1
|
Hybel TE, Sørensen EF, Enemark MH, Hemmingsen JK, Simonsen AT, Lauridsen KL, Møller MB, Pedersen C, Pedersen G, Obel N, Larsen CS, d'Amore F, Hamilton-Dutoit S, Stougaard M, Vase MØ, Ludvigsen M. Characterization of the genomic landscape of HIV-associated lymphoma reveals heterogeneity across histological subtypes. AIDS 2024; 38:1897-1906. [PMID: 39178160 DOI: 10.1097/qad.0000000000003996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 08/25/2024]
Abstract
OBJECTIVE Individuals with HIV experience an increased risk of lymphoma, making this an important cause of death among people with HIV. Nevertheless, little is known regarding the underlying genetic aberrations, which we therefore set out to characterize. DESIGN We conducted next-generation panel sequencing to explore the mutational status of diagnostic lymphoma biopsies from 18 patients diagnosed with lymphoma secondary to HIV infection. METHODS Ion Torrent next-generation sequencing was performed with an AmpliSeq panel on diagnostic lymphoma biopsies from HIV-associated B-cell lymphomas ( n = 18), comprising diffuse large B-cell lymphoma ( n = 9), classic Hodgkin lymphoma ( n = 6), Burkitt lymphoma ( n = 2), follicular lymphoma ( n = 1), and marginal zone lymphoma ( n = 1). The panel comprised 69 lymphoid and/or myeloid-relevant genes, in which either the entire coding sequence or a hotspot region was sequenced. RESULTS Among the 18 lymphomas, we detected 213 variants. The number of detected mutations ranged from 4 to 41 per tumor distributed among 42 genes, including both exonic and intronic regions. The most frequently mutated genes included KMT2D (67%), TNFAIP3 (50%), and TP53 (61%). Notably, no gene was found to harbor variants across all the HIV-associated lymphomas, nor did we find subtype-specific variants. While some variants were shared among patients, most were unique to the individual patient and were often not reported as malignant genetic variants in databases. CONCLUSION Our findings demonstrate genetic heterogeneity across histological subtypes of HIV-associated lymphomas and thus help elucidate the genetics and pathophysiological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | | | | | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, Odense
| | - Gitte Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen
| | | | | | | | - Magnus Stougaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| |
Collapse
|
2
|
Rivera‐de‐Torre E, Lampadariou S, Møiniche M, Bohn MF, Kazemi SM, Laustsen AH. Discovery of broadly-neutralizing antibodies against brown recluse spider and Gadim scorpion sphingomyelinases using consensus toxins as antigens. Protein Sci 2024; 33:e4901. [PMID: 38358130 PMCID: PMC10868436 DOI: 10.1002/pro.4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Broadly-neutralizing monoclonal antibodies are becoming increasingly important tools for treating infectious diseases and animal envenomings. However, designing and developing broadly-neutralizing antibodies can be cumbersome using traditional low-throughput iterative protein engineering methods. Here, we present a new high-throughput approach for the standardized discovery of broadly-neutralizing monoclonal antibodies relying on phage display technology and consensus antigens representing average sequences of related proteins. We showcase the utility of this approach by applying it to toxic sphingomyelinases from the venoms of species from very distant orders of the animal kingdom, the recluse spider and Gadim scorpion. First, we designed a consensus sphingomyelinase and performed three rounds of phage display selection, followed by DELFIA-based screening and ranking, and benchmarked this to a similar campaign involving cross-panning against recombinant versions of the native toxins. Second, we identified two scFvs that not only bind the consensus toxins, but which can also neutralize sphingomyelinase activity of native whole venom in vitro. Finally, we conclude that the phage display campaign involving the use of the consensus toxin was more successful in yielding cross-neutralizing scFvs than the phage display campaign involving cross-panning.
Collapse
Affiliation(s)
| | - Stefanos Lampadariou
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | - Mark Møiniche
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | - Markus F. Bohn
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Andreas H. Laustsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
3
|
Capa L, Ayala-Suárez R, De La Torre Tarazona HE, González-García J, Del Romero J, Alcamí J, Díez-Fuertes F. Elite controllers long-term non progressors present improved survival and slower disease progression. Sci Rep 2022; 12:16356. [PMID: 36175445 PMCID: PMC9522853 DOI: 10.1038/s41598-022-19970-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Different phenotypes exhibiting no evidences of disease progression have been described in ART-naïve HIV-1 positive individuals. Long-term non progressors (LTNP) and elite controllers (EC) are low frequent examples of immunological and virological control in HIV-1 positive subjects, respectively. The combination of both phenotypes is even less frequent and studied despite being considered as models of HIV-1 functional cure. A multicenter, prospective study in retrospect including clinical and epidemiological data collected from 313 LTNP of 21 Spanish hospitals was carried out. LTNPs maintaining CD4+ T cell counts over 500 cells/µl and viral loads (VL) under 10,000 copies/mL for at least 10 years in the absence of antiretroviral therapy were followed for a median of 20.8 years (IQR = 15.6–25.5). A 52.1% were considered EC (undetectable VL) and LTNP (EC-LTNP) and a total of 171 (54.8%) and 42 (13.5%) out of the 313 participants maintained LTNP status for at least 20 and 30 years, respectively. EC-LTNP showed lower CD4+ T cell count loss (9.9 vs 24.2 cells/µl/year), higher CD4/CD8 ratio (0.01 vs − 0.09 in ratio), and lesser VL increase (no increase vs 197.2 copies/mL/year) compared with LTNPs with detectable VL (vLTNP). Survival probabilities for all-cause mortality at 30 years from HIV + diagnosis were 0.90 for EC-LTNP and 0.70 for vLTNP (p = 2.0 × 10−3), and EC-LTNP phenotype was the only factor associated with better survival in multivariate analyses (HR = 0.28; 95% CI 0.10–0.79). The probability to preserve LTNP status at 30 years was 0.51 for EC-LTNP and 0.18 for vLTNP (p < 2.2 × 10−16). Risk factors associated to the loss of LTNP status was: higher age at diagnosis and the increase of VL, whereas the increase of CD4+ T cell counts and CD4/CD8 ratio, the initial EC-LTNP phenotype and HCV coinfection were protective factors. EC-LTNP phenotype was associated with improved survival and slower disease progression compared with other phenotypes of LTNP. EC-LTNP individuals represent one of the most favorable phenotypes of immune activation against HIV-1 found in nature and, therefore, are strong candidates to be considered a model of functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Laura Capa
