1
|
Depolymerization of Polyesters by Transesterification with Ethanol Using (Cyclopentadienyl)titanium Trichlorides. Catalysts 2023. [DOI: 10.3390/catal13020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/18/2023] Open
Abstract
Exclusive chemical conversions of polyesters [poly(ethylene adipate) (PEA), poly(butylene adipate) (PBA), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT)] to the corresponding monomers (diethyl adipate, diethyl terephthalate, ethylene glycol, 1,4-butane diol) by transesterification with ethanol using Cp’TiCl3 (Cp’ = Cp, Cp*) catalyst have been demonstrated. The present acid-base-free depolymerizations by Cp’TiCl3 exhibited completed conversions (>99%) of PET, PBT to afford diethyl terephthalate and ethylene glycol or 1,4-butane diol exclusively (selectivity >99%) without formation of any other by-products in the NMR spectra (150–170 °C, Ti 1.0, or 2.0 mol%). The resultant reaction mixture after the depolymerization of PBA with ethanol via the CpTiCl3 catalyst (1.0 mol%, 150 °C, 3 h), consisting of diethyl adipate and 1,4-butane diol, was heated at 150 °C in vacuo for 24 h to afford high molecular weight recycled PBA with unimodal molecular weight distribution (Mn = 11,800, Mw/Mn = 1.6), strongly demonstrating a possibility of one-pot (acid-base-free) closed-loop chemical recycling.
Collapse
|