1
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Mangalpady SS, Peña-Corona SI, Borbolla-Jiménez F, Kaverikana R, Shetty S, Shet VB, Almarhoon ZM, Calina D, Leyva-Gómez G, Sharifi-Rad J. Arnicolide D: a multi-targeted anticancer sesquiterpene lactone-preclinical efficacy and mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6317-6336. [PMID: 38652277 DOI: 10.1007/s00210-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.
Collapse
Affiliation(s)
- Shivaprasad Shetty Mangalpady
- Department of Chemistry, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Nitte, Mangaluru, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Fabiola Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Rajesh Kaverikana
- Department of Pharmacology, NGSM Institute of Pharmaceuticals, Nitte (Deemed to Be University), Mangaluru, India
| | - Shobhitha Shetty
- Department of Chemistry, A.J. Institute of Engineering & Technology, Mangaluru, India
| | - Vinayaka Babu Shet
- Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Mangaluru, India
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | | |
Collapse
|
3
|
Zhu X, Jia Z, Zhou Y, Wu J, Cao M, Hu C, Yu L, Chen Z. Current advances in the pain treatment and mechanisms of Traditional Chinese Medicine. Phytother Res 2024. [PMID: 39031847 DOI: 10.1002/ptr.8259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese Medicine (TCM), as a unique medical model in China, has been shown to be effective in the treatment of many diseases. It has been proven that TCM can increase the pain threshold, increase the level of endorphins and enkephalins in the body, and reduce the body's response to adverse stimuli. In recent years, TCM scholars have made valuable explorations in the field of pain treatment, using methods such as internal and external application of TCM and acupuncture to carry out research on pain treatment and have achieved more satisfactory results. TCM treats pain in a variety of ways, and with the discovery of a variety of potential bioactive substances for pain treatment. With the new progress in the research of other TCM treatment methods for pain, TCM will have greater potential in the clinical application of pain.
Collapse
Affiliation(s)
- Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
6
|
Lin YS, Sun Z, Shen LS, Gong RH, Chen JW, Xu Y, Yu H, Chen S, Chen GQ. Arnicolide D induces endoplasmic reticulum stress-mediated oncosis via ATF4 and CHOP in hepatocellular carcinoma cells. Cell Death Discov 2024; 10:134. [PMID: 38472168 DOI: 10.1038/s41420-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.
Collapse
Affiliation(s)
- Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiwei Sun
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yanfeng Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
7
|
Wen W, Jin K, Che Y, Du LY, Wang LN. Arnicolide D Inhibits Oxidative Stress-induced Breast Cancer Cell Growth and Invasion through Apoptosis, Ferroptosis, and Parthanatos. Anticancer Agents Med Chem 2024; 24:836-844. [PMID: 36503456 DOI: 10.2174/1871520623666221208102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women, and its pathogenesis is very complicated. More and more studies have found that Traditional Chinese Medicine plays an important role in tumor prevention. OBJECTIVE To investigate the mechanism of arnicolide D isolated from Centipeda minima in breast cancer. METHODS Cell Counting Kit-8 (CCK-8), western blot, RT-qPCR, ELISA, flow cytometry, and Transwell were used to detect the effect of arnicolide D on the biological function of breast cancer cells. RESULTS Arnicolide D promoted reactive oxygen species (ROS) production and induced a decrease in mitochondrial membrane potential in breast cancer cells, thereby inhibiting cell viability and increasing lactate dehydrogenase (LDH) release. Arnicolide D activated the classical apoptosis pathway to induce cell apoptosis; it significantly promoted PARP-1 expression, enhanced the nuclear translocation of apoptosis-inducing factor (AIF), and reduced the expression of AIF in mitochondria, indicating that it can induce the occurrence of parthanatos in a ROS dependent manner. In addition, arnicolide D down-regulated glutathione peroxidase 4 (GPX4) expression and increased the accumulation of Fe2+ and malondialdehyde (MDA), thereby activating ferroptosis. Apoptosis inhibitor, ferroptosis inhibitor, PARP inhibitor, PARP-1 siRNA, AIF siRNA and GPX4 overexpression vector significantly attenuated the inhibitory effect of arnicolide D on cell viability and reduced LDH release, which indicates that arnicolide D inhibits breast cancer cell growth by inducing apoptosis, parthanatos and ferroptosis. Arnicolide D also reduced breast cancer cell invasion and inhibited the expression of matrix metallopeptidase (MMP)-2 and MMP-9. CONCLUSION Arnicolide D can activate a variety of cell death modes by inducing oxidative stress, thereby inhibiting the growth and invasion of breast cancer cells, indicating that arnicolide D has a good anti-tumor effect.
