1
|
Liu C, Liu X, Cao P, Li X, Xin H, Zhu S. Global, regional, national prevalence, mortality, and disability-adjusted life-years of cutaneous squamous cell carcinoma and trend analysis from 1990 to 2021 and prediction to 2045. Front Oncol 2025; 15:1523169. [PMID: 39980558 PMCID: PMC11839636 DOI: 10.3389/fonc.2025.1523169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Background A serious worldwide health concern is cutaneous squamous cell carcinoma (cSCC). For the purpose of creating focused strategies, it is essential to comprehend geographical variations in cSCC prevalence and trends. Methods This study utilized data from the 2021 Global Burden of Diseases (GBD) survey to analyze cSCC across 204 countries and territories. We assessed the age-standardized prevalence rate (ASPR), mortality rate (ASMR), disability-adjusted life years (ASDR), and estimated annual percentage changes (EAPCs), with trends stratified by region, country, age, sex, and Sociodemographic Index (SDI). To evaluate disparities in cSCC burden, we combined the SDI with the inequality slope and concentration indices for an international health inequality analysis. Decomposition analysis assessed the effects of population growth, aging, and epidemiological trends on disease burden, while frontier analysis linked cSCC outcomes with socio-demographic development. A Bayesian Age-Period-Cohort (BAPC) model projected future prevalence, mortality, and DALYs, identifying key drivers of cSCC burden. Results In 2021, there were 2,275,834 cases of cSCC globally, reflecting a 345% increase since 1990. During this period, the ASPR rose from 14.69 to 26.85 per 100,000, while the ASMR increased slightly from 0.67 to 0.69 per 100,000. Disability-adjusted life years (DALYs) rose from 544,973 to 1,210,874. Among socio-demographic regions, the high SDI region had the highest ASPR, while the middle SDI region exhibited the highest ASMR and ASDR. Decomposition analysis identified population growth and demographic aging as key drivers of the rising ASMR. Countries like Georgia showed significant disparities in frontier analysis, indicating potential for better cSCC management. Health inequality analysis confirmed that the burden was concentrated in nations with higher SDI. By 2045, the global ASPR is projected to reach 64.66, with the ASMR and ASDR expected to decrease to 1.02 and 20.63 per 100,000, respectively. Conclusion Over the last three decades, the global burden of cSCC has increased significantly. While mortality rates and DALYs are expected to decline over the next twenty years, the prevalence of cSCC is projected to remain high. This highlights the urgent need to reevaluate preventive efforts aimed at reducing morbidity, particularly in areas with substantial populations over the age of 95.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengjuan Cao
- Department of Endocrinology and Traditional Chinese Medicine, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Sailin Zhu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| |
Collapse
|
2
|
Cheniti H, Kadi A, Agred R, Kadi Y, Djeradi MK, Melliti H, Chiheb N, Kherfi H, Messarah M. Fish Oil's Preventive Effect on Two-Stage Skin Carcinogenesis in Swiss Albino Mice: Involvement of NF-ҝB Pathways and Oxidative Stress in a Dose- and Route Dependent Manner. Mol Nutr Food Res 2025; 69:e202400630. [PMID: 39865914 DOI: 10.1002/mnfr.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
This study investigated the chemopreventive mechanisms of fish oil (FO) at different doses and administration routes in skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and croton oil (CO) in Swiss albino mice. Seventy mice were divided into 10 groups, including controls and those receiving FO either orally or topically, with or without the carcinogenesis protocol. Warts were morphologically analyzed. Anatomopathological analysis, qRT-PCR of nuclear factor kappa B (NF-қB) subunits' gene expression, and evaluation of oxidative parameters were conducted. Anatomopathological analysis revealed a presence of invasive squamous cell carcinoma (SCC) in DMBA group. Both oral (500 mg/kg/day) and topical FO treatment showed no signs of cancer, while oral administration at 50 mg/kg/day had no therapeutic effect, and 250 mg/kg/day resulted in low-grade malignancy. Both oral (250 and 500 mg/kg/day) and topical FO significantly reduced NF-кB1 gene expression, alleviated oxidative stress markers, and restored antioxidant enzyme activities compared to the DMBA group. FO shows dose-dependent chemopreventive effects, with oral administration potentially as effective as topical application when using an appropriate dosage. The development of SCC is linked to the stress status and the upregulation of the canonical NF-κB pathway, while FO's chemoprotective effects likely result from its downregulation.
