1
|
Molnár A, Kiss D, Domozi Z. Radiation Source Localization Using a Model-Based Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:5983. [PMID: 37447831 DOI: 10.3390/s23135983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
The procedure is practically an optimization method, during which it is assumed that the gamma dose values detected at different points above the area come from the background radiation and from a single source found in the area. Accordingly, the procedure searches within the area for a geographical coordinate for which the distance law for the spatial propagation of radiation will be true. In order to validate the procedure, we performed measurements in a test area in such a way that all parameters of the source, including its location, were well defined. However, these data were not taken into account during the processing, i.e., the search procedure did not have these data. We can estimate the radiation position without a positional parameter. The exact coordinate and the intensity of the radiating sample were only used when checking the results. We have also applied the method to the raw data of our experiments carried out in the past if we used one source for them. The results confirmed our assumptions. The method is suitable for determining the starting parameters of more complex processes that can even detect multiple sources, but assuming one source, it has proven to be a reliable analytical method on its own.
Collapse
Affiliation(s)
- András Molnár
- Faculty of Economy, J. Selye University, Bratislavská cesta 3322, 945 01 Komárno, Slovakia
- John von Neumann Faculty of Informatics, Obuda University, Becsi ut 96/b, 1034 Budapest, Hungary
| | - Daniel Kiss
- John von Neumann Faculty of Informatics, Obuda University, Becsi ut 96/b, 1034 Budapest, Hungary
| | - Zsolt Domozi
- Doctoral School of Applied Informatics and Applied Mathematics, Obuda University, Becsi ut 96/b, 1034 Budapest, Hungary
| |
Collapse
|
2
|
Strugari M, Falcon C, Erlandsson K, Hutton BF, Brewer K, Thielemans K. Integration of advanced 3D SPECT modelling for pinhole collimators into the open-source STIR framework. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1134774. [PMID: 39380953 PMCID: PMC11459977 DOI: 10.3389/fnume.2023.1134774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 10/10/2024]
Abstract
Single-photon emission computed tomography (SPECT) systems with pinhole collimators are becoming increasingly important in clinical and preclinical nuclear medicine investigations as they can provide a superior resolution-sensitivity trade-off compared to conventional parallel-hole and fanbeam collimators. Previously, open-source software did not exist for reconstructing tomographic images from pinhole-SPECT datasets. A 3D SPECT system matrix modelling library specific for pinhole collimators has recently been integrated into STIR, an open-source software package for tomographic image reconstruction. The pinhole-SPECT library enables corrections for attenuation and the spatially variant collimator-detector response by incorporating their effects into the system matrix. Attenuation correction can be calculated with a simple single line of response or a full model. The spatially variant collimator-detector response can be modelled with a point spread function and depth of interaction corrections for increased system matrix accuracy. In addition, improvements to computational speed and memory requirements can be made with image masking. This work demonstrates the flexibility and accuracy of STIR's support for pinhole-SPECT datasets using measured and simulated single-pinhole SPECT data from which reconstructed images were analysed quantitatively and qualitatively. The extension of the open-source STIR project with advanced pinhole-SPECT modelling will enable the research community to study the impact of pinhole collimators in several SPECT imaging scenarios and with different scanners.
