1
|
Dinh TPA, Thuy LT, Thuy My NT, Nguyen VT, Tram LH, Nguyen TA, Toan DH, Tran TH, Tran TH, Bui Van T, Van Bach N. Phenyl glycosides from Bacopa monnieri with their antioxidant and anti-inflammatory activities. Nat Prod Res 2024; 38:3807-3812. [PMID: 37732634 DOI: 10.1080/14786419.2023.2258544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Bacopa monnieri (L.) Wettst (Plantaginaceae), is traditionally used in many countries as neural tonic and memory enhancer, or to relieve acute pain and inflammation. This study described the isolation and identification of one new, bacomoside D3 (1), and seven known phenyl glycosides (2 - 8). The structures of isolates were established by analysis of their spectroscopic data or hydrolysis followed by HPLC analysis together with a comparison to those reported in the literature. These compounds were evaluated for antioxidant and anti-inflammatory activities. Among them, compounds 4 and 5 exhibited strong DPPH radical scavenging activity with IC50 values of 9.77 ± 0.08 and 3.50 ± 0.04 µM, respectively. Compounds 2 and 5 significantly inhibited TNF-α production in LPS-stimulated RAW264.7 cells with IC50 values of 40.60 ± 3.05 and 38.19 ± 1.75 µM, respectively. Furthermore, the active compounds could be efficient inhibitors of oxidants by interfering with the DPPH activity in silico study.
Collapse
Affiliation(s)
- Thi Phuong Anh Dinh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thuy My
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Van Thong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Huyen Tram
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tuan Anh Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dao Huy Toan
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thu Huong Tran
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thu Ha Tran
- Intellectual Property Office of Vietnam, Hanoi, Vietnam
| | - Thanh Bui Van
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), Caugiay, Vietnam
| | | |
Collapse
|
2
|
Meher K, Radha G, Lopus M. Induction of autophagy-dependent and caspase- and microtubule-acetylation-independent cell death by phytochemical-stabilized gold nanopolygons in colorectal adenocarcinoma cells. NANOSCALE 2024; 16:7976-7987. [PMID: 38567463 DOI: 10.1039/d4nr00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 μg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.
Collapse
Affiliation(s)
- Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Gudapureddy Radha
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| |
Collapse
|
3
|
Roy S, Shanmugam G, Rakshit S, Pradeep R, George M, Sarkar K. Exploring the immunomodulatory potential of Brahmi (Bacopa monnieri) in the treatment of invasive ductal carcinoma. Med Oncol 2024; 41:115. [PMID: 38622289 DOI: 10.1007/s12032-024-02365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - R Pradeep
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Yen DTH, Cuc NT, Tai BH, Van Kiem P, Hoang Duc M, Nhiem NX, Cho SH, Jeong SB, Seo Y, Park S. Two new triterpenoid glycosides from Bacopa monnieri and their cytotoxic activity. Nat Prod Res 2024; 38:1120-1126. [PMID: 36239487 DOI: 10.1080/14786419.2022.2132498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 10/17/2022]
Abstract
Using combined chromatographic methods, two new triterpenoid glycosides, bacopasaponin K (1) and bacopasaponin L (2), along with eight known compounds, bacopaside IV (3), bacopaside VII (4), bacopasaponin E (5), bacoside A3 (6), bacopasaponin F (7), bacopasaponin C (8), bacopaside I (9), and bacopaside II (10) were isolated from the methanol extract of the Bacopa monnieri. Their structures were elucidated by 1D-, 2D-NMR spectroscopic analysis, HR-ESI-MS and comparing with the NMR data reported in the literature. All these compounds were evaluated for their cytotoxic activity using the cell counting kit-8 (CCK-8) assay. Compounds 4, 6, 8, and 10 exhibited potential cytotoxic effects against human lung cancer cells (PC9) and human colon cancer cells (SW620).
