1
|
Parrales V, Arcile G, Laserre L, Normant S, Le Goff G, Da Costa Noble C, Ouazzani J, Callizot N, Haïk S, Rabhi C, Bizat N. Neuroprotective Effect of Withaferin Derivatives toward MPP + and 6-OHDA Toxicity to Dopaminergic Neurons. ACS Chem Neurosci 2025. [PMID: 39946298 DOI: 10.1021/acschemneuro.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. Withania somnifera (L.) Dunal, commonly known as ashwagandha, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound Withaferin-A (WFA), a steroid lactone from the withanolide group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of WFA and two of its molecular derivatives, cr-591 and cr-777, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that WFA and its two derivatives, cr-591 and cr-777, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP+ and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Valeria Parrales
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Louise Laserre
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, Gardanne 13120, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris 75013, France
| | - Chérif Rabhi
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Faculté de Pharmacie de Paris, Paris University, 4 Avenue de l'Observatoire, Paris 75006, France
| |
Collapse
|
2
|
Lee I, Knickerbocker AC, Depew CR, Martin EL, Dicent J, Miller GW, Bucher ML. Effect of altered production and storage of dopamine on development and behavior in C. elegans. FRONTIERS IN TOXICOLOGY 2024; 6:1374866. [PMID: 39219718 PMCID: PMC11363549 DOI: 10.3389/ftox.2024.1374866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The nematode, Caenorhabditis elegans (C. elegans), is an advantageous model for studying developmental toxicology due to its well-defined developmental stages and homology to humans. It has been established that across species, dopaminergic neurons are highly vulnerable to neurotoxicant exposure, resulting in developmental neuronal dysfunction and age-induced degeneration. C. elegans, with genetic perturbations in dopamine system proteins, can provide insight into the mechanisms of dopaminergic neurotoxicants. In this study, we present a comprehensive analysis on the effect of gene mutations in dopamine-related proteins on body size, development, and behavior in C. elegans. Methods We studied C. elegans that lack the ability to sequester dopamine (OK411) and that overproduce dopamine (UA57) and a novel strain (MBIA) generated by the genetic crossing of OK411 and UA57, which both lack the ability to sequester dopamine into vesicles and, additionally, endogenously overproduce dopamine. The MBIA strain was generated to address the hypothesis that an endogenous increase in the production of dopamine can rescue deficits caused by a lack of vesicular dopamine sequestration. These strains were analyzed for body size, developmental stage, reproduction, egg laying, motor behaviors, and neuronal health utilizing multiple methods. Results Our results further implicate proper dopamine synthesis and sequestration in the regulation of C. elegans body size, development through larval stages into gravid adulthood, and motor functioning. Furthermore, our analyses demonstrate that body size in terms of length is distinct from the developmental stage as fully developed gravid adult C. elegans with disruptions in the dopamine system have decreased body lengths. Thus, body size should not be used as a proxy for the developmental stage when designing experiments. Discussion Our results provide additional evidence that the dopamine system impacts the development, growth, and reproduction in C. elegans. Furthermore, our data suggest that endogenously increasing the production of dopamine mitigates deficits in C. elegans lacking the ability to package dopamine into synaptic vesicles. The novel strain, MBIA, and novel analyses of development and reproduction presented here can be utilized in developmental neurotoxicity experiments.
Collapse
Affiliation(s)
- Irene Lee
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Ava C. Knickerbocker
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Charlotte R. Depew
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Elizabeth L. Martin
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, NY, United States
| | - Meghan L. Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Pannone L, Muto V, Nardecchia F, Di Rocco M, Marchei E, Tosato F, Petrini S, Onorato G, Lanza E, Bertuccini L, Manti F, Folli V, Galosi S, Di Schiavi E, Leuzzi V, Tartaglia M, Martinelli S. The recurrent pathogenic Pro890Leu substitution in CLTC causes a generalized defect in synaptic transmission in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1170061. [PMID: 37324589 PMCID: PMC10264582 DOI: 10.3389/fnmol.2023.1170061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.
Collapse
Affiliation(s)
- Luca Pannone
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Muto
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Di Rocco
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giada Onorato
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | | | - Filippo Manti
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
5
|
Wei CC, Yang NC, Huang CW. Zearalenone Induces Dopaminergic Neurodegeneration via DRP-1-Involved Mitochondrial Fragmentation and Apoptosis in a Caenorhabditis elegans Parkinson's Disease Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12030-12038. [PMID: 34586801 DOI: 10.1021/acs.jafc.1c05836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of mycotoxin zearalenone (ZEN) in foods has been reported worldwide, resulting in potential risks to food safety. However, the toxic mechanism of ZEN on neurodegenerative diseases has not been fully elucidated. Therefore, this study conducted in vivo ZEN neurotoxicity assessment on Parkinson's disease (PD)-related dopaminergic neurodegeneration and mitochondrial dysfunction using Caenorhabditis elegans. The results demonstrated that dopaminergic neuron damage was induced by ZEN exposure (1.25, 10, and 50 μM), and dopaminergic neuron-related behaviors were adversely affected subsequently. Additionally, the mitochondrial fragmentation was significantly increased by ZEN exposure. Moreover, upregulated expression of mitochondrial fission and cell apoptosis-related genes (drp-1, egl-1, ced-4, and ced-3) revealed the crucial role of DRP-1 on ZEN-induced neurotoxicity, which was further confirmed by drp-1 mutant and RNAi assays. In conclusion, our study indicates ZEN-induced dopaminergic neurodegeneration via DRP-1-involved mitochondrial fragmentation and apoptosis, which might cause harmful effects on PD-related symptoms.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Nien-Chieh Yang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| |
Collapse
|
6
|
Torres Valladares D, Kudumala S, Hossain M, Carvelli L. Caenorhabditis elegans as an in vivo Model to Assess Amphetamine Tolerance. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:247-255. [PMID: 33831863 DOI: 10.1159/000514858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in Caenorhabditis elegans to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that C. elegans is a suitable system to study tolerance to drugs of abuse such as amphetamines.
Collapse
Affiliation(s)
- Dayana Torres Valladares
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Sirisha Kudumala
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Murad Hossain
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA.,Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|