Collapse
Affiliation(s)
- Hayeme Cheniti
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Assia Kadi
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Rym Agred
- Biotechnology Research Center (B.T.R.C), Constantine, Algeria
| | - Yacine Kadi
- Anatomical Pathology Unit, Public Hospital Establishment Azzaba, Skikda, Algeria
| | - Meriem Khadidja Djeradi
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Hanane Melliti
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Nadia Chiheb
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Hind Kherfi
- Anatomical Pathology Unit, Public Hospital Establishment Azzaba, Skikda, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
3
|
Sandhya S, Talukdar J, Gogoi G, Dey KS, Das B, Baishya D. Impact of coconut kernel extract on carcinogen-induced skin cancer model: Oxidative stress, C-MYC proto-oncogene and tumor formation. Heliyon 2024; 10:e29385. [PMID: 38665592 PMCID: PMC11043960 DOI: 10.1016/j.heliyon.2024.e29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.
Collapse
Affiliation(s)
- Sorra Sandhya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Joyeeta Talukdar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College and Hospital (AMCH), Assam, India
| | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
- Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, MA, USA
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
4
|
Chen L, Mo Q, Wu Y, Chen W, Deng K, Xiao Y. Ameliorative effect of salidroside on the cyclophosphamide-induced premature ovarian failure in a rat model. Free Radic Res 2024; 58:107-116. [PMID: 38408280 DOI: 10.1080/10715762.2024.2320383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Oxidative stress injury is an important pathological factor of premature ovarian failure (POF). Salidroside, extracted from the Chinese herb-Rhodiola rosea, has advantages in antioxidant characteristics. However, their therapeutic efficacy and mechanisms in POF have not been explored. PURPOSE This study aims to assess the therapeutic effects of salidroside in chemotherapy-induced ovarian failure rats. METHODS A POF rat model was established by injection of cyclophosphamide, followed by treatment with salidroside. The therapeutic effect of salidroside was evaluated based on hormone levels, follicle count, and reproductive ability. Oxidative stress injury was assessed by the detection of SOD enzyme activity and MDA levels. Differential gene expression of Keap1, Nrf2, HMOX1, NQO1, AMH, BMP15, and GDF9, were identified by qRT‑PCR. The protein expression of Keap1, Nrf2, P53, and Bcl-2 were detected by western blot. RESULTS Salidroside treatment markedly restored FSH, E2, and AMH hormone secretion levels, reduced follicular atresia, and increased antral follicle numbers in POF rats. In addition, salidroside improves fertility in POF rats, activates the Nrf2 signaling pathway, and reduces the level of oxidative stress. The recovery function of high dose salidroside (50 mg/kg) in a reproductive assay was significantly improved than that of lower dose salidroside (25 mg/kg). Meanwhile, the safety evaluation of salidroside treatment in rats showed that salidroside was safe for POF rats at doses of 25-50 mg/kg. CONCLUSIONS Salidroside therapy improved premature ovarian failure significantly through antioxidant function and activating Nrf2 signaling.
