1
|
Kalishwaralal K, Kwon WY, Park KS. Exosomes for Non-Invasive Cancer Monitoring. Biotechnol J 2018; 14:e1800430. [PMID: 30358137 DOI: 10.1002/biot.201800430] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Exosomes, membrane-bound phospholipid vesicles having diameters of 50-200 nm, are secreted by all cell types and circulate in human body fluids. These vesicles are known to carry cellular constituents that are specific to the originating cells (e.g., cytoplasmic/membrane proteins, RNA, and DNA). Thus, exosomes, which are both structurally stable and abundant, are robust indicators of cancers and, as a result, they have been utilized to monitor this disease in a manner that is less invasive than gold standard tissue biopsies. In this review, the history of exosomes and the specific biomarkers present in exosomes that enable accurate monitoring of various diseases are described. In addition, methods for analysis of exosomes and identification of biomarkers are presented with special emphasis being given to isolation and signaling strategies. Lastly, integrated, microfluidic systems developed for exosome-based cancer diagnosis are described and future directions that research in this area will likely take are presented.
Collapse
Affiliation(s)
- Kalimuthu Kalishwaralal
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
2
|
Fais S, O'Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, Carvalho J, Cordeiro da Silva A, Del Portillo H, El Andaloussi S, Ficko Trček T, Furlan R, Hendrix A, Gursel I, Kralj-Iglic V, Kaeffer B, Kosanovic M, Lekka ME, Lipps G, Logozzi M, Marcilla A, Sammar M, Llorente A, Nazarenko I, Oliveira C, Pocsfalvi G, Rajendran L, Raposo G, Rohde E, Siljander P, van Niel G, Vasconcelos MH, Yáñez-Mó M, Yliperttula ML, Zarovni N, Zavec AB, Giebel B. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS NANO 2016; 10:3886-99. [PMID: 26978483 DOI: 10.1021/acsnano.5b08015] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.
Collapse
Affiliation(s)
- Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2, Ireland
| | - Francesc E Borras
- IVECAT-Group, Germans Trias i Pujol Research Institute (IGTP), and Nephrology Service, Germans Trias i Pujol University Hospital , Campus Can Ruti, 08916 Badalona, Spain
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , 1085 Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin , 8 Turin, Italy
| | - Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo , and Euro-Mediterranean Institute of Science and Technology, 90133 Palermo, Italy
| | | | - Anabela Cordeiro da Silva
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
- Institute for Molecular and Cell Biology , Rua Campo Alegre, 4150-180 Porto, Portugal
| | - Hernando Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic de Universitat de Barcelona , 08036 Barcelona, Spain
- ICREA at Institut d'Investigació Germans Trias i Pujol (IGTP) , 08916 Badalona, Spain
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet , 17177 Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford OX13QX, United Kingdom
| | - Tanja Ficko Trček
- Sandoz Biopharmaceuticals-Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital , 9000 Gent, Belgium
| | - Ihsan Gursel
- Science Faculty, Molecular Biology and Genetics Department, THORLAB- Therapeutic Oligonucleotide Research Lab, Bilkent University , 06800 Bilkent, Turkey
| | - Veronika Kralj-Iglic
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana , 1000 Ljubljana, Slovenia
| | | | - Maja Kosanovic
- Department of Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy, INEP, Univeristy of Belgrade , 11000 Belgrade, Serbia
| | - Marilena E Lekka
- Chemistry Department, University of Ioannina , 45110 Ioannina, Greece
| | - Georg Lipps
- University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Mariantonia Logozzi
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS) , 00161 Rome, Italy
| | | | - Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel 2161002, Israel
| | - Alicia Llorente
- Dept. of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital , 0379 Oslo, Norway
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control, Medical Center University of Freiburg , 79106 Freiburg am Breisgau, Germany
| | - Carla Oliveira
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto , 4200-319 Porto, Portugal
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, University of Zurich , 8006 Zurich, Switzerland
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU) , 5020 Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), 5020 Salzburg, Austria
| | | | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, and Centre National de la Recherche Scientifique, UMR144, 75231 Paris, France
| | - M Helena Vasconcelos
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Sta Cristina, IIS-IP, Departamento Biología Molecular/CBM-SO, UAM, 28009 Madrid, Spain
| | | | | | - Apolonija Bedina Zavec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen , 45147 Essen, Germany
| |
Collapse
|
3
|
