1
|
Puccia R. Current Status on Extracellular Vesicles from the Dimorphic Pathogenic Species of Paracoccidioides. Curr Top Microbiol Immunol 2021; 432:19-33. [DOI: 10.1007/978-3-030-83391-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model. J Fungi (Basel) 2020; 6:jof6030160. [PMID: 32887256 PMCID: PMC7560165 DOI: 10.3390/jof6030160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles' non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.
Collapse
|
4
|
Santos LA, Grisolia JC, Malaquias LCC, Paula FBDA, Dias ALT, Burger E. Medication association and immunomodulation: An approach in fungal diseases and in particular in the treatment of paracoccidioidomycosis. Acta Trop 2020; 206:105412. [PMID: 32135141 DOI: 10.1016/j.actatropica.2020.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Fungal infections have been increasing in recent decades, mainly affecting immunocompromised individuals, although certain mycoses, such as paracoccidioidomycosis (PCM), infect immunologically competent individuals. The major problems observed regarding fungal diseases are inadequate diagnosis, prolonged treatment time, the reduced number of drugs available for treatment, in addition to the fact that there are no vaccines for clinical use. Drug combination in order to immunomodulate the immune response is a new strategy used for the treatment of mycoses, since it is difficult to develop new antifungal drugs. The aim of this study is to present and analyze strategies recently suggested for the treatment of fungi of medical interest, in particular for PCM, such as the utilization of combinations of protein fractions or dead microorganisms, as vaccinal antigens, and cellular immunotherapy. We will also propose new therapeutic alternatives, such as lipids, vitamins, synthetic or natural products as well as the use of low intensity LASER therapy (LLLT) to modulate the immune response of the host, enhancing the efficiency of the existing treatments of mycoses of medical interest and in particular of PCM.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Julianne Caravita Grisolia
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Luiz Cosme Cotta Malaquias
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Fernanda Borges de Araújo Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Amanda Latércia Tranches Dias
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Eva Burger
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil.
| |
Collapse
|
5
|
Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie van Leeuwenhoek 2020; 113:593-604. [PMID: 31902009 DOI: 10.1007/s10482-019-01382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidiodomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The disease requires long and complicated treatment. The aim of this review is to address the fungal virulence factors that could be the target of the development of new drugs for PCM treatment. Virulence factors favoring the process of fungal infection and pathogenicity are considered as a microbial attribute associated with host susceptibility. P. brasiliensis has some known virulence factors which are 43 kDa glycoprotein (gp 43) which is an important fungal antigen, 70 kDa glycoprotein (gp 70), the carbohydrates constituting the fungal cell wall α-1,3, glucan and β-1,3-glucan, cell adhesion molecules and the presence of melanin pigments. The discovery and development of drugs that interact with these factors, such as inhibitors of β-1,3-glucan, reduced synthesis of gp 43, inhibitors of melanin production, is of great importance for the treatment of PCM. The study of virulence factors favors the understanding of pathogen-host relationships, aiming to evaluate the possibility of developing new therapeutic targets and mechanisms that these molecules play in the infectious process, favoring the design of a more specific treatment for this disease.
Collapse
|
6
|
Silva LBR, Taira CL, Dias LS, Souza ACO, Nosanchuk JD, Travassos LR, Taborda CP. Experimental Therapy of Paracoccidioidomycosis Using P10-Primed Monocyte-Derived Dendritic Cells Isolated From Infected Mice. Front Microbiol 2019; 10:1727. [PMID: 31417520 PMCID: PMC6685297 DOI: 10.3389/fmicb.2019.01727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin American caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Notably, a Th1 immune response is required to control PCM. In this context, dendritic cells (DCs) seem to be essential players in capture, processing and presentation of Paracoccidioides antigens to naïve T cells and their further activation. We have previously demonstrated that differentiated DCs from bone marrow cells, pulsed with the immunoprotective peptide 10 (P10), effectively control experimental PCM immunocompetent and immunosuppressed mice. However, this procedure may not be infeasible or it is limited for the therapy of human patients. Therefore, we have sought a less invasive but equally effective approach that would better mimics the autologous transplant of DC in a human patient. Here, we isolated and generated monocyte differentiated dendritic cells (MoDCs) from infected mice, pulsed them with P-10, and used them in the therapy of PCM in syngeneic mice. Similar to the results using BMDCs, the P10-pulsed MoDCs stimulated the proliferation of CD4+ T lymphocytes, induced a mixed production of Th1/Th2 cytokines and decreased the fungal burden in murine lungs in the setting of PCM. The process of differentiating MoDCs derived from an infected host, and subsequently used for therapy of PCM is much simpler than that for obtaining BMDCs, and represents a more reasonable approach to treat patients infected with Paracoccidioides. The results presented suggest that P10-primed MoDC may be a promising strategy to combat complicated PCM as well as to significantly shorten the lengthy requirements for treatment of patients with this fungal disease.