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| | - Rubén Ayala-Suárez
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.,Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Humberto Erick De La Torre Tarazona
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan González-García
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario La Paz, Idipaz, Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain. .,Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
4
|
Liang Y, Lin H, Dzakah EE, Tang S. Influence of Combination Antiretroviral Therapy on HIV-1 Serological Responses and Their Implications: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:844023. [PMID: 35432309 PMCID: PMC9006953 DOI: 10.3389/fimmu.2022.844023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to analyze HIV-1 seroreversion caused by combination antiretroviral therapy (cART) and to explore antibody levels of anti-HIV-1 as an alternative biomarker of HIV-1 reservoir. We searched PubMed, Embase, the Cochrane Library, and Web of Science up to August 2021 for publications about the performance of HIV-1 serological assays or the association between antibody responses against HIV-1 and HIV-1 reservoirs. Potential sources of heterogeneity were explored by meta-regression analysis, including the year of publication, country, pretreatment viral load, sample size, the timing of treatment, time on cART, and principle or type of serological assay. Twenty-eight eligible studies with a total population of 1,883 were included in the meta-analysis. The pooled frequency of HIV-1 seronegativity is 38.0% (95% CI: 28.0%–49.0%) among children with vertical HIV-1 infection and cART initiation at the age of less than 6 months, while the percentage of HIV-1 seronegativity declined to 1.0% (95% CI: 0%–3.0%) when cART was initiated at the age of >6 months. For adult patients, 16.0% (95% CI: 9.0%–24.0%) of them were serologically negative when cART was initiated at acute/early infection of HIV-1, but the seronegative reaction was rarely detected when cART was started at chronic HIV-1 infection. Substantial heterogeneity was observed among the studies to estimate the frequency of HIV-1 seronegativity in the early-cART population (I2 ≥ 70%, p < 0.05 and all), while mild heterogeneity existed for the deferred-cART subjects. Moreover, anti-HIV-1 antibody response positively correlates with HIV-1 reservoir size with a pooled rho of 0.43 (95% CI: 0.28–0.55), suggesting that anti-HIV antibody level may be a feasible biomarker of HIV-1 reservoir size.
Collapse
Affiliation(s)
- Yuanhao Liang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongqing Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinstein SH. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 2021; 10:e70873. [PMID: 34787567 PMCID: PMC8741214 DOI: 10.7554/elife.70873] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | | | - Ruoyi Jiang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Oliver G Pybus
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt LouisUnited States
| | - Steven H Kleinstein
- Department of Pathology, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale UniversityNew HavenUnited States
| |
Collapse
|
6
|
Biziukova N, Tarasova O, Ivanov S, Poroikov V. Automated Extraction of Information From Texts of Scientific Publications: Insights Into HIV Treatment Strategies. Front Genet 2021; 11:618862. [PMID: 33414815 PMCID: PMC7783389 DOI: 10.3389/fgene.2020.618862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Text analysis can help to identify named entities (NEs) of small molecules, proteins, and genes. Such data are very important for the analysis of molecular mechanisms of disease progression and development of new strategies for the treatment of various diseases and pathological conditions. The texts of publications represent a primary source of information, which is especially important to collect the data of the highest quality due to the immediate obtaining information, in comparison with databases. In our study, we aimed at the development and testing of an approach to the named entity recognition in the abstracts of publications. More specifically, we have developed and tested an algorithm based on the conditional random fields, which provides recognition of NEs of (i) genes and proteins and (ii) chemicals. Careful selection of abstracts strictly related to the subject of interest leads to the possibility of extracting the NEs strongly associated with the subject. To test the applicability of our approach, we have applied it for the extraction of (i) potential HIV inhibitors and (ii) a set of proteins and genes potentially responsible for viremic control in HIV-positive patients. The computational experiments performed provide the estimations of evaluating the accuracy of recognition of chemical NEs and proteins (genes). The precision of the chemical NEs recognition is over 0.91; recall is 0.86, and the F1-score (harmonic mean of precision and recall) is 0.89; the precision of recognition of proteins and genes names is over 0.86; recall is 0.83; while F1-score is above 0.85. Evaluation of the algorithm on two case studies related to HIV treatment confirms our suggestion about the possibility of extracting the NEs strongly relevant to (i) HIV inhibitors and (ii) a group of patients i.e., the group of HIV-positive individuals with an ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral therapy. Analysis of the results obtained provides insights into the function of proteins that can be responsible for viremic control. Our study demonstrated the applicability of the developed approach for the extraction of useful data on HIV treatment.
Collapse
Affiliation(s)
- Nadezhda Biziukova
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Sergey Ivanov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|