1
|
Zhu Y, Lin J, Li Y, Luo Z. Prognostic value and immune infiltration of the NEK family in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e38961. [PMID: 39029088 PMCID: PMC11398795 DOI: 10.1097/md.0000000000038961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal urological malignancy. Members of the never-in mitosis gene A (NIMA)-related kinase (NEK) family have been found to participate in the progression of several cancers and could be used as target genes to treat corresponding diseases. Nonetheless, the prognostic value and immune infiltration levels of NEK family genes in ccRCC remain unknown. The GSCA, TIMER, and GEPIA databases were utilized to examine the differential expression of NEK family members in ccRCC, and the Kaplan-Meier plotter was utilized to analyze the prognosis. The STRING database was used to construct a protein-protein interaction network. Analysis of function was performed by the Sangerbox tool. In addition, the relationship between NEK family genes and immune cells was explored using the TIMER and TISIDB databases. Finally, we used quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) for experimental verification. Transcriptional levels of NEK2, NEK3, NEK5, NEK6, and NEK11 significantly differed between ccRCC and normal tissues. Moreover, there was a significant correlation between NEK1, NEK2, NEK4, NEK8, NEK9, and NEK10 and their clinicopathological stages in patients with ccRCC. Based on survival analysis, ccRCC patients with high transcriptional levels of NEK2, NEK3, NEK8, and NEK10 and low transcriptional levels of NEK1, NEK4, NEK5, NEK6, NEK7, NEK9, NEK11 had shorter survival times. Additionally, a significant relationship was observed between NEK family members and immune cell infiltration, immune cell markers, and immune subtypes. These results indicate that NEK family members are significantly differentially expressed in ccRCC, and a significant correlation exists between the NEK family and prognosis and immune infiltration. NEK family members may act as therapeutic targets and prognostic indicators in ccRCC.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | |
Collapse
|
2
|
Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med 2023; 23:17-30. [PMID: 35037094 DOI: 10.1007/s10238-021-00782-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cancer is defined by unrestrained cell proliferation due to impaired protein activity. Cell cycle-related proteins are likely to play a role in human cancers, including proliferation, invasion, and therapeutic resistance. The serine/threonine NEK kinases are the part of Never In Mitosis A Kinases (NIMA) family, which are less explored kinase family involved in the cell cycle, checkpoint regulation, and cilia biology. They comprise of eleven members, namely NEK1, NEK2, NEK3, NEK4, NEK5, NEK6, NEK7, NEK8, NEK9, NEK10, and NEK11, located in different cellular regions. Recent research has shown the role of NEK family in various cancers by perversely expressing. Therefore, this review aimed to provide a systematic account of our understanding of NEK kinases; structural details; and its role in the cell cycle regulation. Furthermore, we have comprehensively reviewed the NEK kinases in terms of their expression and regulation in different cancers. Lastly, we have emphasized on some of the potential NEK inhibitors reported so far.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
3
|
Arend RC, Scalise CB, Gordon ER, Davis AM, Foxall ME, Johnston BE, Crossman DK, Cooper SJ. Metabolic alterations and WNT signaling impact immune response in HGSOC. Clin Cancer Res 2022; 28:1433-1445. [PMID: 35031546 DOI: 10.1158/1078-0432.ccr-21-2984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Our study used transcriptomic and metabolomic strategies to determine the molecular profiles of HGSOC patient samples derived from primary tumor and ascites cells. These data identified clinically relevant heterogeneity among and within patients and highlighted global and patient-specific cellular responses to neoadjuvant chemotherapy (NACT). EXPERIMENTAL DESIGN Tissue from 61 treatment naïve patients with HGSOC were collected. In addition, 11 benign, 32 ascites, and 18 post-NACT samples (matched to the individual patient's pre-NACT sample) were collected. RNA-sequencing (RNA-seq) was performed on all samples collected. Two-dimensional spatial proteomic data was collected for two pairs of pre-and post-NACT. Untargeted metabolomics data using GCxGC-MS was generated for 30 treatment-naive tissues. Consensus clustering, analysis of differential expression, pathway enrichment, and survival analyses were performed. RESULTS Treatment-naïve HGSOC tissues had distinct transcriptomic and metabolomic profiles. The mesenchymal subtype harbored a metabolomic profile distinct from the other subtypes. Compared to primary tumor tissue, ascites showed significant changes in immune response and signaling pathways. NACT caused significant alterations in gene expression and WNT activity, and this corresponded to altered immune response. Overall, WNT signaling levels were inversely correlated with immune cell infiltration in HGSOC tissues and WNT signaling post-NACT was inversely correlated with progression-free survival. CONCLUSIONS Our study concluded that HGSOC is a heterogenous disease at baseline and growing molecular differences can be observed between primary tumor and ascites cells or within tumors in response to treatment. Our data reveal potential exploratory biomarkers relevant for treatment selection and predicting patient outcomes that warrant further research.