Pocsfalvi G, Stanly C, Fiume I, Vékey K. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis. J Chromatogr A 2016; 1439:26-41. [PMID: 26830636 DOI: 10.1016/j.chroma.2016.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes, microvesicles and apoptotic bodies are released by cells, both under physiological and pathological conditions. EVs can participate in a novel type of intercellular communication and deliver cargo of nucleic acids, proteins and lipids near or to distant host cells. EV research is proceeding at a fast pace; now they start to appear as promising therapeutic targets, diagnostic tools and drug delivery systems. Isolation and analysis of EVs are prerequisites for understanding their biological roles and for their clinical exploitation. In this process chromatography and mass spectrometry (MS)-based strategies are rapidly gaining importance; and are reviewed in the present communication. Isolation and purification of EVs is mostly performed by ultracentrifugation at present. Chromatography-based strategies are gaining ground, among which affinity and size exclusion chromatography (SEC) are particularly strong contenders. Their major advantages are the relative simplicity, robustness and throughput. Affinity chromatography has the added advantage of separating EV subtypes based on molecular recognition of EV surface motifs. SEC has the advantage that isolated EVs may retain their biological activity. EVs are typically isolated in small amounts, therefore high sensitivity is required for their analysis. Study of the molecular content of EVs (all compounds beside nucleic acids) is predominantly based on liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The chromatographic separation is mostly performed by reverse phase, nanoscale, ultra high performance LC technique. The MS analysis relying typically on nano-electrospray ionization MS/MS provides high sensitivity, selectivity and resolution, so that thousand(s) of proteins can be detected/identified/quantified in a EV sample. Beside protein identification, quantitation and characterization of protein post-translational modifications (PTMs), like glycosylation and phosphorylation are becoming feasible and increasingly important. Along with conventional LC-MS/MS, other chromatographic approaches hyphenated to MS are gaining importance for EV characterization. Hydrophilic interaction LC is used to characterize PTMs; LC-inductively coupled plasma/MS to identify metal containing molecules; while gas chromatography-MS to analyze some lipids and metabolites.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy.
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
4
|
Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiák L, Buzas EI, Vékey K. Mass spectrometry of extracellular vesicles. MASS SPECTROMETRY REVIEWS 2016; 35:3-21. [PMID: 25705034 DOI: 10.1002/mas.21457] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The review briefly summaries main features of extracellular vesicles, a joint terminology for exosomes, microvesicles, and apoptotic vesicles. These vesicles are in the center of interest in biology and medical sciences, and form a very active field of research. Mass spectrometry (MS), with its specificity and sensitivity, has the potential to identify and characterize molecular composition of these vesicles; but as yet there are only a limited, but fast-growing, number of publications that use MS workflows in this field. MS is the major tool to assess protein composition of extracellular vesicles: qualitative and quantitative proteomics approaches are both reviewed. Beside proteins, lipid and metabolite composition of vesicles might also be best assessed by MS techniques; however there are few applications as yet in this respect. The role of alternative analytical approaches, like gel-based proteomics and antibody-based immunoassays, are also mentioned. The objective of the review is to give an overview of this fast-growing field to help orient MS-based research on extracellular vesicles.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Lilla Turiák
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Pocsfalvi G, Raj DAA, Fiume I, Vilasi A, Trepiccione F, Capasso G. Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease. Proteomics Clin Appl 2015; 9:552-67. [PMID: 25755179 DOI: 10.1002/prca.201400199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Recent findings indicate that urinary extracellular vesicles (EVs) might reflect the pathophysiological state of urinary system; and that EVs-induced ciliary signaling is a possible mechanism of intercellular communication within the tract. Here, we aimed to analyze the protein expression of urinary EVs during autosomal dominant polycystic kidney disease (ADPKD). EXPERIMENTAL DESIGN EVs were isolated from pooled urine samples of healthy control and ADPKD patients at two different stages of the disease and under tolvaptan treatment using the double-cushion ultracentrifugation method. Proteins were identified and quantified by iTRAQ and multidimensional protein identification technology (MudPIT)-based quantitative proteomics. RESULTS Quantitative analyses identified 83 differentially expressed EV proteins. Many of these have apical membrane origin and are involved in signal transduction pathways of primary cilia, Ca(2+) -activated signaling, cell-cycle regulation, and cell differentiation. CONCLUSIONS AND CLINICAL RELEVANCE The reduced AQP-2 and the increased APO-A1 levels observed in all ADPKD-affected groups may reflects the impaired renal concentrating capability of these patients and correlated with estimated glomerular filtration rate decline. The levels of some upregulated proteins involved in Ca(2+) -activated signaling declined upon tolvaptan treatment. The results obtained suggest that the quantitative proteomics of urinary EVs might be useful to monitor proteins difficult to access noninvasively, and thus advance our understanding of urinary tract physiology and pathology.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Delfin A A Raj
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|