Collapse
Affiliation(s)
- Lixuan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinglin Mo
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingnan Wu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wancheng Chen
- Department of Radiotherapy, Zhujiang Hospital of Southern Medical University, Foshan, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yang Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
5
|
Kumar S, Das A. A Cocktail of Natural Compounds Holds Promise for New Immunotherapeutic Potential in Head and Neck Cancer. Chin J Integr Med 2024; 30:42-51. [PMID: 37118529 DOI: 10.1007/s11655-023-3694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To obtain detailed understanding on the gene regulation of natural compounds in altering prognosis of head and neck squamous cell carcinomas (HNSC). METHODS Gene expression data of HNSC samples and peripheral blood mononuclear cells (PBMCs) of HNSC patients were collected from Gene Expression Omnibus (GEO). Differential gene expression analysis of GEO datasets were achieved by the GEO2R tool. Common differentially expressed gerres (DEGs) were screened by comparing DEGs of HNSC with those of PBMCs. The combination was further analyzed for regulating pathways and biological processes that were affected. RESULTS Totally 110 DEGs were retrieved and identified to be involved in biological processes related to tumor regulation. Then 102 natural compounds were screened for a combination such that the expression of all 110 commonly DEGs was altered. A combination of salidroside, ginsenoside Rd, oridonin, britanin, and scutellarein was chosen. A multifaceted, multi-dimensional tumor regression was showed by altering autophagy, apoptosis, inhibiting cell proliferation, angiogenesis, metastasis and inflammatory cytokines production. CONCLUSIONS This study has helped develop a unique combination of natural compounds that will markedly reduce the propensity of development of drug resistance in tumors and immune evasion by tumors. The result is crucial to developing a combinatorial natural therapeutic cocktail with accentuated immunotherapeutic potential.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
6
|
Yang Y, Liang F, Gao J, Li J, Jiang C, Xie W, Wu S, Wang Y, Yi J. Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovasc Toxicol 2023; 23:406-418. [PMID: 37740139 DOI: 10.1007/s12012-023-09808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.
Collapse
Affiliation(s)
- Yuyang Yang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Fangqian Liang
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jingyuan Gao
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China.
| | - Jian Li
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Wei Xie
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Shujuan Wu
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Ya Wang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Jing Yi
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| |
Collapse
|
7
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
8
|
Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238459. [PMID: 36500567 PMCID: PMC9738881 DOI: 10.3390/molecules27238459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton's lymphoma ascites tumor cells (DLA) and Ehrlich ascites carcinoma (EAC)-induced solid and ascites tumors. Further, the potential of O. indicum extract (OIM) on skin papilloma induction by dimethyl benz(a) anthracene (DMBA) and croton oil was evaluated. The chemical composition of the extract was analyzed using UPLC-Q-TOF-MS. The predominant compounds present in the extract were demethoxycentaureidin 7-O-rutinoside, isorhamnetin-3-O-rutinoside, baicalein-7-O-glucuronide, 5,6,7-trihydroxyflavone, 3-Hydroxy-3',4',5'-trimethoxyflavone, 5,7-dihydroxy-3-(4-methoxyphenyl) chromen-4-one, and 4'-Hydroxy-5,7-dimethoxyflavanone. Treatment with high-dose OIM enhanced the percentage of survival in ascites tumor-bearing mice by 34.97%. Likewise, high and low doses of OIM reduced the tumor volume in mice by 61.84% and 54.21%, respectively. Further, the skin papilloma formation was brought down by the administration of low- and high-dose groups of OIM (by 67.51% and 75.63%). Overall, the study concludes that the Oroxylum indicum root bark extract is a potentially active antitumor and anticancer agent.
Collapse
|
9
|
Tomesz A, Szabo L, Molnar R, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. Changes in miR-124-1, miR-212, miR-132, miR-134, and miR-155 Expression Patterns after 7,12-Dimethylbenz(a)anthracene Treatment in CBA/Ca Mice. Cells 2022; 11:cells11061020. [PMID: 35326471 PMCID: PMC8947631 DOI: 10.3390/cells11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Collapse
Affiliation(s)
- Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
10
|
Treatment with Light-Emitting Diodes of Wavelength 863 nm Delays DMBA/TPA-Induced Skin Tumor Formation and Decreases Proinflammatory Cytokine Levels in ICR Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4400276. [PMID: 35252445 PMCID: PMC8890868 DOI: 10.1155/2022/4400276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/27/2022] [Indexed: 12/02/2022]
Abstract
The popularity of light/energy devices for cosmetic purposes (e.g., skin care) is increasing. However, the effects and underlying mechanisms remain poorly understood. Commencing in the 1960s, various studies have evaluated the beneficial effects of a light source on cells and tissues. The techniques evaluated include low-level light (laser) therapy and photobiomodulation (PBM). Most studies on PBM used red light sources, but, recently, many studies have employed near-infrared light sources including those of wavelength 800 nm. Here, we used a light-emitting diode (LED) array with a wavelength of 863 nm to treat DMBA/TPA-induced mouse skin tumors; treatment with the array delayed tumor development and reduced the levels of systemic inflammatory cytokines. These results suggest that light therapy could be beneficial. However, the effects were small. Further studies on different skin tumors using an optimized LED setup are required. Combination therapies (conventional methods and an LED array) may be useful.