Collapse
Affiliation(s)
- Duong Thi Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi Vietnam
| | - Nguyen Thi Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi Vietnam
| | - Manh Hoang Duc
- National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi Vietnam
| | - Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Sung Baek Jeong
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Yohan Seo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Rathour A, Gupte SS, Gupta D, Singh S, Shrivastava S, Yadav D, Shukla S. Modulatory potential of Bacopa monnieri against aflatoxin B1 induced biochemical, molecular and histological alterations in rats. Toxicol Res (Camb) 2024; 13:tfae060. [PMID: 38655144 PMCID: PMC11033570 DOI: 10.1093/toxres/tfae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Oxidative injury is concerned with the pathogenesis of several liver injuries, including those from acute liver failure to cirrhosis. This study was designed to explore the antioxidant activity of Bacopa monnieri (BM) on Aflatoxin B1 (AFB1) induced oxidative damage in Wistar albino rats. Aflatoxin B1 treatment (200 μg/kg/day, p.o.) for 28 days induced oxidative injury by a significant alteration in serum liver function test marker enzymes (AST, ALT, ALP, LDH, albumin and bilirubin), inflammatory cytokines (IL-6, IL-10 and TNF-α), thiobarbituric acid reactive substances (TBARS) along with reduction of antioxidant enzymes (GSH, SOD, CAT), GSH cycle enzymes and drug-metabolizing enzymes (AH and AND). Treatment of rats with B. monnieri (20, 30 and 40 mg/kg for 5 days, p.o.) after 28 days of AFB1 intoxication significantly restored these parameters near control in a dose-dependent way. Histopathological examination disclosed extensive hepatic injuries, characterized by cellular necrosis, infiltration, congestion and sinusoidal dilatation in the AFB1-treated group. Treatment with B. monnieri significantly reduced these toxic effects resulting from AFB1. B. monnieriper se group (40 mg/kg) did not show any significant change and proved safe. The cytotoxic activity of B. monnieri was also evaluated on HepG2 cells and showed a good percentage of cytotoxic activity. This finding suggests that B. monnieri protects the liver against oxidative damage caused by AFB1, which aids in the evaluation of the traditional usage of this medicinal plant.
Collapse
Affiliation(s)
- Arti Rathour
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shamli S Gupte
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Divya Gupta
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shubham Singh
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, CG 495009, India
| | - Sadhana Shrivastava
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Deepa Yadav
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Sangeeta Shukla
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| |
Collapse
|
6
|
Fatima U, Roy S, Ahmad S, Al-Keridis LA, Alshammari N, Adnan M, Islam A, Hassan MI. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomed Pharmacother 2022; 153:113469. [DOI: 10.1016/j.biopha.2022.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
|
7
|
Tomita Y, Smith E, Palethorpe HM, Nakhjavani M, Yeo KKL, Townsend AR, Price TJ, Yool AJ, Hardingham JE. In Vitro Synergistic Inhibition of HT-29 Proliferation and 2H-11 and HUVEC Tubulogenesis by Bacopaside I and II Is Associated with Ca 2+ Flux and Loss of Plasma Membrane Integrity. Pharmaceuticals (Basel) 2021; 14:ph14050436. [PMID: 34066415 PMCID: PMC8148107 DOI: 10.3390/ph14050436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb Bacopa monnieri, induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca2+ levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC50 values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells. A significant enhancement of apoptosis was induced only in HUVEC, although an increase in cytosolic Ca2+ was detected in all three cell lines. Plasma membrane integrity was compromised in 2H-11 and HUVEC, as determined by an increase in propidium iodide staining, which was preceded by Ca2+ flux. These in vitro findings support further research into the mechanisms of action of the combined compounds for potential clinical use.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7096
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Helen M. Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jennifer E. Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
8
|
Bandyopadhyay A, Garai S, Banerjee PP, Bhattacharya S, Chattopadhyay A. Bacopasaponins with cytotoxic activity against human breast cancer cells in vitro. Mol Biol Rep 2021; 48:2497-2505. [PMID: 33837902 DOI: 10.1007/s11033-021-06284-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 11/29/2022]
Abstract
Globally, breast cancer is a serious concern that exhibits a persistent rise in its incidence and related mortality even after significant advancement in the field of cancer research. To find an alternative cure for the disease from natural resources we selected Bacopa monniera, a perennial ethnomedicinal plant popularly used for boosting memory and mental health. We isolated four different types of dammarane saponins, namely bacopasaponins C-F (1-4) from the plant and evaluated their toxic effects on two different types of human breast cancer cell lines-a hormone-responsive MCF7 and a triple-negative MDA-MB-231. Interestingly, MTT assay revealed a dose-dependent toxic effect of all four types of bacopasaponins on both of these cell lines, 4 being the most effective with 48 h-inhibitory concentration (IC50) of 32.44 and 30 µM in MCF7 and MDA-MB-231 respectively. Further, 4 caused significant alterations in normal cytomorphology and induction of apoptosis in both of these cell lines after 48 h of treatment. No caspase-8 activity was detected in these cell lines when exposed to 4 for 2, 24, and 48 h; instead, Western blotting analysis confirmed involvement of either caspase-9 (MCF7) or both caspase-9 and caspase-3 (MDA-MB-231) in the process of apoptosis indicating the occurrence of intrinsic mode. Additionally, at comparable effective doses to cancer, bacopasaponins showed much less toxicity in normal human peripheral blood lymphocytes (≥ 85% cell survival). Overall, the findings project bacopasaponin F, a natural constituent of Bacopa monniera, as an efficient and safer alternative for breast cancer therapeutics.
