1
|
Handler AM, Furlong RB. The hAT family hopper transposon exists as highly similar yet discontinuous elements in the Bactrocera tephritid fly genus. INSECT MOLECULAR BIOLOGY 2024; 33:185-194. [PMID: 38251981 DOI: 10.1111/imb.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The hAT family transposable element, hopper, was originally discovered as a defective 3120-bp full-length element in a wild-type strain of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and subsequently a functional 3131-bp element, hopperBdwe, was isolated from a white eye mutant strain. The latter study showed that closely related elements exist in melonfly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), a closely related subgenus, suggesting that hopper could have a widespread presence in the Bactrocera genus. To further understand the distribution of hopper within and beyond the B. dorsalis species complex, primer pairs from hopperBdwe and its adjacent genomic insertion site were used to survey the presence and relatedness of hopper in five species within the complex and four species beyond the complex. Based on sequence identity of a 1.94 kb internal nucleotide sequence, the closest relationships were with mutated elements from B. dorsalis s.s. and species synonymized with B. dorsalis including B. papayae, B. philippinensis and B. invadens, ranging in identity between 88.4% and 99.5%. Notably, Bactrocera carambolae (Drew & Hancock) (Diptera: Tephritidae), which is most closely related to B. dorsalis beyond the synonymized species, shared hopper identities of 97.3%-99.5%. Beyond the B. dorsalis complex, Z. cucurbitae, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and Bactrocera zonata (Saunders) (Diptera: Tephritidae) shared identities of 83.1%-97.1%, while hopper was absent from the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) strain tested. While the functional autonomous hopperBdwe element was not detected in these species, another closely related hopper element isolated from a B. dorsalis genetic sexing strain has an uninterrupted transposase open reading frame. The discontinuous presence of hopper in the Bactrocera genus has implications for its use for genomic manipulation and understanding the phylogenetic relationship of these species.
Collapse
Affiliation(s)
- Alfred M Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, USA
| | - Richard B Furlong
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, USA
| |
Collapse
|
2
|
Zimowska GJ, Xavier N, Qadri M, Handler AM. A transposon-based genetic marker for conspecific identity within the Bactrocera dorsalis species complex. Sci Rep 2024; 14:1924. [PMID: 38253542 PMCID: PMC10803768 DOI: 10.1038/s41598-023-51068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Here we describe a molecular approach to assess conspecific identity that relies on the comparison of an evolved mutated transposable element sequence and its genomic insertion site in individuals from closely related species. This was explored with the IFP2 piggyBac transposon, originally discovered in Trichoplusia ni as a 2472 bp functional element, that was subsequently found as mutated elements in seven species within the Bactrocera dorsalis species complex. In a B. dorsalis [Hendel] strain collected in Kahuku, Hawaii, a degenerate 2420 bp piggyBac sequence (pBacBd-Kah) having ~ 94.5% sequence identity to IFP2 was isolated, and it was reasoned that common species, or strains within species, should share the same evolved element and its precise genomic insertion site. To test this assumption, PCR using primers to pBacBd-Kah and adjacent genomic sequences was used to isolate and compare homologous sequences in strains of four sibling species within the complex. Three of these taxa, B. papayae, B. philippinensis, and B. invadens, were previously synonymized with B. dorsalis, and found to share nearly identical pBacBd-Kah homologous elements (> 99% nucleotide identity) within the identical insertion site consistent with conspecific species. The fourth species tested, B. carambolae, considered to be a closely related yet independent species sympatric with B. dorsalis, also shared the pBacBd-Kah sequence and insertion site in one strain from Suriname, while another divergent pBacBd-Kah derivative, closer in identity to IFP2, was found in individuals from French Guiana, Bangladesh and Malaysia. This data, along with the absence of pBacBd-Kah in distantly related Bactrocera, indicates that mutated descendants of piggyBac, as well as other invasive mobile elements, could be reliable genomic markers for common species identity.
