1
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
2
|
Mahmoud M, Kawtharany H, Awali M, Mahmoud N, Mohamed I, Syn WK. The Effects of Testosterone Replacement Therapy in Adult Men With Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-analysis. Clin Transl Gastroenterol 2025; 16:e00787. [PMID: 39503363 DOI: 10.14309/ctg.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Sex steroids modulate metabolic dysfunction-associated steatotic liver disease (MASLD) pathobiology. We hypothesized that testosterone treatment (TT) modulates progression of MASLD and performed a systematic review to evaluate the efficacy of TT on liver steatosis and fibrosis. METHODS We searched PubMed and Embase from inception until November 2023. We screened 1,489 studies and identified 9 eligible studies. We assessed risk of bias for randomized trials using RoB-2 "Cochrane risk of bias tool for randomized trials," nonrandomized studies using ROBINS-I tool "Risk of Bias In Nonrandomized Studies-of Interventions," and Murad's tool for single-arm studies. We pooled estimates using RevMan 5. RESULTS Three randomized controlled trials|, 4 nonrandomized studies, and 2 single-arm studies were identified. The population of interest comprised men with MASLD. TT was administered at varying doses, routes, and frequencies, with follow-up ranging from 12 weeks to 8 years. Liver fibrosis and steatosis were assessed using liver biopsy in 3 studies, CT/MRI in 5, and serum scores in 2. All studies provided evidence of reduction in liver steatosis with TT compared with no TT. In addition, the LiFT (randomized controlled trials) trial demonstrated a resolution of MASLD/ metabolic dysfunction-associated steatohepatitis and a regression in liver fibrosis. TT led to decrease in liver enzymes. Studies were heterogenous in terms of population characteristics, treatment modalities, endpoints, and follow-up. Adverse events were comparable between the 2 groups. DISCUSSION TT is a promising treatment option for men with MASLD and low testosterone. It may improve liver steatosis and reduce liver fibrosis. Large, double-blinded randomized placebo-controlled trials are needed.
Collapse
Affiliation(s)
- Maya Mahmoud
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Hassan Kawtharany
- Evidence-Based Practice and Impact Center, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mohamed Awali
- Department of Radiology, Washington University in Saint Louis, St Louis, Missouri, USA
| | - Nadine Mahmoud
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Islam Mohamed
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Wing-Kin Syn
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
3
|
Saberian A, Dehghan A, Homayounfar R, Kaffashan S, Zarei F, Niknejad S, Farjam M. Determining the sensitivity and specificity of the calculated fatty liver index in comparison with ultrasound. BMC Gastroenterol 2024; 24:443. [PMID: 39623301 PMCID: PMC11610269 DOI: 10.1186/s12876-024-03535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease in human history and it is expected to surpass other causes of liver disease mortality by 2030. Therefore, finding an alternative way to diagnose steatosis in the early stage when imaging modalities are not available is crucial. This study decided to validate the optimal cut-off points and the sensitivity and specificity of the Fatty Liver Index (FLI) based on the Iranian population compared to ultrasonography. METHODS The data of 367 individuals, 108 males and 259 females over 35, were analyzed. Hepatic steatosis was identified by ultrasound. FLI was determined from waist circumference, gamma-glutamyl transferase, triglyceride, and body mass index data. The receiver operating characteristic curve (ROC) was used to determine the best FLI index cut point for diagnosing nonalcoholic fatty liver. The sensitivity and specificity indices were calculated for the determined cut point. RESULTS The AUC of the FLI index in diagnosing NAFLD in the total population was 0.733 (95% CI: 0.68-0.77, specificity = 0.6705, sensitivity = 0.7320) with the optimal COP of 40.6. There was a statistically significant association between non-alcoholic liver disease and FLI-based ultrasound (p < 0.0001). Furthermore, the sex-specific optimal COPs of FLI was 33.4, specificity = 0.6071, sensitivity = 0.8462 in men vs. 27.8, sensitivity = 0.8233, specificity = 0.7655 in women. CONCLUSION FLI is a reliable tool for identifying individuals with NAFLD. It has the potential to aid in detecting and managing this condition in large-scale populations while other methods are not available. We also determine an optimal COP of 40.6 with sensitivity and specificity of 73.20% and 67.05% in the general population, respectively.
Collapse
Affiliation(s)
- Arash Saberian
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizallah Dehghan
- Department of Epidemiology, Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kaffashan
- Department of Radiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Fariba Zarei
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Niknejad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7156685691, Iran.