Collapse
Affiliation(s)
- Rebecca C Arend
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | - Allison M Davis
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | | | - Sara J Cooper
- S. Cooper Lab, HudsonAlpha Institute for Biotechnology
| |
Collapse
|
4
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|
5
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
6
|
Christodoulou E, van Doorn R, Visser M, Teunisse A, Versluis M, van der Velden P, Hayward NK, Jochemsen A, Gruis N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J Med Genet 2019; 57:203-210. [PMID: 31704778 DOI: 10.1136/jmedgenet-2019-106134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in CDKN2A and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma. METHODS In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant. RESULTS Application of WES identified a rare, nonsense variant in the NEK11 gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the NEK11 p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation. CONCLUSION The NEK11 p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support NEK11 as a melanoma susceptibility gene.
Collapse
Affiliation(s)
- Eirini Christodoulou
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Remco van Doorn
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mijke Visser
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Amina Teunisse
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mieke Versluis
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Pieter van der Velden
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nicholas K Hayward
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aart Jochemsen
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nelleke Gruis
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
7
|
Liu H, Wang S, Zhou S, Meng Q, Ma X, Song X, Wang L, Jiang W. Drug Resistance-Related Competing Interactions of lncRNA and mRNA across 19 Cancer Types. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:442-451. [PMID: 31048183 PMCID: PMC6488743 DOI: 10.1016/j.omtn.2019.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/13/2022]
Abstract
Drug resistance is a common cause of treatment failure in cancer therapy, and molecular mechanisms need further exploration. Competing endogenous RNAs (ceRNAs) can influence drug response by participating in various biological processes, including regulation of cell cycle, signal transduction, and so on. In this study, we systematically explored resistance from the perspective of ceRNA modules. First, we constructed a general ceRNA network, involving 83 long non-coding RNAs (lncRNAs) and 379 mRNAs. Next, we identified the drug resistance-related modules for 138 drugs and 19 cancer types, totaling 758 drug-cancer conditions. Function analysis showed that resistance-related biological processes were enriched in these modules, such as regulation of cell proliferation, DNA damage repair, and so on. Pan-drug and pan-cancer analyses revealed some common and specific modules across multiple drugs or cancers. In addition, we also found that drug pairs with common modules have similar structure, indicating high risk for multidrug resistance (MDR). Finally, we speculated that ceRNA pair GAS5-RPL8 could regulate drug resistance because low expression of GAS5 would enhance microRNA (miRNA)-mediated inhibition of RPL8. In total, we investigated the drug resistance by using ceRNA modules and proposed that ceRNA modules may be new markers for drug resistance that indicated a possible novel mechanism.
Collapse
Affiliation(s)
- Haizhou Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shunheng Zhou
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaofeng Song
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Lihong Wang
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
8
|
Yin F, Yi S, Wei L, Zhao B, Li J, Cai X, Dong C, Liu X. Microarray-based identification of genes associated with prognosis and drug resistance in ovarian cancer. J Cell Biochem 2018; 120:6057-6070. [PMID: 30335894 DOI: 10.1002/jcb.27892] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The outcome for patients with ovarian cancer (OC) is poor because of drug resistance. Therefore, identification of factors that affect drug resistance and prognosis in OC is needed. In the present study, we identified 131 genes significantly dysregulated in 90 platinum-resistant OC tissues compared with 197 sensitive tissues, of which 30 were significantly associated with disease-free survival (DFS; n = 16), overall survival (OS; n = 6), or both (n = 8) in 489 OC patients of the The Cancer Genome Atlas cohort. Of these 30 genes, 17 were significantly upregulated and 13 were downregulated in the 90 resistant tissues, and with one exception, all of the up-/downregulated genes in resistant tissues were predictors of shorter DFS or/and OS. LAX1, MECOM, and PDIA4 were independent risk factors for DFS, and KLF1, SLC7A11, and PDIA4 for OS; combining these genes provided more accurate predictions for DFS and OS than any of the genes used individually. We further verified downregulation of PDIA4 protein in 51 specimens of patients with OC (24 drug resistant's and 27 sensitive's), which confirmed that downregulated PDIA4 predicted DFS and OS. PDIA4 also consistently predicted OS in a larger sample of 1656 patients with OC. These 30 genes, particularly the PDIA4, could be therapeutic targets or biomarkers for managing OC.