Collapse
Affiliation(s)
- Grazyna J Zimowska
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nirmala Xavier
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masroor Qadri
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alfred M Handler
- U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
3
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Tan KH. Recaptures of feral Bactrocera dorsalis and B. umbrosa (Diptera: Tephritidae) males after feeding on methyl eugenol. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:15-21. [PMID: 31190651 DOI: 10.1017/s0007485319000208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Two major fruit fly pest species, Bactrocera dorsalis and B. umbrosa, are strongly attracted to methyl eugenol (ME) found in >450 plant species. They are, however, exclusive pollinators of certain daciniphilous (attracting Dacini fruit flies) Bulbophyllum orchids. A comparison between the recaptures of feral males after feeding ad libitum on 0.6 mg ME (simulating an average floral quantity of an orchid flower - Trial 1) and 480 mg in Trial 2 was investigated using the non-invasive capture-mark-release-recapture (CMRR) technique. Based on daily CMRR over a 16-day period, using a different colour enamel paint each day, percentages of B. dorsalis males recaptured in Trial 1 were significantly higher than those in Trial 2. However, for B. umbrosa, percentages of recaptures for different day-specific colours were highly variable due to low fly numbers captured/day. In Trial 1, of 756 B. dorsalis males released, 36.4% were recaptured once, 7.7 twice, 2.4 three times and 0.4 four times. While in Trial 2 of 1157 released males, 6% were recaptured once and 0.3% twice. Of 67 B. umbrosa males released, 28.4% were recaptured once and none more than once in Trial 1. Nevertheless, of 119 flies released in Trial 2, 25.2% were recaptured once and 3.3% twice. Overall, many marked males did return to a single ME-source to 'refuel' ME (a sex pheromone precursor). The results also show that a relatively high number of flies paid multi-visitations to a single 0.6 mg ME-source and indicate that the presence of natural ME-sources may impact area-wide IPM programmes.
Collapse
Affiliation(s)
- K-H Tan
- Mobula Research Sdn. Bhd., 20, Jalan Tan Jit Seng, 11200 Tanjong Bungah, Penang, Malaysia
- Academy of Sciences Malaysia, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, 50480 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Zhao S, Xing Z, Liu Z, Liu Y, Liu X, Chen Z, Li J, Yan R. Efficient somatic and germline genome engineering of Bactrocera dorsalis by the CRISPR/Cas9 system. PEST MANAGEMENT SCIENCE 2019; 75:1921-1932. [PMID: 30565410 DOI: 10.1002/ps.5305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/21/2018] [Revised: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bactrocera dorsalis (Hendel), a very destructive insect pest of many fruits and vegetables, is widespread in many Asian countries. To facilitate control of this pest, it is essential to investigate its genetics and gene function using targeted gene disruption. RESULTS Here, we describe successful targeted mutagenesis of the white and transformer genes in B. dorsalis through use of the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. Co-injection of the white sgRNA and Cas9 mRNA into B. dorsalis embryos caused eye color change, and the white mutations in the germline were heritable. CRISPR-mediated knockout of the sex determination gene transformer (tra) in B. dorsalis resulted in a male-biased sex ratio and adult flies with abnormal outer and interior reproductive organs. Small indels and substitutions were induced by CRIRPR for both genes. CONCLUSION Our data demonstrate that somatic and germline genome engineering of the pest B. dorsalis can be performed efficiently using the CRISPR/Cas9 system, opening the door to the use of the CRISPR-mediated method for functional annotations of genes in B. dorsalis and for its population control using, for example, such as gene drive. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Santao Zhao
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Zengzhu Xing
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Zhonggeng Liu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Yanhui Liu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xiangrui Liu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Zhe Chen
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Jiahui Li
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Rihui Yan
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
6
|
Vaníčková L, Nagy R, Pompeiano A, Kalinová B. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae). PLoS One 2017; 12:e0184102. [PMID: 28873446 PMCID: PMC5584755 DOI: 10.1371/journal.pone.0184102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel). The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel) was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters) with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | - Radka Nagy
- Laboratory of Infochemicals, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Antonio Pompeiano
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Blanka Kalinová
- Laboratory of Infochemicals, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Schutze MK, Virgilio M, Norrbom A, Clarke AR. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:147-164. [PMID: 27813666 DOI: 10.1146/annurev-ento-031616-035518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Collapse
Affiliation(s)
- Mark K Schutze
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
| | - Massimiliano Virgilio
- Department of Biology, Royal Museum for Central Africa, B3080 Tervuren, Belgium
- Joint Experimental Molecular Unit, Royal Museum for Central Africa, B3080 Tervuren, Belgium ;
| | - Allen Norrbom
- Systematic Entomology Laboratory, United States Department of Agriculture, c/o National Museum of Natural History, Washington, DC 20560;
| | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory 2617, Australia;
| |
Collapse
|
8
|
Hendrichs J, Vera MT, De Meyer M, Clarke AR. Resolving cryptic species complexes of major tephritid pests. Zookeys 2015; 540:5-39. [PMID: 26798252 PMCID: PMC4714062 DOI: 10.3897/zookeys.540.9656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
An FAO/IAEA Co-ordinated Research Project (CRP) on "Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade" was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex - Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex - Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish Bactrocera dorsalis from Bactrocera carambolae. Ceratitis FAR Complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) - Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, Ceratitis fasciventris (F1 and F2), Ceratitis rosa and a new species related to Ceratitis rosa (R2). The biological limits within Ceratitis fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) - Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Collapse
Affiliation(s)
- Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M. Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Unit, Leuvensesteenweg 13, B3080 Tervuren, Belgium
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|