Collapse
|
11
|
Kisacam MA, Kocamuftuoglu GO, Ozan IE, Yaman M, Ozan S. Calcium Fructoborate Prevents Skin Cancer Development in Balb-c Mice: Next Part, Reverse Inflammation, and Metabolic Alteration. Biol Trace Elem Res 2021; 199:2627-2634. [PMID: 32880800 DOI: 10.1007/s12011-020-02363-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Metabolic alterations and inflammation are regarded as hallmarks of cancer. Glycolytic flux and intermediate accumulation lead to the production of building blocks and NADPH which is important in protecting the cell from oxidative damage. Inflammation causes the release of mediators responsible for regulating molecular mechanism affecting metabolic pathways. CaFB due to its cis-diol-rich feature may have the potential to interact with molecules taking part in cancer development. This study was aimed to investigate the effects of CaFB on metabolic alterations and inflammation in 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin cancer. For this purpose, 92 Balb-c mice were distributed into 6 groups as control, CaFB, DMBA/TPA (D-T), treatment 1 (T1), 2 (T2), and 3(T3). Apart from control and CaFB in other groups, tumors initiated with 97.5-nmol DMBA and 6.5-nmol TPA. Treatment groups received 3 mg/kg/day CaFB with DMBA (T1), with TPA (T2), and after tumor formation (T3). In the D-T group, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, 6-phosphogluconate dehydrogenase (PGD), glutathione (GSH), interleukin 6 (IL-6), (IL-1β), tumor necrosis factor-α (TNF-α) levels increased (p < 0.001) while malondialdehyde (MDA) levels decreased (p < 0.001) compared with that in control. CaFB application ameliorated DMBA-TPA effect according to the distribution time. It is noteworthy to consider CaFB as a potential preventive agent in skin cancer development.
Collapse
Affiliation(s)
- Mehmet Ali Kisacam
- Department of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060, Hatay, Turkey.
| | - Gonca Ozan Kocamuftuoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Mehmet AkifErsoy University, 15030, Burdur, Turkey
| | - Ibrahim Enver Ozan
- Department of Histology and Embryology, Faculty of Medicine, Firat University, 23200, Elazig, Turkey
| | - Mehmet Yaman
- Department of Chemistry, Faculty of Science, Firat University, 23200, Elazig, Turkey
| | - SemaTemizer Ozan
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, 23200, Elazig, Turkey
| |
Collapse
|
12
|
Chugh N, Koul A. Altered presence of extra cellular matrix components in murine skin cancer: Modulation by Azadirachta indica leaf extract. J Tradit Complement Med 2021; 11:197-208. [PMID: 34012866 PMCID: PMC8116721 DOI: 10.1016/j.jtcme.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIM Although, the anticancer potential of Aqueous Azadirachta indica leaf extract (AAILE) has been robustly established against cutaneous squamous cell carcinoma (SCC) in mice, however, its ability in modulating tumor associated extra cellular matrix (ECM) is largely unknown. Therefore, the present study was conceived to explore changes in ECM during murine skin cancer and its chemoprevention by AAILE. EXPERIMENTAL PROCEDURE Skin tumors were induced using a two-stage model of carcinogenesis employing topical application of 7,12-Dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA) as carcinogen and promoter respectively. AAILE was administered orally to the animals. Male Laca mice were divided into four groups: control, AAILE, DMBA/TPA and AAILE + DMBA/TPA. RESULTS The tumors obtained in DMBA/TPA and AAILE + DMBA/TPA groups were histologically identified as SCC. Tumor induction in these groups was accompanied by raised serum carcinoembryonic antigen (CEA) levels when compared to control counterparts. Assessment of hydroxyproline levels and histochemical staining with sirius red and trichrome stain revealed an increase in collagen in tumors of DMBA/TPA group. An increase in glycosaminoglycans (GAGs) levels was also observed in DMBA/TPA group as made evident by biochemical studies and histochemical staining using mucicarmine and alcian blue-periodic acid schiff's stain. Administration of AAILE to DMBA/TPA treated animals caused a decrease in collagen and GAG levels along with a decrease in serum CEA levels. CONCLUSION Skin tumors exhibited altered presence of ECM components which is indicative of a modified ECM. AAILE administration antagonised tumor associated ECM alterations which may be contributing to its chemopreventive activity as reported previously.