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 74616-86688, Iran.
| |
Collapse
|
4
|
Noh HR, Sui G, Lee JW, Wang F, Park JS, Ma Y, Ma H, Jeong JW, Shin DS, Wu X, Hwang BY, Roh YS. Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway. Biomol Ther (Seoul) 2024; 32:793-800. [PMID: 39370730 PMCID: PMC11535294 DOI: 10.4062/biomolther.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/08/2024] Open
Abstract
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
Collapse
Affiliation(s)
- Hye-Rin Noh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Guoyan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Won Jeong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Su Shin
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Xuefeng Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Hongqiao International Institute of Medicine, Shanghai Ton-gren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
5
|
Park D, Lim B, Lee O. Association Between Relative Grip Strength, Insulin Resistance, and Nonalcoholic Fatty Liver Disease Among Middle-Aged and Older Adults: A Prospective Cohort Study. Metab Syndr Relat Disord 2024. [PMID: 39356235 DOI: 10.1089/met.2024.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Introduction: This study aims to investigate the combined association between insulin resistance (IR) levels, relative grip strength (RGS), and the incidence of nonalcoholic fatty liver disease (NAFLD), stratified by sex, using longitudinal data. Methods: The study included 1702 adult participants aged 51-88 years who completed surveys in both 2013-2014 and during a subsequent follow-up in 2019-2020. NAFLD was assessed using the hepatic steatosis index, and RGS was measured using the JAMA-5030J1 equipment (SAEHAN, Korea). To assess the interaction between RGS and IR levels and their impact on NAFLD risk, we employed a proportional hazards Cox regression model. Hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated for NAFLD incidence. Results: After adjusting for various confounding variables, we observed a significant decrease in NAFLD risk in the middle RGS group (HR = 0.70, 95% CI = 0.53-0.93) and high RGS group (HR = 0.31, 95% CI = 0.22-0.44) compared to the low RGS group. In addition, significant sex differences were noted in the relationship between IR, RGS levels, and NAFLD incidence across different groups. Conclusions: This study highlights that higher RGS levels are independently associated with a reduced risk of developing NAFLD. Notably, RGS emerges as a predictive indicator for assessing NAFLD risk.
Collapse
Affiliation(s)
- DooYong Park
- Department of Physical Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Byungul Lim
- Institute of Aging, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - On Lee
- Department of Sport Science, Korea Institute of Sports Science, Seoul, Republic of Korea
| |
Collapse
|
6
|
Gandhe A, Kumari S, Elizabeth Sobhia M. Rational design of FXR agonists: a computational approach for NASH therapy. Mol Divers 2024; 28:3363-3376. [PMID: 38055145 DOI: 10.1007/s11030-023-10766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome, posing risks to cardiovascular and hepatic health worldwide. Non-alcoholic steatohepatitis (NASH) which is a severe form of NAFLD, has a global prevalence. Therapeutic targets for NASH include THR-β, GLP-1 receptor, PPARα/δ/γ, FGF21 analogs, and FXR, a bile acid nuclear receptor pivotal for regulating bile acid synthesis and excretion. Our study aims to design the non-steroidal FXR agonist for NASH treatment, as FXR's role in the regulation of bile acid processes, rendering it a promising drug target for NASH therapy. Utilizing tropifexor as a reference molecule, we generated a shape-based pharmacophore model with seven features, identifying key binding requirements within the FXR active site. Virtual screening using this model, coupled with molecular docking studies, helped pinpoint potential ligands from diverse small molecule databases. Further analysis via MM/GBSA revealed 12 molecules with binding affinities comparable to tropifexor. Among them, DB15416 exhibited the lowest binding free energy and superior docking scores. To assess its dynamic stability, we subjected DB15416 to molecular dynamics simulations, confirming its suitability as a FXR agonist. These findings suggest that DB15416 holds promise as a FXR agonist for NASH treatment, which can be evaluated by experimental studies.