Collapse
Affiliation(s)
- Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Luwei Wei
- Department of Gynecologic Oncology, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinqian Li
- Department of Internal Medicine, Jingning People's Hospital, Jingning, Gansu, China
| | - Xiangxue Cai
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Liu X, Wei L, Zhao B, Cai X, Dong C, Yin F. Low expression of KCNN3 may affect drug resistance in ovarian cancer. Mol Med Rep 2018; 18:1377-1386. [PMID: 29901154 PMCID: PMC6072180 DOI: 10.3892/mmr.2018.9107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
Drug resistance is a principal contributor to the poor prognosis of ovarian cancer (OC). Therefore, identifying factors that affect drug resistance in OC is critical. In the present study, 51 OC specimens from lab collections were immunohistochemically tested, public data for 489 samples from The Cancer Genome Atlas cohort and 1,656 samples from the Kaplan‑Meier Plotter were downloaded, and data were retrieved from Oncomine. It was identified that the mRNA and protein expression of the potassium calcium‑activated channel subfamily N member 3 (KCNN3) was markedly lower in OC tissues compared with normal tissues, and in drug‑resistant OC tissues compared with sensitive OC tissues. Low KCNN3 expression consistently predicted shorter disease‑free and overall survival (OS). Specifically, low KCNN3 expression predicted shorter OS in 395 patients with low expression levels of mucin‑16. There was additional evidence that KCNN3 expression is mediated by microRNA‑892b. Furthermore, text mining and analyses of protein and gene interactions indicated that KCNN3 affects drug resistance. To the best of the authors' knowledge, this is the first report to associate KCNN3 with poor prognosis and drug resistance in OC. The present findings indicated that KCNN3 is a potential prognostic marker and therapeutic target for OC.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Longevity and Ageing‑Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Luwei Wei
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiangxue Cai
- Key Laboratory of Longevity and Ageing‑Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing‑Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Ayub Khan SM, Few LL, See Too WC. Downregulation of human choline kinase α gene expression by miR-876-5p. Mol Med Rep 2018; 17:7442-7450. [PMID: 29568919 DOI: 10.3892/mmr.2018.8762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Choline kinase (CK) is the first enzyme in the CDP-choline pathway for the synthesis of phosphatidylcholine, the most abundant phospholipid in the mammalian cell membrane. This enzyme exists as three isozymes (α1, α2 and β) and the CKα isozyme has been implicated in cancer pathogenesis. Inhibition of CK activity has been proposed for cancer therapies. MicroRNAs (miRNAs/miRs) are non‑coding RNAs that serve important roles in diverse biological pathways and human diseases, including cancer. However, the regulation of CKα gene expression by miRNAs has never been investigated, to the best of the authors' knowledge. In the present study, two miRNA mimics, miR‑876‑5p and miR‑646, were transfected into the HepG2 cell line and the effect of these miRNAs on the levels of CKα mRNA were determined by reverse transcription‑quantitative polymerase chain reaction. Cells transfected with 25 nM miR‑876‑5p for 48 h exhibited significantly lower levels of CKα mRNA. Following optimization, miR‑876‑5p caused four times lower levels of CKα mRNA compared to the negative control. Effects of the miRNAs on HepG2 cell viability and cellular morphology were additionally analyzed using an MTT cell viability assay and scanning electron microscopy, respectively. HepG2 cells that were transfected with the optimum concentration of miR‑876‑5p for the optimum duration exhibited 25% lower viability than negative control and signs of apoptosis in electron micrographs. The results suggested miR‑876‑5p as a potential miRNA modulator of CKα expression in the cells, and may be relevant for the design of more effective anticancer strategy targeting CK.