Collapse
Affiliation(s)
- N.A. Chugh
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| | - A. Koul
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| |
Collapse
|
13
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
14
|
El-Harakeh M, Al-Ghadban S, Safi R. Medicinal Plants Towards Modeling Skin Cancer. Curr Drug Targets 2021; 22:148-161. [PMID: 33019926 DOI: 10.2174/1389450121666201005103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Skin cancer remains a major cause of mortality worldwide. It can be divided into melanoma and non-melanoma cancer, which comprise mainly squamous cell carcinoma and basal cell carcinoma. Although conventional therapies have ameliorated the management of skin cancer, the search for chemopreventive compounds is still the most effective and safer strategy to treat cancer. Nowadays, chemoprevention is recognized as a novel approach to prevent or inhibit carcinogenesis steps with the use of natural products. Crude extracts of plants and isolated phytocompounds are considered chemopreventive agents since they harbor anti-inflammatory, antioxidant and anti-oncogenic properties against many types of diseases and cancers. In this review, we will discuss the therapeutic effect and preventive potential of selected medicinal plants used as crude extracts or as phytocompounds against melanoma and non-melanoma cutaneous cancers.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sara Al-Ghadban
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Rémi Safi
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
15
|
Wang Z, Xiao S, Huang J, Liu S, Xue M, Lu F. Chemoprotective Effect of Boeravinone B against DMBA/Croton Oil Induced Skin Cancer via Reduction of Inflammation. J Oleo Sci 2021; 70:955-964. [PMID: 34193671 DOI: 10.5650/jos.ess21055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammatory reactions and oxidative stress play a major role in cancer expansion. Boeravinone B (BB) had already proofed their anti-inflammatory and antioxidant effects against various animal models of disease. In this experimental research, the chemoprotective effect of BB against skin cancer caused by 7,12-dimethylbenz(a)anthracene (DMBA)/croton oil was investigated and the possible mechanism was explored. Swiss albino mice were used in the current protocol. 100 µg/100 mL acetone, DMBA was used for induction the skin cancer and, after the 2-week repeated dose of croton oil (1% in acetone) give to the mice till end of the protocol. The mice were received the oral dose of BB (1.25, 2.5 and 5 mg/kg, body weight). The body weight and tumor incidence were estimated at regular time interval. At the end of the protocol, the antioxidant, phase I, phase II, pro-inflammatory cytokines and inflammatory mediators were scrutinized. The mRNA expression of pro-inflammatory cytokines and inflammatory mediators were estimated. BB treatment significantly (p < 0.001) reduced tumor incidence, tumor yield, average latency period and tumor burden in a dose-dependent manner. BB treatment considerably (p < 0.001) reduced the levels of lipid peroxidation (LPO) and increased the level of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) in DMBA/croton-induced skin cancer. BB treatment significantly (p < 0.001) reduced the level of phase I and phase II enzymes. BB treatment considerably reduced the cytokines include tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), interleukin-1β (IL-1β), interleukin-6 (IL-6) and inflammatory parameters such as transforming growth factor beta 1 (TGF-β1), prostaglandin E2 (PGE2), nuclear kappa B factor (NF-κB) and cycloxgenase-2 (COX-2) in DMBA/croton-induced skin cancer mice. BB considerably (p < 0.001) reduced the mRNA expression of pro-inflammatory cytokines and inflammatory mediators. The results of the current investigation suggest that oral administration of boeravinone B significantly reduced skin cancer in mice via reduction of inflammatory reaction.