Collapse
Affiliation(s)
- Akshata Gandhe
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Masilamani Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India.
| |
Collapse
|
7
|
Zhang M, Guo C, Li Z, Cai X, Wen X, Lv F, Lin C, Ji L. Mulberry Twig Alkaloids Improved the Progression of Metabolic-Associated Fatty Liver Disease in High-Fat Diet-Induced Obese Mice by Regulating the PGC1α/PPARα and KEAP1/NRF2 Pathways. Pharmaceuticals (Basel) 2024; 17:1287. [PMID: 39458927 PMCID: PMC11514595 DOI: 10.3390/ph17101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Metabolic-associated fatty liver disease (MAFLD) is one of the most common liver disorders associated with obesity and metabolic syndrome, and poses a significant global health burden with limited effective treatments. The aim of this study was to assess the protective effects of mulberry twig alkaloids (SZ-A) on MAFLD and to further investigate the underlying mechanisms including the specific targets or pathways. Methods: Diet-induced obesity (DIO) and normal mouse models were established by feeding C57Bl/6J mice with a high-fat diet (HFD) or common diet for 12 weeks. SZ-A, dapagliflozin, and placebo were administered to corresponding mouse groups for 8 weeks. Data of fasting blood glucose, glucose tolerance, insulin tolerance, and the body weight of mice were collected at the baseline and termination of the experiment. Serum liver enzymes and lipids were measured by ELISA. Western blotting, qPCR, and pathological section staining were implemented to evaluate the degrees of liver steatosis, fibrosis, and oxidative stress in mice. Results: In DIO mouse models, high-dose SZ-A (800 mg/kg/d) treatment significantly inhibited HFD-induced weight gain, improved insulin tolerance, and reduced serum alanine aminotransferase, total cholesterol, and triglyceride levels compared with placebo. In DIO mice, SZ-A could alleviate the pathological changes of hepatic steatosis and fibrosis compared with placebo. Lipid catabolism and antioxidant stress-related proteins were significantly increased in the livers of the high-dose SZ-A group (p < 0.05). Inhibition of PGC1α could inhibit the function of SZ-A to enhance lipid metabolism in hepatocytes. PGC1α might interact with NRF2 to exert MAFLD-remedying effects. Conclusions: By regulating the expression of PGC1α and its interacting KEAP1/NRF2 pathway in mouse liver cells, SZ-A played important roles in regulating lipid metabolism, inhibiting oxidative stress, and postponing liver fibrosis in mice with MAFLD.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | | | | | | | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
8
|
Kim HJ, Jeon HJ, Kim DG, Kim JY, Shim JJ, Lee JH. Lacticaseibacillus paracsei HY7207 Alleviates Hepatic Steatosis, Inflammation, and Liver Fibrosis in Mice with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:9870. [PMID: 39337360 PMCID: PMC11432063 DOI: 10.3390/ijms25189870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Non-alcoholic fatty acid disease (NAFLD) is caused by a build-up of fat in the liver, inducing local inflammation and fibrosis. We evaluated the effects of probiotic lactic acid-generating bacteria (LAB) derived from a traditional fermented beverage in a mouse model of NAFLD. The LAB isolated from this traditional Korean beverage were screened using the human hepatic cell line HepG2, and Lactocaseibacillus paracasei HY7207 (HY7207), which was the most effective inhibitor of fat accumulation, was selected for further study. HY7207 showed stable productivity in industrial-scale culture. Whole-genome sequencing of HY7207 revealed that the genome was 2.88 Mbp long, with 46.43% GC contents and 2778 predicted protein-coding DNA sequences (CDSs). HY7207 reduced the expression of lipogenesis and hepatic apoptosis-related genes in HepG2 cells treated with palmitic acid. Furthermore, the administration of 109 CFU/kg/day of HY7207 for 8 weeks to mice fed an NAFLD-inducing diet improved their physiologic and serum biochemical parameters and ameliorated their hepatic steatosis. In addition, HY7207 reduced the hepatic expression of genes important for lipogenesis (Srebp1c, Fasn, C/ebpa, Pparg, and Acaca), inflammation (Tnf, Il1b, and Ccl2), and fibrosis (Col1a1, Tgfb1, and Timp1). Finally, HY7207 affected the expression of the apoptosis-related genes Bax (encoding Bcl2 associated X, an apoptosis regulator) and Bcl2 (encoding B-cell lymphoma protein 2) in the liver. These data suggest that HY7207 consumption ameliorates NAFLD in mice through effects on liver steatosis, inflammation, fibrosis, and hepatic apoptosis. Thus, L. paracasei HY7207 may be suitable for use as a functional food supplement for patients with NAFLD.