Collapse
Affiliation(s)
- Sharzehan Mohamad Ayub Khan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
11
|
Szatmári T, Mundt F, Kumar-Singh A, Möbus L, Ötvös R, Hjerpe A, Dobra K. Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1. BMC Cell Biol 2017; 18:34. [PMID: 29216821 PMCID: PMC5721467 DOI: 10.1186/s12860-017-0150-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. Results We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Conclusion Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate. Electronic supplementary material The online version of this article (10.1186/s12860-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Filip Mundt
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Ashish Kumar-Singh
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Lena Möbus
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Rita Ötvös
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| |
Collapse
|
12
|
Gao Y, Liu X, Li T, Wei L, Yang A, Lu Y, Zhang J, Li L, Wang S, Yin F. Cross-validation of genes potentially associated with overall survival and drug resistance in ovarian cancer. Oncol Rep 2017; 37:3084-3092. [DOI: 10.3892/or.2017.5534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/15/2017] [Indexed: 11/05/2022] Open
|
13
|
Microarray-based identification of genes associated with cancer progression and prognosis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:127. [PMID: 27567667 PMCID: PMC5002170 DOI: 10.1186/s13046-016-0403-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths. The average survival and 5-year survival rates of HCC patients still remains poor. Thus, there is an urgent need to better understand the mechanisms of cancer progression in HCC and to identify useful biomarkers to predict prognosis. METHODS Public data portals including Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) profiles were used to retrieve the HCC-related microarrays and to identify potential genes contributed to cancer progression. Bioinformatics analyses including pathway enrichment, protein/gene interaction and text mining were used to explain the potential roles of the identified genes in HCC. Quantitative real-time polymerase chain reaction analysis and Western blotting were used to measure the expression of the targets. The data were analysed by SPSS 20.0 software. RESULTS We identified 80 genes that were significantly dysregulated in HCC according to four independent microarrays covering 386 cases of HCC and 327 normal liver tissues. Twenty genes were consistently and stably dysregulated in the four microarrays by at least 2-fold and detection of gene expression by RT-qPCR and western blotting showed consistent expression profiles in 11 HCC tissues compared with corresponding paracancerous tissues. Eleven of these 20 genes were associated with disease-free survival (DFS) or overall survival (OS) in a cohort of 157 HCC patients, and eight genes were associated with tumour pathologic PT, tumour stage or vital status. Potential roles of those 20 genes in regulation of HCC progression were predicted, primarily in association with metastasis. INTS8 was specifically correlated with most clinical characteristics including DFS, OS, stage, metastasis, invasiveness, diagnosis, and age. CONCLUSION The significantly dysregulated genes identified in this study were associated with cancer progression and prognosis in HCC, and might be potential therapeutic targets for HCC treatment or potential biomarkers for diagnosis and prognosis.
Collapse
|
14
|
Liu X, Zou J, Su J, Lu Y, Zhang J, Li L, Yin F. Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol 2015; 48:243-52. [PMID: 26647723 DOI: 10.3892/ijo.2015.3254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 11/05/2022] Open
Abstract
Transient receptor potential cation channel, subfamily C, member 1 (TRPC1) participates in many physiological functions but has also been implicated in cancer development. However, little is known about the role of TRPC1 in ovarian cancer (OC), including the drug resistance of these tumors. In the present study, a significant and consistent downregulation of TRPC1 in drug-resistant OC tissues/cells was determined using real-time quantitative polymerase chain reaction assays and the microarrays deposited in Oncomine and Gene Expression Omnibus (GEO) profiles. Protein/gene-protein/gene and protein-chemical interactions indicated that TRPC1 interacts with 14 proteins/genes and 6 chemicals, all of which are involved in the regulation of drug resistance in OC. Biological process annotation of TRPC1, OC, and drug resistance indicated a role for TRPC1 in drug-resistance-related functions in OC, mainly via the cell cycle, gene expression and cell growth and cell death. Analysis of mRNA-microRNA interactions showed that 8 out of 11 major pathways enriched from 38 predominant microRNAs targeting TRPC1 were involved in the regulation of drug resistance in OC, and 8 out of these top 10 microRNAs were implicated in the drug resistance in ovarian and other cancers. In a clinical analysis using data obtained from The Cancer Genome Atlas project (TCGA) cohort on 341 OC patients, TRPC1 expression was found to differ significantly between grade 2 and grade 3 tumors, with low-level expression correlating with higher tumor grade. This is the first report to show a potential association between the downregulation of TRPC1 and both drug resistance and high histological tumor grade in OC. Our results provide the basis for further investigations of the drug-resistance-related functions of TRPC1 in OC and other forms of cancer.