaccination and significantly alleviate severe inflammation due to COVID-19.
Collapse
Affiliation(s)
- Rong Liu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Janhavi P. Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Heather Pathak
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Jannatul Ruhan Raha
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Anchala Guglani
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.P.N.); (H.P.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (R.L.); (K.-H.K.); (N.B.); (J.R.R.); (B.R.P.); (C.H.S.)
| |
Collapse
|
4
|
Kim E, Shin J, Ferrari A, Huang S, An E, Han D, Khan MS, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Fourth dose of microneedle array patch of SARS-CoV-2 S1 protein subunit vaccine elicits robust long-lasting humoral responses in mice. Int Immunopharmacol 2024; 129:111569. [PMID: 38340419 DOI: 10.1016/j.intimp.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Kim E, Khan MS, Ferrari A, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Gambotto A. Second Boost of Omicron SARS-CoV-2 S1 Subunit Vaccine Induced Broad Humoral Immune Responses in Elderly Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578925. [PMID: 38370806 PMCID: PMC10871204 DOI: 10.1101/2024.02.05.578925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Currently approved COVID-19 vaccines prevent symptomatic infection, hospitalization, and death from the disease. However, repeated homologous boosters, while considered a solution for severe forms of the disease caused by new SARS-CoV-2 variants in elderly individuals and immunocompromised patients, cannot provide complete protection against breakthrough infections. This highlights the need for alternative platforms for booster vaccines. In our previous study, we assessed the boost effect of the SARS-CoV-2 Beta S1 recombinant protein subunit vaccine (rS1Beta) in aged mice primed with an adenovirus-based vaccine expressing SARS-CoV-2-S1 (Ad5.S1) via subcutaneous injection or intranasal delivery, which induced robust humoral immune responses (1). In this follow-up study, we demonstrated that a second booster dose of a non-adjuvanted recombinant Omicron (BA.1) S1 subunit vaccine with Toll-like receptor 4 (TLR4) agonist RS09 (rS1RS09OM) was effective in stimulating strong S1-specific immune responses and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants in 100-week-old mice. Importantly, the second booster dose elicits cross-reactive antibody responses, resulting in ACE2 binding inhibition against the spike protein of SARS-CoV-2 variants, including Omicron (BA.1) and its subvariants. Interestingly, the levels of IgG and neutralizing antibodies correlated with the level of ACE2 inhibition in the booster serum samples, although Omicron S1-specific IgG level showed a weaker correlation compared to Wuhan S1-specific IgG level. Furthermore, we compared the immunogenic properties of the rS1 subunit vaccine in young, middle-aged, and elderly mice, resulting in reduced immunogenicity with age, especially an impaired Th1-biased immune response in aged mice. Our findings demonstrate that the new variant of concern (VOC) rS1 subunit vaccine as a second booster has the potential to offer cross-neutralization against a broad range of variants and to improve vaccine effectiveness against newly emerging breakthrough SARS-CoV-2 variants in elderly individuals who were previously primed with the authorized vaccines.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Khan MS, Kim E, Le Hingrat Q, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 subunit protein vaccination elicits robust humoral and cellular immune responses in SIV-infected rhesus macaque controllers. mBio 2023; 14:e0207023. [PMID: 37830800 PMCID: PMC10653869 DOI: 10.1128/mbio.02070-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The study provides important insights into the immunogenicity and efficacy of a tetravalent protein subunit vaccine candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine induced both humoral and cellular immune responses in nonhuman primates with controlled SIVagm infection and was able to generate Omicron variant-specific antibodies without specifically vaccinating with Omicron. These findings suggest that the tetravalent composition of the vaccine candidate could provide broad protection against multiple SARS-CoV-2 variants while minimizing the risk of immune escape and the emergence of new variants. Additionally, the use of rhesus macaques with controlled SIVsab infection may better represent vaccine immunogenicity in humans with chronic viral diseases, highlighting the importance of preclinical animal models in vaccine development. Overall, the study provides valuable information for the development and implementation of coronavirus disease 2019 vaccines, particularly for achieving global vaccine equity and addressing emerging variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jose C. Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cuiling Xu
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Khan MS, Kim E, Hingrat QL, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 Subunit Protein Vaccination Elicits Robust Humoral and Cellular Immune Responses in SIV-Infected Rhesus Macaque Controllers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532808. [PMID: 36993692 PMCID: PMC10055053 DOI: 10.1101/2023.03.15.532808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+ T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Jose C Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Cuiling Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ivona Pandrea
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|