Collapse
Affiliation(s)
- Matthew Strugari
- Biomedical MRI Research Laboratory, IWK Health Centre, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Carles Falcon
- Neuroimaging Group, Barcelonaßeta Brain Research Center, Barcelona, Spain
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kjell Erlandsson
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F. Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory, IWK Health Centre, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
3
|
Gonzalez‐Montoro A, Vera‐Donoso CD, Konstantinou G, Sopena P, Martinez M, Ortiz JB, Carles M, Benlloch JM, Gonzalez AJ. Nuclear-medicine probes: Where we are and where we are going. Med Phys 2022; 49:4372-4390. [PMID: 35526220 PMCID: PMC9545507 DOI: 10.1002/mp.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Nuclear medicine probes turned into the key for the identification and precise location of sentinel lymph nodes and other occult lesions (i.e., tumors) by using the systemic administration of radiotracers. Intraoperative nuclear probes are key in the surgical management of some malignancies as well as in the determination of positive surgical margins, thus reducing the extent and potential surgery morbidity. Depending on their application, nuclear probes are classified into two main categories, namely, counting and imaging. Although counting probes present a simple design, are handheld (to be moved rapidly), and provide only acoustic signals when detecting radiation, imaging probes, also known as cameras, are more hardware-complex and also able to provide images but at the cost of an increased intervention time as displacing the camera has to be done slowly. This review article begins with an introductory section to highlight the relevance of nuclear-based probes and their components as well as the main differences between ionization- (semiconductor) and scintillation-based probes. Then, the most significant performance parameters of the probe are reviewed (i.e., sensitivity, contrast, count rate capabilities, shielding, energy, and spatial resolution), as well as the different types of probes based on the target radiation nature, namely: gamma (γ), beta (β) (positron and electron), and Cherenkov. Various available intraoperative nuclear probes are finally compared in terms of performance to discuss the state-of-the-art of nuclear medicine probes. The manuscript concludes by discussing the ideal probe design and the aspects to be considered when selecting nuclear-medicine probes.
Collapse
Affiliation(s)
- Andrea Gonzalez‐Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M)Centro Mixto CSIC Universitat Politècnica de ValènciaValenciaSpain
| | | | | | - Pablo Sopena
- Servicio de Medicina NuclearÁrea clínica de Imagen Médica, La Fe HospitalValenciaSpain
| | | | | | | | - Jose Maria Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M)Centro Mixto CSIC Universitat Politècnica de ValènciaValenciaSpain
| | - Antonio Javier Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M)Centro Mixto CSIC Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
4
|
Abstract
Radiopharmaceutical therapy (RPT) has grown rapidly over the last decade for treatment of numerous cancer types. Dosimetric guidance, as with other radiotherapy modalities, has benefitted patients by reducing the incidence of side effects and improving overall survival in populations treated under this paradigm. Development of tools and techniques for dosimetry-guided therapy is ongoing, with numerous the Food and Drug Administration-cleared products reaching the U.S. market in 2019. Safe use of commercial dosimetry platforms requires a deep understanding of the underlying physical principles and thoroughly vetted input data. Likewise, interpretation of dosimetry results relies on an understanding of radiobiological principles, and the principles of uncertainty propagation. In this article, we review strategies commonly employed for dosimetry-guided RPT - including quantitative imaging, dose calculation methods, and modeling of dose across time-points. Additionally, we review recent literature evidence (2013-2020) demonstrating the efficacy of personalized RPT.
Collapse
Affiliation(s)
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Hoffmann JV, Janssen JP, Kanno T, Shibutani T, Onoguchi M, Lapa C, Grunz JP, Buck AK, Higuchi T. Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging. EJNMMI Phys 2020; 7:64. [PMID: 33140263 PMCID: PMC7606439 DOI: 10.1186/s40658-020-00335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
Background Small-animal single-photon emission computed tomography (SPECT) systems with multi-pinhole collimation and large stationary detectors have advantages compared to systems with moving small detectors. These systems benefit from less labour-intensive maintenance and quality control as fewer prone parts are moving, higher accuracy for focused scans and maintaining high resolution with increased sensitivity due to focused pinholes on the field of view. This study aims to investigate the performance of a novel ultra-high-resolution scanner with two-detector configuration (U-SPECT5-E) and to compare its image quality to a conventional micro-SPECT system with three stationary detectors (U-SPECT+). Methods The new U-SPECT5-E with two stationary detectors was used for acquiring data with 99mTc-filled point source, hot-rod and uniformity phantoms to analyse sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR). Three dedicated multi-pinhole mouse collimators with 75 pinholes each and 0.25-, 0.60- and 1.00-mm pinholes for extra ultra-high resolution (XUHR-M), general-purpose (GP-M) and ultra-high sensitivity (UHS-M) imaging were examined. For CNR analysis, four different activity ranges representing low- and high-count settings were investigated for all three collimators. The experiments for the performance assessment were repeated with the same GP-M collimator in the three-detector U-SPECT+ for comparison. Results Peak sensitivity was 237 cps/MBq (XUHR-M), 847 cps/MBq (GP-M), 2054 cps/MBq (UHS-M) for U-SPECT5-E and 1710 cps/MBq (GP-M) for U-SPECT+. In the visually analysed sections of the reconstructed mini Derenzo phantoms, rods as small as 0.35 mm (XUHR-M), 0.50 mm (GP-M) for the two-detector as well as the three-detector SPECT and 0.75 mm (UHS-M) were resolved. Uniformity for maximum resolution recorded 40.7% (XUHR-M), 29.1% (GP-M, U-SPECT5-E), 16.3% (GP-M, U-SPECT+) and 23.0% (UHS-M), respectively. UHS-M reached highest CNR values for low-count images; for rods smaller than 0.45 mm, acceptable CNR was only achieved by XUHR-M. GP-M was superior for imaging rods sized from 0.60 to 1.50 mm for intermediate activity concentrations. U-SPECT5-E and U-SPECT+ both provided comparable CNR. Conclusions While uniformity and sensitivity are negatively affected by the absence of a third detector, the investigated U-SPECT5-E system with two stationary detectors delivers excellent spatial resolution and CNR comparable to the performance of an established three-detector-setup.