Collapse
Affiliation(s)
| | - Saraswati Garai
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| | | | | | | |
Collapse
|
9
|
Huangteerakul C, Aung HM, Thosapornvichai T, Duangkaew M, Jensen AN, Sukrong S, Ingkaninan K, Jensen LT. Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules 2021; 26:1207. [PMID: 33668176 PMCID: PMC7956252 DOI: 10.3390/molecules26051207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chananya Huangteerakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Marisa Duangkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10400, Thailand;
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| |
Collapse
|
10
|
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 2021; 11:596. [PMID: 33436817 PMCID: PMC7803732 DOI: 10.1038/s41598-020-80045-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.
Collapse
Affiliation(s)
- James M. Brimson
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirikalaya Brimson
- grid.7922.e0000 0001 0244 7875Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Mani Iyer Prasanth
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Premrutai Thitilertdecha
- grid.10223.320000 0004 1937 0490Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
11
|
Ghosh S, Khanam R, Acharya Chowdhury A. The Evolving Roles of Bacopa monnieri as Potential Anti-Cancer Agent: A Review. Nutr Cancer 2020; 73:2166-2176. [PMID: 33148034 DOI: 10.1080/01635581.2020.1841248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.
Collapse
Affiliation(s)
- Sudeepa Ghosh
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | - Rahmat Khanam
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | | |
Collapse
|
12
|
In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. PLANTS 2020; 9:plants9040411. [PMID: 32224997 PMCID: PMC7238420 DOI: 10.3390/plants9040411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Bacopa monnieri has been used as a reputed drug in the Indian traditional ayurvedic system for centuries. This medicinal herb with important phytopharmaceuticals has been popularly known as “Brahmi”. In recent years, B. monnieri has been extensively studied for its bioactive constituents, constituents responsible for memory enhancing effect, and also its diverse other useful effects. It possesses many pharmacological activities such as antioxidant, gastrointestinal, endocrine, antimicrobial, anti-inflammatory etc. The plant has been also used for the treatment of neurological and neuropsychiatric diseases. Due to its multipurpose therapeutic potential, micropropagation using axillary meristems and de novo organogenesis has been extensively studied in the species and is being reviewed. High frequency direct shoot organogenesis can be induced in excised leaf and internode explants in the absence of exogenous phytohormones and the rate of induction is enhanced in the presence of exogenous cytokinins, supplements, growth regulators, etc. Using explants from tissue culture raised plants, direct shoot regeneration leading to production of more than 100 rooted plants/explant within 8–12 weeks period with 85%–100% survival in the field after acclimatization can be expected following optimized protocols. Bioreactor based micropropagation was found to increase the multiplication rate of shoot cultures for the commercial propagation of B. monnieri plants. The maximum content of bacosides has been recorded in shoot biomass using an airlift bioreactor system. Further studies for the biosynthesis of bacosides and other secondary metabolites need to be conducted in the species utilizing untransformed shoot cultures in bioreactors.