Collapse
Affiliation(s)
- Wei Wen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ke Jin
- Emergency Department, The second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Che
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lin-Yao Du
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Li-Na Wang
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
8
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Chen Z, Ni R, Hu Y, Yang Y, Tian Y. Arnicolide D Inhibits Proliferation and Induces Apoptosis of Osteosarcoma Cells through PI3K/Akt/mTOR Pathway. Anticancer Agents Med Chem 2024; 24:1288-1294. [PMID: 38967079 DOI: 10.2174/0118715206289595240105082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiyuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
10
|
Lin J, Qu Z, Pu H, Shen LS, Yi X, Lin YS, Gong RH, Chen GQ, Chen S. In Vitro and In Vivo Anti-Cancer Activity of Lasiokaurin in a Triple-Negative Breast Cancer Model. Molecules 2023; 28:7701. [PMID: 38067432 PMCID: PMC10707582 DOI: 10.3390/molecules28237701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 12/18/2023] Open
Abstract
Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.
Collapse
Affiliation(s)
- Jinrong Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhao Qu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang 443002, China
| | - Huanhuan Pu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agricultural and Forestry University, Xinyang 464000, China;
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
11
|
Baek JY, Kim BH, Kim DW, Lee WY, Kim CE, Kim HY, Pyo J, Park ES, Kang KS. Hair Growth Effect of DN106212 in C57BL/6 Mouse and Its Network Pharmacological Mechanism of Action. Curr Issues Mol Biol 2023; 45:5071-5083. [PMID: 37367071 DOI: 10.3390/cimb45060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Centipeda minima (CMX) has been widely investigated using network pharmacology and clinical studies for its effects on hair growth via the JAK/STAT signaling pathway. Human hair follicle papilla cells exhibit hair regrowth through the expression of Wnt signaling-related proteins. However, the mechanism of action of CMX in animals has not been elucidated fully. This study examined the effect of induced hair loss and its side-effects on the skin, and observed the mechanism of action of an alcoholic extract of CMX (DN106212) on C57BL/6 mice. Our results showed that DN106212 was more effective in promoting hair growth than dimethyl sulfoxide in the negative control and tofacitinib (TF) in the positive control when mice were treated with DN106212 for 16 days. We confirmed that DN106212 promotes the formation of mature hair follicles through hematoxylin and eosin staining. We also found that the expression of vascular endothelial growth factor (Vegfa), insulin-like growth factor 1 (Igf1), and transforming growth factor beta 1 (Tgfb1) is related to hair growth using PCR. DN106212-treated mice had significantly higher expression of Vegfa and Igf1 than TF-treated ones, and inhibiting the expression of Tgfb1 had similar effects as TF treatment. In conclusion, we propose that DN106212 increases the expression of hair growth factors, promotes the development of hair follicles, and promotes hair growth. Although additional experiments are needed, DN106212 may serve as an experimental basis for research on natural hair growth-promoting agents.
Collapse
Affiliation(s)
- Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Byoung Ha Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Won-Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chang Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyun-Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
12
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
13
|
Liu YQ, Zhou GB. Promising anticancer activities and mechanisms of action of active compounds from the medicinal herb Centipeda minima (L.) A. Braun & Asch. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154397. [PMID: 36084403 DOI: 10.1016/j.phymed.2022.154397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Centipeda minima (L.) A. Braun & Asch (C. minima) has been used as a traditional Chinese herbal medicine to treat multiple diseases, including sinusitis, rhinitis, headache, and allergy. To date, the anticancer properties of C. minima have drawn considerable attention owing to the anticancer potential of C. minima extracts, the identification of active components, and the elucidation of underlying molecular mechanisms. However, the anticancer properties and significance of active components in C. minima have rarely been summarized. PURPOSE This review presents a comprehensive summary of the anticancer properties exhibited by active components of C. minima. METHODS An extensive search for published articles on the anticancer activities and active components of C. minima was performed using Web of Science, PubMed, Science Direct, and Google Scholar. RESULTS C. minima extracts exhibited both anticancer and chemosensitizing effects. Phytochemical studies have identified the active anticancer components of C. minima extracts. Sesquiterpene lactones, such as 6-O-angeloylplenolin (6-OAP, or brevilin A) and arnicolide D, have similar structures and anticancer mechanisms. As the most abundant sesquiterpene lactone in C. minima, 6-OAP exhibits anticancer activities mainly by targeting Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase and signal transducers and activators of transcription 3 (STAT3). Clinical trials have assessed the potential of 6-OAP in patients with vertex balding and alopecia areata, given its effect on JAK-STATs signaling. Chlorogenic acid, a representative organic acid in C. minima, reportedly possesses anticancer potential and inhibits tumor growth by affecting tumor microenvironment and has been approved for phase II clinical trials in patients with glioma in China. CONCLUSION In the present review, we highlight intriguing anticancer properties mediated by active compounds isolated from C. minima extracts, particularly sesquiterpene lactones, which might provide clues for developing novel anticancer drugs. Relevant clinical trials on chlorogenic acid and 6-OAP can promote anticancer clinical applications. Therefore, it is worth comprehensively elucidating underlying anticancer mechanisms and conducting clinical trials on C. minima and its active components.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