Collapse
Affiliation(s)
- Jan V Hoffmann
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Jan P Janssen
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Takayuki Kanno
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany. .,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
6
|
Tecklenburg K, Forgács A, Apostolova I, Lehnert W, Klutmann S, Csirik J, Garutti E, Buchert R. Performance evaluation of a novel multi-pinhole collimator for dopamine transporter SPECT. Phys Med Biol 2020; 65:165015. [PMID: 32369781 DOI: 10.1088/1361-6560/ab9067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a tradeoff between spatial resolution and count sensitivity in SPECT with conventional collimators. Multi-pinhole (MPH) collimator technology has potential for concurrent improvement of resolution and sensitivity in clinical SPECT of 'small' organs. This study evaluated a novel MPH collimator specifically designed for dopamine transporter (DAT) SPECT with a triple-head SPECT camera. Count sensitivity was measured with a 99mTc point source placed on the lattice points of a 1 cm grid covering the whole field-of-view (FOV). Spatial resolution was assessed with a Derenzo type hot rod phantom. An anthropomorphic striatum phantom was scanned with total activity representative of a typical patient scan and different striatum-to-background activity concentration ratios. Recovery of striatum-to-background contrast was assessed by the contrast-recovery-coefficient. Measurements were repeated with double-head SPECT with fan-beam or low-energy-high-resolution-high-sensitivity (LEHRHS) collimators. A patient referred to DAT SPECT because of suspicion of Parkinson's disease was scanned with both LEHRHS and MPH collimators after a single tracer injection. The axial MPH sensitivity profile was approximately symmetrical around its peak, although it was shifted 7 cm towards the patient to simplify positioning. Peak sensitivity of the triple-head MPH system in the center of the FOV was 620 cps MBq-1 compared to 225 cps MBq-1 for the double-head fan-beam system. Sensitivity of the MPH system decreased towards the edges of the FOV. The full width of the sensitivity profile at 200 cps MBq-1 was 21 cm transaxially and 11 cm axially. In MPH SPECT of the Derenzo phantom all rods with ≥ 5 mm diameter were clearly visible. MPH SPECT improved striatal contrast recovery by ≥ 20% compared to fan-beam SPECT. The patient scan demonstrated good image quality of MPH SPECT with almost PET-like delineation of putamen and caudate nucleus. SPECT with dedicated MPH collimators provides considerable improvement of the resolution-sensitivity tradeoff in DAT SPECT compared to SPECT with fan-beam or LEHRHS collimators.