Collapse
Affiliation(s)
- Hyeon-Ji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Hye-Jin Jeon
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Dong-Gun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| |
Collapse
|
9
|
Fatima H, Sohail Rangwala H, Mustafa MS, Shafique MA, Abbas SR, Sohail Rangwala B. Analyzing and evaluating the prevalence and metabolic profile of lean NAFLD compared to obese NAFLD: a systemic review and meta-analysis. Ther Adv Endocrinol Metab 2024; 15:20420188241274310. [PMID: 39234426 PMCID: PMC11372778 DOI: 10.1177/20420188241274310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common liver condition affecting 25%-40% of the worldwide population. NAFLD is traditionally related to obesity and metabolic disorders. NAFLD can also affect non-obese individuals, termed "lean NAFLD" (LN), who exhibit a paradoxical combination of physical leanness and metabolic obesity. Factors contributing to LN remain unclear, necessitating further research. This analysis aims to understand LN's prevalence and metabolic characteristics compared to obese NAFLD (ON) populations. Methods This meta-analysis searched various databases until August 1, 2023. Inclusion criteria involved observational studies comparing LN with overweight/obese NAFLD. Data extraction included baseline characteristics, disease occurrence, metabolic profile, and clinical parameters-statistical analysis employed calculating risk ratios (RR) and standard mean differences. Results Twenty-five studies were analyzed. LN is associated with lower prevalence in both NAFLD (RR 0.27, 95% confidence interval (CI) 0.14-0.52, p = <0.0001) and total (RR 0.27, 95% CI 0.15-0.51, p < 0.0001) population. LN had lower diabetes mellitus (RR 0.78, 95% CI 0.71-0.87, p < 0.00001), dyslipidemia (RR 0.87, 95% CI 0.79-0.95, p = 0.002), hypertension (RR 0.80, 95% CI 0.74-0.87, p < 0.00001), and metabolic syndrome (RR 0.45, 95% CI 0.31-0.64, p < 0.00001) compared to those with ON. The LN group's lipid profile, blood pressure, and other clinical parameters were favorable compared to ON. Conclusion The prevalence of NAFLD among lean and non-lean individuals varies by region. Our analysis revealed that LN is associated with lower metabolic diseases, fasting blood sugar, blood pressure, and a more favorable lipid profile compared to ON.
Collapse
Affiliation(s)
- Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | | - Muhammad Ashir Shafique
- Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi 75510, Pakistan
| | - Syed Raza Abbas
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
10
|
Wang S, Zhang W, Wang Z, Liu Z, Yi X, Wu J. Mettl3-m6A-YTHDF1 axis promotion of mitochondrial dysfunction in metabolic dysfunction-associated steatotic liver disease. Cell Signal 2024; 121:111303. [PMID: 39019337 DOI: 10.1016/j.cellsig.2024.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) mRNA modification and mitochondrial function hold paramount importance in the advancement of metabolic dysfunction-associated steatotic liver disease (MASLD). AIM The aim of this study was to elucidate the impact of m6A on hepatic mitochondrial dysfunction and provide a novel perspective for a more comprehensive understanding of the pathogenesis of MASLD. METHODS High-throughput screening methods were used to identify the underlying transcriptome and proteome changes in MASLD model mice. Western blotting, blue native gel electrophoresis (BNGE), dot blot, and Seahorse analyses were conducted to identify and validate the underlying regulatory mechanisms of m6A on mitochondria. RESULTS In vivo, abnormal m6A modification in MASLD was attributed to the upregulation of methyltransferase like 3 (Mettl3) and the downregulation of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) induced by high-fat foods. In vitro, knockdown of Mettl3 inhibited hepatic oxidative phosphorylation (OXPHOS) and the mitochondrial respiratory chain (MRC), while overexpression of Mettl3 promoted these processes. However, knockout of the reader protein YTHDF1, which plays a crucial role in the m6A modification process, counteracted the effect of Mettl3 and suppressed mitochondrial OXPHOS. CONCLUSIONS In MASLD, damage to the MRC may be regulated by the Mettl3-m6A-YTHDF1 axis, particularly by the role of YTHDF1. Modulation of the Mettl3-m6A-YTHDF1 axis has the potential to improve mitochondrial function, alleviate MASLD symptoms, and decrease the likelihood of disease progression.