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zou
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Su
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Sabir SR, Sahota NK, Jones GDD, Fry AM. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents. PLoS One 2015; 10:e0140975. [PMID: 26501353 PMCID: PMC4621075 DOI: 10.1371/journal.pone.0140975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
The Nek11 kinase is a potential mediator of the DNA damage response whose expression is upregulated in early stage colorectal cancers (CRCs). Here, using RNAi-mediated depletion, we examined the role of Nek11 in HCT116 WT and p53-null CRC cells exposed to ionizing radiation (IR) or the chemotherapeutic drug, irinotecan. We demonstrate that depletion of Nek11 prevents the G2/M arrest induced by these genotoxic agents and promotes p53-dependent apoptosis both in the presence and absence of DNA damage. Interestingly, Nek11 depletion also led to long-term loss of cell viability that was independent of p53 and exacerbated following IR exposure. CRC cells express four splice variants of Nek11 (L/S/C/D). These are predominantly cytoplasmic, but undergo nucleocytoplasmic shuttling mediated through adjacent nuclear import and export signals in the C-terminal non-catalytic domain. In HCT116 cells, Nek11S in particular has an important role in the DNA damage response. These data provide strong evidence that Nek11 contributes to the response of CRC cells to genotoxic agents and is essential for survival either with or without exposure to DNA damage.
Collapse
Affiliation(s)
- Sarah R. Sabir
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Navdeep K. Sahota
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D. D. Jones
- Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Liu X, Gao Y, Zhao B, Li X, Lu Y, Zhang J, Li D, Li L, Yin F. Discovery of microarray-identified genes associated with ovarian cancer progression. Int J Oncol 2015; 46:2467-78. [PMID: 25891226 DOI: 10.3892/ijo.2015.2971] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal cancer of female reproductive system. There is a consistent and urgent need to better understand its mechanism. In this study, we retrieved 186 genes that were dysregulated by at least 4-fold in 594 ovarian serous cystadenocarcinomas in comparison with eight normal ovaries, according to The Cancer Genome Atlas Ovarian Statistics data deposited in Oncomine database. DAVID analysis of these genes enriched two biological processes indicating that the cell cycle and microtubules might play critical roles in ovarian cancer progression. Among these 186 genes, 46 were dysregulated by at least 10-fold and their expression was further confirmed by the Bonome Ovarian Statistics data deposited in Oncomine, which covered 185 cases of ovarian carcinomas and 10 cases of normal ovarian surface epithelium. Six genes, including aldehyde dehydrogenase 1 family, member A2 (ALDH1A2), alcohol dehydrogenase 1B (class I), β polypeptide (ADH1B), NEL-like 2 (chicken) (NELL2), hemoglobin, β (HBB), ATP-binding cassette, sub-family A (ABC1), member 8 (ABCA8) and hemoglobin, α1 (HBA1) were identified to be downregulated by at least 10-fold in 779 ovarian cancers compared with 18 normal controls. Using mRNA expression profiles retrieved from microarrays deposited in the Gene Expression Omnibus Profiles database, RT-qPCR measurement and bioinformatics analysis, we further indicated that high expression of HBB might predict a poorer 5-year survival, high expression of ALDH1A2 and ABCA8 might predict a poor outcome; while ALDH1A2, ADH1B, HBB and ABCA8, in particular the former two genes, might be associated with drug resistance, and ALDH1A2 and NELL2 might contribute to invasiveness and metastasis in ovarian cancer. This study thus contributes to our understanding of the mechanism of ovarian cancer progression and development, and the six identified genes may be potential therapeutic targets and biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofeng Li
- The Orthopedics and Traumatology Hospital of Guangxi, Nanning, Guangxi 530022, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Danrong Li
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|