Collapse
Affiliation(s)
- Zuhong Wang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Sha Xiao
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Jun Huang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Sutao Liu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Mei Xue
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Fang Lu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| |
Collapse
|
16
|
Brandes N, Mitkovska SH, Botermann DS, Maurer W, Müllen A, Scheile H, Zabel S, Frommhold A, Heß I, Hahn H, Uhmann A. Spreading of Isolated Ptch Mutant Basal Cell Carcinoma Precursors Is Physiologically Suppressed and Counteracts Tumor Formation in Mice. Int J Mol Sci 2020; 21:ijms21239295. [PMID: 33291515 PMCID: PMC7730243 DOI: 10.3390/ijms21239295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Basal cell carcinoma (BCC) originate from Hedgehog/Patched signaling-activated epidermal stem cells. However, the chemically induced tumorigenesis of mice with a CD4Cre-mediated biallelic loss of the Hedgehog signaling repressor Patched also induces BCC formation. Here, we identified the cellular origin of CD4Cre-targeted BCC progenitors as rare Keratin 5+ epidermal cells and show that wildtype Patched offspring of these cells spread over the hair follicle/skin complex with increasing mouse age. Intriguingly, Patched mutant counterparts are undetectable in age-matched untreated skin but are getting traceable upon applying the chemical tumorigenesis protocol. Together, our data show that biallelic Patched depletion in rare Keratin 5+ epidermal cells is not sufficient to drive BCC development, because the spread of these cells is physiologically suppressed. However, bypassing the repression of Patched mutant cells, e.g., by exogenous stimuli, leads to an accumulation of BCC precursor cells and, finally, to tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anja Uhmann
- Correspondence: ; Tel.: +49-551-3914-100; Fax: +49-551-396-580
| |
Collapse
|
17
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
18
|
Mora-Ramiro B, Jiménez-Estrada M, Zentella-Dehesa A, Ventura-Gallegos JL, Gomez-Quiroz LE, Rosiles-Alanis W, Alarcón-Aguilar FJ, Almanza-Pérez JC. Cacalol Acetate, a Sesquiterpene from Psacalium decompositum, Exerts an Anti-inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages. JOURNAL OF NATURAL PRODUCTS 2020; 83:2447-2455. [PMID: 32672964 DOI: 10.1021/acs.jnatprod.0c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inflammatory diseases remain critical health problems worldwide. The search for anti-inflammatory drugs is a primary activity in the pharmaceutical industry. Cacalol is a sesquiterpene with anti-inflammatory potential that is isolated from Psacalium decompositum, a medicinal plant with several scientific reports supporting its anti-inflammatory activity. Cacalol acetate (CA) is the most stable form. Nevertheless, the participation of CA in the main signaling pathway associated with inflammation is unknown. Our aim was to study the anti-inflammatory effect of CA and to determine its participation in NF-κB signaling. In TPA-induced edema in mice, CA produced 70.3% inhibition. To elucidate the influence of CA on the NF-κB pathway, RAW 264.7 macrophages were pretreated with CA and then stimulated with LPS, evaluating NF-ΚB activation, IKK phosphorylation, IΚB-α, p65, cytokine expression, and COX-2 release and activity. CA inhibited NF-κB activation and its upstream signaling, decreasing phosphorylation IKB-α and p65 levels. CA also reduced expression and secretion of TNF-α, IL-1β, and IL-6. Additionally, it decreased the activity and expression of COX-2 mRNA. These data support that CA regulates the NF-κB signaling pathway, which might explain, at least in part, its anti-inflammatory effect. CA is a bioactive molecule useful for the development of anti-inflammatory agents with innovative mechanisms of action.