Collapse
Affiliation(s)
- Leandro B R Silva
- USP-LIM53, Laboratory of Medical Mycology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Cleison L Taira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas S Dias
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C O Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- USP-LIM53, Laboratory of Medical Mycology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Vaccine Development to Systemic Mycoses by Thermally Dimorphic Fungi. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
García-Carnero LC, Pérez-García LA, Martínez-Álvarez JA, Reyes-Martínez JE, Mora-Montes HM. Current trends to control fungal pathogens: exploiting our knowledge in the host-pathogen interaction. Infect Drug Resist 2018; 11:903-913. [PMID: 30013373 PMCID: PMC6037146 DOI: 10.2147/idr.s170337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human fungal infections remain a major challenge in medicine. Only a limited number of antifungal drugs are available, which are often related to severe adverse effects. In addition, there is an increased emergence related to resistant strains, which makes imperative to understand the host-pathogen interactions as well as to develop alternative treatments. Host innate and adaptive immunity play a crucial role controlling fungal infections; therefore, vaccines are a viable tool to prevent and treat fungal pathogens. Innate immunity is triggered by the interaction between the cell surface pattern recognition receptors (PRRs) and the pathogen-associated molecular patterns (PAMPs). Such an initial immunological response is yet little understood in fungal infections, in part due to the complexity and plasticity of the fungal cell walls. Described host cell-fungus interactions and antigenic molecules are addressed in this paper. Furthermore, antigens found in the cell wall and capsule, including peptides, glycoproteins, glycolipids, and glycans, have been used to trigger specific immune responses, and an increased production of antibodies has been observed when attached to immunogenic molecules. The recent biotechnological advances have allowed the development of vaccines against viral and bacterial pathogens with positive results; therefore, this technology has been applied to develop anti-fungal vaccines. Passive immunization has also emerged as an appealing alternative to treat disseminated mycosis, especially in immunocompromised patients. Those approaches have a long way to be seen in clinical cases. However, all studies discussed here open the possibility to have access to new therapies to be applied alone or in combination with current antifungal drugs. Herein, the state of the art of fungal vaccine developments is discussed in this review, highlighting new advances against Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Paracoccidioides brasiliensis, and Sporothrix spp.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Luis A Pérez-García
- Multidisciplinay Academic Unit, Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, México
| | - José A Martínez-Álvarez
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Juana E Reyes-Martínez
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| | - Héctor M Mora-Montes
- Department of Biology, Division of Exact and Natural Sciences, Campus Guanajuato, Universidad de Guanajuato,
| |
Collapse
|
9
|
Jannuzzi GP, Souza NDA, Françoso KS, Pereira RH, Santos RP, Kaihami GH, Almeida JRFD, Batista WL, Amaral AC, Maranhão AQ, Almeida SRD, Ferreira KS. Therapeutic treatment with scFv-PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes Infect 2017; 20:48-56. [PMID: 28951317 DOI: 10.1016/j.micinf.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Nicole de Araújo Souza
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Kátia Sanches Françoso
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Roney Henrique Pereira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Raquel Possemozer Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - André Corrêa Amaral
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
10
|