Collapse
Affiliation(s)
- Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanyu Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhuo Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoyu Yi
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianxin Wu
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
11
|
Hassanein EHM, Althagafy HS, Baraka MA, Amin H. Hepatoprotective effects of diosmin: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03297-z. [PMID: 39167171 DOI: 10.1007/s00210-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Liver diseases represent a formidable global health threat. Hesperidin, a flavonoid found in citrus fruits, is the source of diosmin (DS). The in vivo and in vitro investigations of the pharmacological effects of DS reveal that it exhibits tremendous beneficial effects, such as fighting against inflammation, oxidative stress, and fibrosis. These effects have been noticed in various disease models, emphasizing the potential therapeutic value of DS in tackling diverse pathological conditions. Interestingly, DS has promising liver-defense capabilities against a range of hepatic illnesses, such as radiation-induced hepatic injury, liver ischemia/reperfusion injury, alcoholic hepatic disease, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Furthermore, DS demonstrates potential hepatoprotective effects against environmental toxins, such as heavy metals. DS activates PPAR-γ and Nrf2, leading to antioxidant effects that reduce oxidative stress. Moreover, DS suppresses NF-κB, NLRP3, MAPK activities, and cytokine production (TNF-α and IL-1β), resulting in inflammation suppression. These anti-inflammatory effects are attributed to the activation of PPAR-γ and Nrf2, which are NF-κB inhibitors. This review aims to comprehensively discuss the hepatoprotective capacity of DS, elucidating the underlying mechanisms and identifying several research avenues that warrant further exploration to ascertain the prospective clinical advantages of DS intake as a viable strategy for the treatment of hepatic illnesses.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
12
|
Maddineni G, Obulareddy SJ, Paladiya RD, Korsapati RR, Jain S, Jeanty H, Vikash F, Tummala NC, Shetty S, Ghazalgoo A, Mahapatro A, Polana V, Patel D. The role of gut microbiota augmentation in managing non-alcoholic fatty liver disease: an in-depth umbrella review of meta-analyses with grade assessment. Ann Med Surg (Lond) 2024; 86:4714-4731. [PMID: 39118769 PMCID: PMC11305784 DOI: 10.1097/ms9.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background and aim Currently, there are no authorized medications specifically for non-alcoholic fatty liver disease (NAFLD) treatment. Studies indicate that changes in gut microbiota can disturb intestinal balance and impair the immune system and metabolism, thereby elevating the risk of developing and exacerbating NAFLD. Despite some debate, the potential benefits of microbial therapies in managing NAFLD have been shown. Methods A systematic search was undertaken to identify meta-analyses of randomized controlled trials that explored the effects of microbial therapy on the NAFLD population. The goal was to synthesize the existing evidence-based knowledge in this field. Results The results revealed that probiotics played a significant role in various aspects, including a reduction in liver stiffness (MD: -0.38, 95% CI: [-0.49, -0.26]), hepatic steatosis (OR: 4.87, 95% CI: [1.85, 12.79]), decrease in body mass index (MD: -1.46, 95% CI: [-2.43, -0.48]), diminished waist circumference (MD: -1.81, 95% CI: [-3.18, -0.43]), lowered alanine aminotransferase levels (MD: -13.40, 95% CI: [-17.02, -9.77]), decreased aspartate aminotransferase levels (MD: -13.54, 95% CI: [-17.85, -9.22]), lowered total cholesterol levels (MD: -15.38, 95% CI: [-26.49, -4.26]), decreased fasting plasma glucose levels (MD: -4.98, 95% CI: [-9.94, -0.01]), reduced fasting insulin (MD: -1.32, 95% CI: [-2.42, -0.21]), and a decline in homeostatic model assessment of insulin resistance (MD: -0.42, 95% CI: [-0.72, -0.11]) (P<0.05). Conclusion Overall, the results demonstrated that gut microbiota interventions could ameliorate a wide range of indicators including glycemic profile, dyslipidemia, anthropometric indices, and liver injury, allowing them to be considered a promising treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Shika Jain
- MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | | | - Fnu Vikash
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx
| | - Nayanika C. Tummala
- Gitam Institute of Medical Sciences and Research, Visakhapatnam, Andhra Pradesh
| | | | - Arezoo Ghazalgoo
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, Pennsylvania, PA
| |
Collapse
|
13
|
Westcott F, Dearlove DJ, Hodson L. Hepatic fatty acid and glucose handling in metabolic disease: Potential impact on cardiovascular disease risk. Atherosclerosis 2024; 394:117237. [PMID: 37633797 DOI: 10.1016/j.atherosclerosis.2023.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing. Although invariably associated with obesity, the importance of fat deposition in non-adipose tissue organs has yet to be fully explored. Pathological ectopic fat deposition within the liver (known as (MASLD)) has been suggested to underlie the development of T2DM and is now emerging as an independent risk factor for cardiovascular disease (CVD). The process of hepatic de novo lipogenesis (DNL), that is the synthesis of fatty acids from non-lipid precursors (e.g. glucose), has received much attention as it sits at the intersect of hepatic glucose and fatty acid handling. An upregulation of the DNL pathway has been suggested to be central in the development of metabolic diseases (including MASLD, insulin resistance, and T2DM). Here we review the evidence to determine if hepatic DNL may play a role in the development of MASLD and T2DM and therefore underlie an increased risk of CVD.