Collapse
Affiliation(s)
- B Mora-Ramiro
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - M Jiménez-Estrada
- Departamento de Productos Naturales, Instituto de Química, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
| | - A Zentella-Dehesa
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - J L Ventura-Gallegos
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - L E Gomez-Quiroz
- Departamento de Ciencias de la Salud, CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - W Rosiles-Alanis
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - F J Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - J C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| |
Collapse
|
19
|
Xu F, Xu J, Xiong X, Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep 2020; 24:70-74. [PMID: 31495284 PMCID: PMC6748574 DOI: 10.1080/13510002.2019.1658377] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives: To unveil the role of SIRT1 in limiting oxidative stress in psoriasis and to further discuss the therapeutic prospects of salidroside in psoriasis. Methods: Literature from 2002 to 2019 was searched with “psoriasis”, “oxidative stress”, “SIRT1”, “salidroside” as the key words. Then, Oxidative stress in psoriasis and the role of SIRT1 were summarized and the potential role of salidroside in the disease was speculated. Results: Oxidative stress might contribute to the pathogenesis of psoriasis. High levels of ROS produced during oxidative stress lead to the release of inflammatory mediators, that, in turn, induce angiogenesis and excessive proliferation of keratinocytes. SIRT1 is a member of the sirtuin family, of which the activation lead to the inhibition of such oxidative stress signaling pathways MAPK, NF-κB, and STAT3, down-regulation of inflammatory factors, suppression of inflammation and keratinocyte hyperproliferation, and inhibition of angiogenesis. Salidroside, the main ingredient of Rhodiola, is known to exert antioxidant roles, which has been attributed to SIRT1 activation. Conclusion: Salidroside might inhibit oxidative stress singling pathways via SIRT1 activation, and could be as an ideal candidate for management of psoriasis.
Collapse
Affiliation(s)
- Fengli Xu
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University , Luzhou , People's Republic of China
| | - Jixiang Xu
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University , Luzhou , People's Republic of China
| | - Xia Xiong
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University , Luzhou , People's Republic of China
| | - Yongqiong Deng
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University , Luzhou , People's Republic of China
| |
Collapse
|
20
|
Abstract
Salidroside is a phenolic secondary metabolite present in plants of the genus Rhodiola, and studies investigating its extensive pharmacological activities and mechanisms have recently attracted increasing attention. This review summarizes the progress of recent research on the antiproliferative activities of salidroside and its effects on breast, ovarian, cervical, colorectal, lung, liver, gastric, bladder, renal, and skin cancer as well as gliomas and fibrosarcomas. Thus, it provides a reference for the further development and utilization of salidroside.
Collapse
|
21
|
Chen X, Kou Y, Lu Y, Pu Y. Salidroside ameliorated hypoxia-induced tumorigenesis of BxPC-3 cells via downregulating hypoxia-inducible factor (HIF)-1α and LOXL2. J Cell Biochem 2019; 121:165-173. [PMID: 31162697 PMCID: PMC6900165 DOI: 10.1002/jcb.29000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Herein, we found that salidroside suppressed hypoxia‐inducible factor 1 alpha (HIF‐1α) and lysyl oxidase‐like protein 2 (LOXL2) within human pancreatic cancer BxPC‐3 cells cultured both under normoxia and hypoxia condition. To investigate the effect of salidroside on tumorigenesis of BxPC‐3 cells and whether HIF‐1α and LXCL2 were involved in this process, cells transfected with or without LOXL2 overexpression vector, were treated with 50 μg/mL of salidroside or 50 μM of KC7F2 (a HIF‐1α inhibitor) under hypoxia. Cell viability and invasion were assessed using CCK‐8 and Transwell chamber assay, respectively. Expression of E‐cadherin and matrix metalloproteinase 2/9 (MMP 2/9) was determined, by Western blot analysis, to assess cell mobility at molecular levels. We confirmed that hypoxia increased LOXL2 and induced tumorigenesis of BxPC‐3 cells, as evidenced by promoted cell proliferation and invasion, enhanced MMP2/9 while reduced E‐cadherin. Interestingly, hypoxia‐induced carcinogenesis was significantly retarded by both salidroside and KC7F2, however, enhanced with LOXL2 overexpression. Besides, salidroside and KC7F2 reduced LOXL2, and reversed the tumorigenesis of BxPC‐3 cells induced by LOXL2 overexpression. Given the inhibitory effect of salidroside on HIF‐1α expression, our data suggested that: (1) LOXL2 was the mechanism, whereby salidroside and KC7F2 showed inhibitory effect on cancer progression of BxPC‐3 cells; (2) salidroside exerted its anticancer effect, most likely, by a HIF‐1α/LOXL2 pathway. In conclusion, salidroside was a novel therapeutic drug in pancreatic cancer, and downregulation of HIF‐1α and LXCL2 was the underlying mechanism.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yubin Kou