Silva LBR, Dias LS, Rittner GMG, Muñoz JE, Souza ACO, Nosanchuk JD, Travassos LR, Taborda CP. Dendritic Cells Primed with Paracoccidioides brasiliensis Peptide P10 Are Therapeutic in Immunosuppressed Mice with Paracoccidioidomycosis. Front Microbiol 2017; 8:1057. [PMID: 28659882 PMCID: PMC5469887 DOI: 10.3389/fmicb.2017.01057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/26/2017] [Indexed: 01/23/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America, with the highest prevalence in Brazil, Colombia, and Venezuela. Fungi of the Paracoccidioides genus are etiologic agents of the disease. The 15 amino acid peptide P10 is derived from gp43, the main diagnostic antigen of Paracoccidioides brasiliensis. We previously reported that P10-pulsed dendritic cells (DCs) induce a protective response against P. brasiliensis. Presently, dexamethasone-treated BALB/c mice were intratracheally infected with P. brasiliensis Pb18 to establish the therapeutic efficacy of P10-pulsed DCs. Immunosuppressed and infected animals that received DCs had a reduction in their fungal burden, and this result was most pronounced in mice receiving DCs primed with P10. The efficacy of therapeutic DCs was significantly augmented by concomitant treatment with trimethoprim-sulfamethoxazole. Additionally, primed-DCs with or without the antifungal drug induced a beneficial Th1-biased immune response and significantly reduced tissue damage. In conclusion, these studies with immunocompromised mice demonstrate that P10-pulsed DCs with or without concomitant antifungal drugs are potently effective in combating invasive PCM. These findings support further translational studies to validate the use of P10-primed DCs for PCM in immunocompetent and immunosuppressed hosts.
Collapse
Affiliation(s)
- Leandro B R Silva
- Laboratory of Medical Mycology, Tropical Medicine Institute USP-LIM53, University of São PauloSão Paulo, Brazil
| | - Lucas S Dias
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Glauce M G Rittner
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Julián E Muñoz
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Ana C O Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, BronxNY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, BronxNY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São PauloSão Paulo, Brazil
| | - Carlos P Taborda
- Laboratory of Medical Mycology, Tropical Medicine Institute USP-LIM53, University of São PauloSão Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| |
Collapse
|
11
|
Abstract
Considered to be an emerging endemic mycosis in Latin America, paracoccidioidomycosis
is characterized by a chronic course and involvement of multiple organs in
immunocompromised hosts. Infection sequelae are mainly related to pulmonary and
adrenal insufficiency. The host-parasite interaction results in different expressions
of the immune response depending on parasite pathogenicity, fungal load and genetic
characteristics of the host. A few controlled and case series reports have shown that
azoles and fast-acting sulfa derivatives are useful treatment alternatives in milder
forms of the disease. For moderate/severe cases, more prolonged treatments or even
parenteral routes are required especially when there is involvement of the digestive
tract mucosa, resulting in poor drug absorption. Although comparative studies have
reported that shorter treatment regimens with itraconazole are able to induce cure in
chronically-infected patients, there are still treatment challenges such as the need
for more controlled studies involving acute cases, the search for new drugs and
combinations, and the search for compounds capable of modulating the immune response
in severe cases as well as the paradoxical reactions.
Collapse
|
12
|
Cyclopalladated Compound 7a Induces Apoptosis- and Autophagy-Like Mechanisms in Paracoccidioides and Is a Candidate for Paracoccidioidomycosis Treatment. Antimicrob Agents Chemother 2015; 59:7214-23. [PMID: 26349827 DOI: 10.1128/aac.00512-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 μg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.