Collapse
Affiliation(s)
- Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - David J Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
14
|
Kim I, Kyun ML, Jung H, Kwon JI, Kim J, Kim JK, Lee YB, Kwon YI, Moon KS. In Vitro Nonalcoholic Fatty Liver Disease Model Elucidating the Effect of Immune Environment on Disease Progression and Alleviation. ACS OMEGA 2024; 9:25094-25105. [PMID: 38882105 PMCID: PMC11171094 DOI: 10.1021/acsomega.4c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is a major cause of chronic liver disease, is characterized by fat accumulation in the liver. Existing models struggle to assess medication effects on liver function in the context of NAFLD's unique inflammatory environment. We address this by developing a 3D in vitro NAFLD model using HepG2 and THP-1 cells (mimicking liver and Kupffer cells) cocultured using transwell and hydrogel system. This mimics liver architecture and allows for manipulation of the immune environment. We demonstrate that the model recapitulates key NAFLD features: steatosis (induced by fatty acids), oxidative stress, inflammation, and impaired liver function embodying the interrelationship between NAFLD and the surrounding immune environment. This versatile model offers a valuable tool for preclinical NAFLD research by incorporating a disease-relevant immune environment.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Jeongha Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Ju-Kang Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
15
|
Kung ML, Cheng SM, Wang YH, Cheng KP, Li YL, Hsiao YT, Tan BCM, Chen YW. Deficiency of ADAR2 ameliorates metabolic-associated fatty liver disease via AMPK signaling pathways in obese mice. Commun Biol 2024; 7:594. [PMID: 38760406 PMCID: PMC11101631 DOI: 10.1038/s42003-024-06215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3β pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Yun-Han Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Pi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tsen Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Linkou Medical Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Knuth MM, Xue J, Elnagheeb M, Gharaibeh RZ, Schoenrock SA, McRitchie S, Brouwer C, Sumner SJ, Tarantino L, Valdar W, Rector RS, Simon JM, Ideraabdullah F. Early life exposure to vitamin D deficiency impairs molecular mechanisms that regulate liver cholesterol biosynthesis, energy metabolism, inflammation, and detoxification. Front Endocrinol (Lausanne) 2024; 15:1335855. [PMID: 38800476 PMCID: PMC11116800 DOI: 10.3389/fendo.2024.1335855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Emerging data suggests liver disease may be initiated during development when there is high genome plasticity and the molecular pathways supporting liver function are being developed. Methods Here, we leveraged our Collaborative Cross mouse model of developmental vitamin D deficiency (DVD) to investigate the role of DVD in dysregulating the molecular mechanisms underlying liver disease. We defined the effects on the adult liver transcriptome and metabolome and examined the role of epigenetic dysregulation. Given that the parental origin of the genome (POG) influences response to DVD, we used our established POG model [POG1-(CC011xCC001)F1 and POG2-(CC001xCC011)F1] to identify interindividual differences. Results We found that DVD altered the adult liver transcriptome, primarily downregulating genes controlling liver development, response to injury/infection (detoxification & inflammation), cholesterol biosynthesis, and energy production. In concordance with these transcriptional changes, we found that DVD decreased liver cell membrane-associated lipids (including cholesterol) and pentose phosphate pathway metabolites. Each POG also exhibited distinct responses. POG1 exhibited almost 2X more differentially expressed genes (DEGs) with effects indicative of increased energy utilization. This included upregulation of lipid and amino acid metabolism genes and increased intermediate lipid and amino acid metabolites, increased energy cofactors, and decreased energy substrates. POG2 exhibited broader downregulation of cholesterol biosynthesis genes with a metabolomics profile indicative of decreased energy utilization. Although DVD primarily caused loss of liver DNA methylation for both POGs, only one epimutation was shared, and POG2 had 6.5X more differentially methylated genes. Differential methylation was detected at DEGs regulating developmental processes such as amino acid transport (POG1) and cell growth & differentiation (e.g., Wnt & cadherin signaling, POG2). Conclusions These findings implicate a novel role for maternal vitamin D in programming essential offspring liver functions that are dysregulated in liver disease. Importantly, impairment of these processes was not rescued by vitamin D treatment at weaning, suggesting these effects require preventative measures. Substantial differences in POG response to DVD demonstrate that the parental genomic context of exposure determines offspring susceptibility.
Collapse
|