14
|
Yao J, Shen Q, Huang M, Ding M, Guo Y, Chen W, Lin Y, Zheng Y, Yu S, Yan W, Su T, Liu Z, Lu L. Screening tumor specificity targeted by arnicolide D, the active compound of Centipeda minima and molecular mechanism underlying by integrative pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114583. [PMID: 34487850 DOI: 10.1016/j.jep.2021.114583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-derived anti-tumor agents, such as paclitaxel and vincristine, exert significant but varied effectivenesses towards different cancer types. Similarly, Centipeda minima (CM) is a well-known traditional Chinese medicine that has been used to treat rhinitis, relieve pain and reduce swelling, and recently found to exert overwhelming anti-tumor effects against breast cancer, colon cancer, and nasopharyngeal carcinoma with different response rates. However, what is the optimizing cancer model that benefits most from CM, and what is the specific target underlying still require more exclusive and profound investigations. AIMS OF THE STUDY This study aimed to explore the dominant tumor model and specific target of CM by integrative pharmacology and biological experiments. MATERIALS AND METHODS The most predominant and specific cancer types that are sensitive to CM were screened and identified based on a combination network pharmacology and bioinformatics analysis. Compound-target network and protein-protein interaction of CM-related cancer targets were carried out to determine the most abundant active compound. Simultaneously, the priority target responsible for CM-related anti-tumor efficacy was further validated by molecular docking and in vitro experiments. RESULTS In total, approximately 42% (8/19) of the targets were enriched in prostate cancer (p = 1.25E-09), suggesting prostate cancer would be the most sensitive tumor response to CM-related efficacy. Furthermore, we found that arnicolide D (ARD), the most abundant and representative active compound of CM, could directly bind to Src with binding energy of -7.3 kcal/mol, implying Src would be the priority target responsible for CM-related anti-tumor efficacy. Meanwhile, the results were further validated by solvent-induced protein precipitation (SIP) assay. In addition, PCR and WB results also revealed that either CM or ARD could not influence the gene expression of Src, while significantly decreased its protein expression instead, which further suggested that ARD might markedly shortene the Src protein half-life to promote Src protein degradation, thereby achieving significant anti-prostate cancer efficacy. CONCLUSION Our findings not only suggest CM as a promising Src-targeting candidate for prostate cancer treatment, but also bring up a strategy for understanding the personalization of herbal medicines by using integrative pharmacology.
Collapse
Affiliation(s)
- Jingjing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qinghong Shen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Min Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yajuan Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenbo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuefang Lin
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yaqiu Zheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shaofang Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenxin Yan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
15
|
Das A, Agarwal P, Jain GK, Aggarwal G, Lather V, Pandita D. Repurposing drugs as novel triple negative breast cancer therapeutics. Anticancer Agents Med Chem 2021; 22:515-550. [PMID: 34674627 DOI: 10.2174/1871520621666211021143255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all the types of breast cancer (BC), triple negative breast cancer (TNBC) is the most aggressive form having high metastasis and recurrence rate with limited treatment options. Conventional treatments such as chemotherapy and radiotherapy have lots of toxic side effects and also no FDA approved therapies are available till now. Repurposing of old clinically approved drugs towards various targets of TNBC is the new approach with lesser side effects and also leads to successful inexpensive drug development with less time consuming. Medicinal plants containg various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tanins, glycosides, lactones) plays very crucial role in combating various types of diseases and used in drug development process because of having lesser side effects. OBJECTIVE The present review focuses in summarization of various categories of repurposed drugs against multitarget of TNBC and also summarizes the phytochemical categories that targets TNBC singly or in combination with synthetic old drugs. METHODS Literature information was collected from various databases such as Pubmed, Web of Science, Scopus and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents aginst TNBC by using keywords like "breast cancer", "repurposed drugs", "TNBC" and "phytoconstituents". RESULTS Various repurposed drugs and phytochemicals targeting different signaling pathways that exerts their cytotoxic activities on TNBC cells ultimately leads to apoptosis of cells and also lowers the recurrence rate and stops the metastasis process. CONCLUSION Inhibitory effects seen in different levels, which provides information and evidences to researchers towards drug developments process and thus further more investigations and researches need to be taken to get the better therapeutic treatment options against TNBC.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313. India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017. India
| |
Collapse
|