Collapse
|
13
|
Jannuzzi GP, Tavares AHFP, Kaihami GH, de Almeida JRF, de Almeida SR, Ferreira KS. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis. PLoS One 2015; 10:e0129401. [PMID: 26091522 PMCID: PMC4474724 DOI: 10.1371/journal.pone.0129401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/07/2015] [Indexed: 02/07/2023] Open
Abstract
Paracoccidioidomycosis (PCM), caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv) that mimics the main antigen of P. brasiliensis (gp43) confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | | | - Gilberto Hideo Kaihami
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Departamento de Ciências Biológicas do Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- * E-mail:
| |
Collapse
|
14
|
Thind SK, Taborda CP, Nosanchuk JD. Dendritic cell interactions with Histoplasma and Paracoccidioides. Virulence 2015; 6:424-32. [PMID: 25933034 DOI: 10.4161/21505594.2014.965586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fungi are among the most common microbes encountered by humans. More than 100, 000 fungal species have been described in the environment to date, however only a few species cause disease in humans. Fungal infections are of particular importance to immunocompromised hosts in whom disease is often more severe, especially in those with impaired cell-mediated immunity such as individuals with HIV infection, hematologic malignancies, or those receiving TNF-α inhibitors. Nevertheless, environmental disturbances through natural processes or as a consequence of deforestation or construction can expose immunologically competent people to a large number of fungal spores resulting in asymptomatic acquisition to life-threatening disease. In recent decades, the significance of the innate immune system and more importantly the role of dendritic cells (DC) have been found to play a fundamental role in the resolution of fungal infections, such as in dimorphic fungi like Histoplasma and Paracoccidioides. In this review article the general role of DCs will be illustrated as the bridge between the innate and adaptive immune systems, as well as their specific interactions with these 2 dimorphic fungi.
Collapse
Affiliation(s)
- Sharanjeet K Thind
- a Department of Medicine [Division of Infectious Diseases]; SUNY Downstate Medical Center ; Brooklyn , NY , USA
| | | | | |
Collapse
|
15
|
Assis-Marques MA, Oliveira AF, Ruas LP, dos Reis TF, Roque-Barreira MC, Coelho PSR. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 2015; 10:e0120201. [PMID: 25790460 PMCID: PMC4366343 DOI: 10.1371/journal.pone.0120201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 01/28/2023] Open
Abstract
The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM). It is believed that approximately 10 million people are infected with the fungus and approximately 2% will eventually develop the disease. Unlike viral and bacterial diseases, fungal diseases are the ones against which there is no commercially available vaccine. Saccharomyces cerevisiae may be a suitable vehicle for immunization against fungal infections, as they require the stimulation of different arms of the immune response. Here we evaluated the efficacy of immunizing mice against PCM by using S. cerevisiae yeast expressing gp43. When challenged by inoculation of P. brasiliensis yeasts, immunized animals showed a protective profile in three different assays. Their lung parenchyma was significantly preserved, exhibiting fewer granulomas with fewer fungal cells than found in non-immunized mice. Fungal burden was reduced in the lung and spleen of immunized mice, and both organs contained higher levels of IL-12 and IFN-γ compared to those of non-vaccinated mice, a finding that suggests the occurrence of Th1 immunity. Taken together, our results indicate that the recombinant yeast vaccine represents a new strategy to confer protection against PCM.
Collapse
Affiliation(s)
- Mariana Aprigio Assis-Marques
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
| | - Aline Ferreira Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
| | - Luciana Pereira Ruas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
| | - Thaila Fernanda dos Reis
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
| | - Paulo Sergio Rodrigues Coelho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049–900, Brasil
- * E-mail:
| |
Collapse
|
16
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex. Front Microbiol 2014; 5:719. [PMID: 25566229 PMCID: PMC4271699 DOI: 10.3389/fmicb.2014.00719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de F da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
17
|