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunsong Lu
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yumei Pu
- Department of Hepatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
22
|
Wang C, Wu R, Sargsyan D, Zheng M, Li S, Yin R, Su S, Raskin I, Kong AN. CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of Moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J Nutr Biochem 2019; 68:69-78. [PMID: 31030169 DOI: 10.1016/j.jnutbio.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
Epigenetic mechanisms play an important role in the early stages of carcinogenesis. Moringa isothiocyanate (MIC-1) is a major bioactive component derived from Moringa oleifera that has considerable antioxidant and anti-inflammatory effects. However, how MIC-1 influences epigenomic alterations in TPA-mediated JB6 cell carcinogenic transformation has not been evaluated. In this study, DNA and RNA isolated from TPA-induced JB6 cells in the presence or absence of MIC-1 were subjected to DNA Methyl-seq and RNA-seq to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively. When JB6 cells were challenged with TPA alone, there was a significant alteration of DEGs and DMRs; importantly, MIC-1 treatment reversed the patterns of some of the DEGs and DMRs. Transcriptome and CpG methylome profiling was performed in Ingenuity® Pathway Analysis (IPA) software to analyze the altered signaling pathways. Several anti-inflammatory responses, antioxidative stress-related pathways, and anticancer-related pathways were identified to be affected by MIC-1. These pathways included NF-kB, IL-1, LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, p53, and PTEN signaling pathways. Examination of correlations between transcriptomic and CpG methylome profiles yielded a small subset of genes, including the cancer-related genes Tmpt, Tubb3, and Muc2; the GTPases Gchfr and Igtp; and the cell cycle-related gene Cdc7. Taken together, our results show the potential contributions of epigenomic changes in DNA CpG methylation to gene expression to molecular pathways active in TPA-induced JB6 cells and demonstrate that MIC-1 can reverse these changes, supporting the potential preventive/treatment effects of MIC-1 against skin carcinogenesis.
Collapse
Affiliation(s)
- Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Meinizi Zheng
- Department of Statistics and Biostatistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Wang K, Qi T, Guo L, Ma Z, Gu G, Xiao M, Lu L. Enzymatic Glucosylation of Salidroside from Starch by α-Amylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2012-2019. [PMID: 30678460 DOI: 10.1021/acs.jafc.8b06618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Amylases are among the most important and widely used industrial enzymes for starch processing. In this work, an α-amylase from Bacillus subtilis XL8 was purified and found to possess both hydrolysis and transglycosylation activities. The optimal pH and temperature for starch hydrolysis were pH 5.0 and 70 °C, respectively. The enzyme could degrade soluble starch into beneficial malto-oligosaccharides ranging from dimer to hexamer. More importantly, it was able to catalyze α-glycosyl transfer from the soluble starch to salidroside, a medicinal plant-derived component with broad pharmacological properties. The transglycosylation reaction catalyzed by the enzyme generated six derivatives in a total high yield of 73.4% when incubating with 100 mg/mL soluble starch and 50 mM salidroside (pH 7.5) at 50 °C for 2 h. These derivatives were identified as α-1,4-glucosyl, maltosyl, maltotriosyl, maltotetraosyl, maltopentaosyl, and maltohexaosyl salidrosides, respectively. They were novel promising compounds that might integrate the bioactive functions of malto-oligosaccharides and salidroside.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , PR China
| | - Tingting Qi
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| | - Longcheng Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| | - Zhongxuan Ma
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , PR China
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , PR China
| |
Collapse
|