1
|
Oeung B, Pham K, Olfert IM, De La Zerda DJ, Gaio E, Powell FL, Heinrich EC. The normal distribution of the hypoxic ventilatory response and methodological impacts: a meta-analysis and computational investigation. J Physiol 2023; 601:4423-4440. [PMID: 37589511 PMCID: PMC10543592 DOI: 10.1113/jp284767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.
Collapse
Affiliation(s)
- Britney Oeung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - I. Mark Olfert
- West Virginia University School of Medicine, Department of Physiology & Pharmacology and Division of Exercise Physiology
| | | | - Eduardo Gaio
- School of Medicine, Deakin University, Geelong, Australia
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| |
Collapse
|
2
|
Huang H, Dong H, Zhang J, Ke X, Li P, Zhang E, Xu G, Sun B, Gao Y. The Role of Salivary miR-134-3p and miR-15b-5p as Potential Non-invasive Predictors for Not Developing Acute Mountain Sickness. Front Physiol 2019; 10:898. [PMID: 31379603 PMCID: PMC6646415 DOI: 10.3389/fphys.2019.00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023] Open
Abstract
Background Acute mountain sickness (AMS) is a crucial public health problem for high altitude travelers. Discriminating individuals who are not developing (AMS resistance, AMS−) from developing AMS (AMS susceptibility, AMS+) at baseline would be vital for disease prevention. Salivary microRNAs (miRNAs) have emerged as promising non-invasive biomarkers for various diseases. Thus, the aim of our study was to identify the potential roles of salivary miRNAs in identifying AMS− individuals pre-exposed to high altitude. Moreover, as hypoxia is the triggering factor for AMS, present study also explored the association between cerebral tissue oxygenation indices (TOI) and AMS development after exposed to high altitude, which was the complementary aim. Methods In this study, 124 healthy men were recruited, and were exposed at simulated high altitude of 4,500 m. Salivary miR-134-3p and miR-15b-5p were measured at baseline (200 m). AMS was diagnosed based on Lake Louise Scoring System at 4,500 m. The measurements of physiological parameters were recorded at both the altitudes. Results Salivary miR-134-3p and miR-15b-5p were significantly up-regulated in AMS− individuals as compared to the AMS+ (p < 0.05). In addition, the combination of these miRNAs generated a high power for discriminating the AMS− from AMS+ at baseline (AUC: 0.811, 95% CI: 0.731−0.876, p < 0.001). Moreover, the value of cerebral TOIs at 4,500 m were significantly higher in AMS− individuals, compared to AMS+ (p < 0.01). Conclusion Our study reveals for the first time that salivary miR-134-3p and miR-15b-5p can be used as non-invasive biomarkers for predicting AMS− individuals pre-exposed to high altitude.
Collapse
Affiliation(s)
- He Huang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Huaping Dong
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Jianyang Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Xianfeng Ke
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Peng Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.,Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Bingda Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
3
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
4
|
Liu B, Huang H, Wu G, Xu G, Sun BD, Zhang EL, Chen J, Gao YQ. A Signature of Circulating microRNAs Predicts the Susceptibility of Acute Mountain Sickness. Front Physiol 2017; 8:55. [PMID: 28228730 PMCID: PMC5296306 DOI: 10.3389/fphys.2017.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Acute mountain sickness (AMS) is a common disabling condition in individuals experiencing high altitudes, which may progress to life-threatening high altitude cerebral edema. Today, no established biomarkers are available for prediction the susceptibility of AMS. MicroRNAs emerge as promising sensitive and specific biomarkers for a variety of diseases. Thus, we sought to identify circulating microRNAs suitable for prediction the susceptible of AMS before exposure to high altitude. Methods: We enrolled 109 healthy man adults and collected blood samples before their exposure to high altitude. Then we took them to an elevation of 3648 m for 5 days. Circulating microRNAs expression was measured by microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). AMS was defined as Lake Louise score ≥3 and headache using Lake Louise Acute Mountain Sickness Scoring System. Results: A total of 31 microRNAs were differentially expressed between AMS and Non-AMS groups, 15 up-regulated and 16 down-regulated. Up-regulation of miR-369-3p, miR-449b-3p, miR-136-3p, and miR-4791 in patients with AMS compared with Non-AMS individuals were quantitatively confirmed using qRT-PCR (all, P < 0.001). With multiple logistic regression analysis, a unique signature encompassing miR-369-3p, miR-449b-3p, and miR-136-3p discriminate AMS from Non-AMS (area under the curve 0.986, 95%CI 0.970–1.000, P < 0.001, LR+: 14.21, LR–: 0.08). This signature yielded a 92.68% sensitivity and a 93.48% specificity for AMS vs. Non-AMS. Conclusion: The study here, for the first time, describes a signature of three circulating microRNAs as a robust biomarker to predict the susceptibility of AMS before exposure to high altitude.
Collapse
Affiliation(s)
- Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - He Huang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Gang Wu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Bing-Da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China; Key Laboratory of High Altitude Medicine, PLAChongqing, China
| |
Collapse
|