Alegre-Maller ACP, Mendonça FC, da Silva TA, Oliveira AF, Freitas MS, Hanna ES, Almeida IC, Gay NJ, Roque-Barreira MC. Therapeutic administration of recombinant Paracoccin confers protection against paracoccidioides brasiliensis infection: involvement of TLRs. PLoS Negl Trop Dis 2014; 8:e3317. [PMID: 25474158 PMCID: PMC4256291 DOI: 10.1371/journal.pntd.0003317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Paracoccin (PCN) is an N-acetylglucosamine-binding lectin from the human pathogenic fungus Paracoccidioides brasiliensis. Recombinant PCN (rPCN) induces a T helper (Th) 1 immune response when prophylactically administered to BALB/c mice, protecting them against subsequent challenge with P. brasiliensis. In this study, we investigated the therapeutic effect of rPCN in experimental paracoccidioidomycosis (PCM) and the mechanism accounting for its beneficial action. METHODOLOGY/PRINCIPAL FINDINGS Four distinct regimens of rPCN administration were assayed to identify which was the most protective, relative to vehicle administration. In all rPCN-treated mice, pulmonary granulomas were less numerous and more compact. Moreover, fewer colony-forming units were recovered from the lungs of rPCN-treated mice. Although all therapeutic regimens of rPCN were protective, maximal efficacy was obtained with two subcutaneous injections of 0.5 µg rPCN at 3 and 10 days after infection. The rPCN treatment was also associated with higher pulmonary levels of IL-12, IFN-γ, TNF-α, nitric oxide (NO), and IL-10, without IL-4 augmentation. Encouraged by the pulmonary cytokine profile of treated mice and by the fact that in vitro rPCN-stimulated macrophages released high levels of IL-12, we investigated the interaction of rPCN with Toll-like receptors (TLRs). Using a reporter assay in transfected HEK293T cells, we verified that rPCN activated TLR2 and TLR4. The activation occurred independently of TLR2 heterodimerization with TLR1 or TLR6 and did not require the presence of the CD14 or CD36 co-receptors. The interaction between rPCN and TLR2 depended on carbohydrate recognition because it was affected by mutation of the receptor's N-glycosylation sites. The fourth TLR2 N-glycan was especially critical for the rPCN-TLR2 interaction. CONCLUSIONS/SIGNIFICANCE Based on our results, we propose that PCN acts as a TLR agonist. PCN binds to N-glycans on TLRs, triggers regulated Th1 immunity, and exerts a therapeutic effect against P. brasiliensis infection.
Collapse
Affiliation(s)
- Ana Claudia Paiva Alegre-Maller
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Flávia Costa Mendonça
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Thiago Aparecido da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Aline Ferreira Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Mateus Silveira Freitas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Ebert Seixas Hanna
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Igor C. Almeida
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Nicholas J. Gay
- Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail: ,
| |
Collapse
|
18
|
Anti‐metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10. Immunol Cell Biol 2014; 93:86-98. [DOI: 10.1038/icb.2014.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023]
|
19
|
Faintuch BL, Oliveira EA, Munõz JE, Travassos LR, Taborda CP. Radiochemical pharmacokinetic profile of P10 peptide with antifungal properties. Med Mycol 2014; 52:546-51. [PMID: 24934802 DOI: 10.1093/mmy/myu024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease that is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis. It is endemic in some countries of Latin America and can cause a high-burden fungal infection with significant morbidity and mortality. The peptide P10, which demonstrates immune protection against experimental PCM, was radiolabeled with a radioisotope and evaluated in vivo. The radiolabeling was conducted to trace the pharmacokinetics of the molecule in principal organs and tissues. This was achieved with high radiochemical purity. Biodistribution and scintigraphic imaging showed fast blood clearance that was mainly renal; however, hepatobiliar excretion was also, with marked uptake in cervical lymph nodes. This profile may be useful for the development of a prophylactic drug or vaccine for patients exposed to PCM.
Collapse
Affiliation(s)
- Bluma L Faintuch
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo
| | - Erica A Oliveira
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo
| | - Julian E Munõz
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo
| | - Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo Laboratory of Medical Mycology, Instituto de Medicina Tropical Sao Paulo, IMTSP Laboratorio de Investigacao Medica 53/LIM 53, University of São Paulo, Brazil
| |
Collapse
|
20
|
Longo LV, da Cunha JP, Sobreira TJ, Puccia R. Proteome of cell wall-extracts from pathogenic Paracoccidioides brasiliensis: Comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Recombinant paracoccin reproduces the biological properties of the native protein and induces protective Th1 immunity against Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2014; 8:e2788. [PMID: 24743161 PMCID: PMC3990478 DOI: 10.1371/journal.pntd.0002788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains. METHODOLOGY/PRINCIPAL FINDINGS The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347), was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis. CONCLUSIONS/SIGNIFICANCE Our results showed that the recombinant protein reproduced the biological properties described for the native protein-including binding to laminin in a manner that is dependent on carbohydrate recognition-showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls), mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated inflammation. The results indicated that paracoccin is the protein encoded by PADG-3347, and we propose that this gene and homologous proteins in other P. brasiliensis strains be called paracoccin. We also concluded that recombinant paracoccin confers resistance to murine P. brasiliensis infection by exerting immunomodulatory effects.
Collapse
|