Collapse
|
13
|
Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, Young JP, Townsend AR, Hardingham JE. Bacopasides I and II Act in Synergy to Inhibit the Growth, Migration and Invasion of Breast Cancer Cell Lines. Molecules 2019; 24:E3539. [PMID: 31574930 PMCID: PMC6803832 DOI: 10.3390/molecules24193539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022] Open
Abstract
Bacopaside (bac) I and II are triterpene saponins purified from the medicinal herb Bacopa monnieri. Previously, we showed that bac II reduced endothelial cell migration and tube formation and induced apoptosis in colorectal cancer cell lines. The aim of the current study was to examine the effects of treatment with combined doses of bac I and bac II using four cell lines representative of the breast cancer subtypes: triple negative (MDA-MB-231), estrogen receptor positive (T47D and MCF7) and human epidermal growth factor receptor 2 (HER2) positive (BT-474). Drug treatment outcome measures included cell viability, proliferation, cell cycle, apoptosis, migration, and invasion assays. Relationships were analysed by one- and two-way analysis of variance with Bonferroni post-hoc analysis. Combined doses of bac I and bac II, each below their half maximal inhibitory concentration (IC50), were synergistic and reduced the viability and proliferation of the four breast cancer cell lines. Cell loss occurred at the highest dose combinations and was associated with G2/M arrest and apoptosis. Migration in the scratch wound assay was significantly reduced at apoptosis-inducing combinations, but also at non-cytotoxic combinations, for MDA-MB-231 and T47D (p < 0.0001) and BT-474 (p = 0.0003). Non-cytotoxic combinations also significantly reduced spheroid invasion of MDA-MB-231 cells by up to 97% (p < 0.0001). Combining bac I and II below their IC50 reduced the viability, proliferation, and migration and invasiveness of breast cancer cell lines, suggesting synergy between bac I and II.
Collapse
Affiliation(s)
- Helen M Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Timothy J Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Joanne P Young
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Amanda R Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Jennifer E Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
14
|
Patra JK, Das G, Lee S, Kang SS, Shin HS. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Aung HM, Huangteerakul C, Panvongsa W, Jensen AN, Chairoungdua A, Sukrong S, Jensen LT. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:10-21. [PMID: 29777901 DOI: 10.1016/j.jep.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).
Collapse
Affiliation(s)
- Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
16
|
Smith E, Palethorpe HM, Tomita Y, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE. The Purified Extract from the Medicinal Plant Bacopa monnieri, Bacopaside II, Inhibits Growth of Colon Cancer Cells In Vitro by Inducing Cell Cycle Arrest and Apoptosis. Cells 2018; 7:cells7070081. [PMID: 30037060 PMCID: PMC6070819 DOI: 10.3390/cells7070081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-1 (AQP1), a transmembrane pore-forming molecule, facilitates the rapid movement of water and small solutes across cell membranes. We have previously shown that bacopaside II, an extract from the medicinal herb Bacopa monnieri, blocks the AQP1 water channel and impairs migration of cells that express AQP1. The aim of this study was to further elucidate the anti-tumour potential of bacopaside II in colon cancer cells. Expression of AQP1 in HT-29, SW480, SW620 and HCT116 was determined by quantitative PCR and western immunoblot. Cells were treated with bacopaside II, and morphology, growth, autophagy, cell cycle and apoptosis assessed by time-lapse microscopy, crystal violet, acridine orange, propidium iodide (PI) and annexin V/PI staining respectively. AQP1 expression was significantly higher in HT-29 than SW480, SW620 and HCT116. Bacopaside II significantly reduced growth at ≥20 µM for HT-29 and ≥15 µM for SW480, SW620 and HCT116. Inhibition of HT-29 at 20 µM was primarily mediated by G0/G1 cell cycle arrest, and at 30 µM by G2/M arrest and apoptosis. Inhibition of SW480, SW620 and HCT116 at ≥15 µM was mediated by G2/M arrest and apoptosis. These results are the first to show that bacopaside II inhibits colon cancer cell growth by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
| | - Timothy J Price
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
- Medical Oncology, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
| | - Joanne P Young
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide SA 5000, Australia.
| |
Collapse
|
17
|
Mallick MN, Khan W, Parveen R, Ahmad S, Sadaf, Najm MZ, Ahmad I, Husain SA. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches. Pharmacogn Mag 2017; 13:S595-S606. [PMID: 29142420 PMCID: PMC5669103 DOI: 10.4103/pm.pm_397_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
Background: Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. Objectives: This work investigated anticancer activity of bioactive fraction of BM. Materials and Methods: The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC50 41.0–60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Results: Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. Conclusion: The in vitro, in vivo, analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. SUMMARY A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening.
Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells.
Collapse
Affiliation(s)
- Md Nasar Mallick
- Department of Pharmacognosy and Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Bioscience, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Washim Khan
- Department of Pharmacognosy and Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Department of Pharmacognosy and Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sadaf
- Department of Bioscience, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Zeeshan Najm
- Department of Bioscience, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Istaq Ahmad
- Department of Bioscience, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Syed Akhtar Husain
- Department of Bioscience, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
John S, Sivakumar KC, Mishra R. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis. Front Mol Neurosci 2017; 10:171. [PMID: 28663722 PMCID: PMC5471305 DOI: 10.3389/fnmol.2017.00171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|