Collapse
Affiliation(s)
- K Tecklenburg
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Institute of Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lukas M, Kluge A, Beindorff N, Brenner W. Multi-Isotope Capabilities of a Small-Animal Multi-Pinhole SPECT System. J Nucl Med 2020; 61:152-161. [PMID: 31896726 DOI: 10.2967/jnumed.119.226027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
The quantitative accuracy and image quality of multi-isotope SPECT is affected by various hardware-related perturbations. The present study evaluates the simultaneous acquisition of multiple isotopes using a multiplexed multi-pinhole SPECT system, assesses the extent of different error sources, and proposes experimental procedures for its objective characterization. Methods: Phantom measurements with single-, dual- and triple-isotope combinations of 99mTc, 111In, 123I, 177Lu, and 201Tl were performed with the NanoSPECT/CTPLUS to evaluate system energy resolution, count rate performance, sensitivity, collimator penetration, hardware versus object scatter, spectral crosstalk, spatial resolution, spatial registration accuracy, image uniformity, image noise, and image quality. Results: The intrinsic detector properties were suitable for the simultaneous acquisition of up to 3 isotopes with limitations for count rates exceeding 104 kcps and γ-energies lower than 75 keV. Spectral crosstalk between isotopes was more likely mediated by hardware than by source scatter and was strongly dependent on the isotope combination. Simultaneous multi-isotope acquisitions slightly degraded spatial resolution and image uniformity for spatially superimposed but not for spatially separated activity distributions while the background noise level was increased for all multi-isotope studies. For particular isotopes, collimator penetration and x-ray fluorescence contributed a significant portion of error. Conclusion: The NanoSPECT/CTPLUS enables the simultaneous acquisition of 3 radioisotopes with high quantitative accuracy and only little loss of image quality when the activity ratio is adapted to isotope-specific count rate sensitivities and when the system calibration is performed with phantoms of appropriate size.
Collapse
Affiliation(s)
- Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Kluge
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Charité Campus Berlin, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
9
|
Naseri M, Rajabi H, Wang J, Abbasi M, Kalantari F. Simultaneous respiratory motion correction and image reconstruction in 4D-multi pinhole small animal SPECT. Med Phys 2019; 46:5047-5054. [PMID: 31495940 DOI: 10.1002/mp.13807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Respiratory motion in the chest region during single photon emission computed tomography (SPECT) is a major degrading factor that reduces the accuracy of image quantification. This effect is more notable when the tumor is very small, or the spatial resolution of the imaging system is less than the respiratory motion amplitude. Small animals imaging systems with sub-millimeter spatial resolution need more attention to the respiratory motion for quantitative studies. We developed a motion-embedded four-dimensional (4D)-multi pinhole SPECT (MPS) reconstruction algorithm for respiratory motion correction. This algorithm makes full use of projection statistics for reconstruction of every individual frame. METHODS The ROBY phantom with small tumors in liver was generated in eight different phases during one respiratory cycle. The MPS projections were modeled using a fast ray tracing method simulating an MPS acquisition. Individual frames were reconstructed and used for motion estimation. The Demons non-rigid registration algorithm was used to calculate deformation vector fields (DVFs) for simultaneous motion correction and image reconstruction. A motion-embedded 4D-MPS method was used to reconstruct images using all the projections and corresponding DVFs, simultaneously. The 4D-MPS reconstructed images were compared to the low-count single frame (LCSF) reconstructed image, the three-dimensional (3D)-MPS images reconstructed using individual frames, and post reconstruction registration (PRR) that aligns all individual phases to a reference frame using Demons-derived DVFs. The tumor volume relative error (TVE), tumor contrast relative error (TCE), and dice index (DI) for 2, 3, and 4 mm liver were calculated and compared for different reconstruction methods. RESULTS For the 4D-MPS reconstruction method, TVE was reduced and DI was higher compared to PRR, 3D-MPS, and LCSF. The extent of the improvement was higher for the small tumor size (i.e. 2 mm). For the biggest tumor in contrast 3 (i.e. 4 mm) TVE for 4D-MPS, PRR, 3D-MPS and, LCSF were 1.33%, 8%, 8%, and 14.67%, respectively. CONCLUSIONS The results suggest that motion-embedded 4D-MPS method is an effective and practical way for respiratory motion correction. It reconstructs high quality gated frames while using all projection data to reconstruct each frame.
Collapse
Affiliation(s)
- Maryam Naseri
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA.,Department of Medical Physics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Hossein Rajabi
- Department of Medical Physics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Kalantari
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Cieślak MJ, Gamage KA, Glover R. Coded-aperture imaging systems: Past, present and future development – A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|