1
|
Sever AIM, Ahmed R, Rößler P, Kay LE. Solution NMR goes big: Atomic resolution studies of protein components of molecular machines and phase-separated condensates. Curr Opin Struct Biol 2025; 90:102976. [PMID: 39837113 DOI: 10.1016/j.sbi.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 01/23/2025]
Abstract
The tools of structural biology have undergone remarkable advances in the past decade. These include new computational and experimental approaches that have enabled studies at a level of detail - and ease - that were not previously possible. Yet, significant deficiencies in our understanding of biomolecular function remain and new challenges must be overcome to go beyond static pictures towards a description of function in terms of structural dynamics. Solution Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as a powerful technique for atomic resolution studies of the dynamics of a wide range of biomolecules, including molecular machines and the components of phase-separated condensates. Here we highlight some of the very recent advances in these areas that have been driven by NMR.
Collapse
Affiliation(s)
- Alexander I M Sever
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Rashik Ahmed
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Philip Rößler
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Lewis E Kay
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
2
|
Banerjee C, Wey-Hung Liauw B, Vafabakhsh R. Direct effect of membrane environment on the activation of mGluR2 revealed by single-molecule FRET. Structure 2025:S0969-2126(25)00011-5. [PMID: 39909029 DOI: 10.1016/j.str.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
The microenvironment of membrane receptors controls their mobility, structure, interactions, and dynamics, but a systematic understanding of how it modulates receptor function is often lacking. Using single-molecule Förster resonance energy transfer (smFRET), we characterized how detergents and cholesterol modulate the conformational dynamics of metabotropic glutamate receptor 2 (mGluR2), a class C G protein-coupled receptor (GPCR). We found that, within the resolution of our measurements, all tested detergents stabilize the same overall active and inactive structure of different domains of mGluR2. However, the degree of stabilization and the equilibrium between active and inactive conformations depended on the detergent. Detergents with a single hydrophobic tail increased the active state occupancy compared to those with long, branched tails. Adding cholesterol to micelles with branched hydrophobic tails shifted the equilibrium toward the inactive state. Mutagenesis identified residues potentially involved in cholesterol interaction with mGluR2. Targeting the cholesterol-binding site with synthetic molecules could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Bi M, Wang X, Wang J, Xu J, Sun W, Adediwura VA, Miao Y, Cheng Y, Ye L. Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex. Nat Commun 2025; 16:1100. [PMID: 39875358 PMCID: PMC11775185 DOI: 10.1038/s41467-025-56434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive. Guided by a conformational landscape visualized via 19F quantitative NMR and molecular dynamics (MD) simulations, we determined the structure of an intermediate GPCR-mini-Gαsβγ complex at 2.6 Å using cryo-EM, by blocking its transition to the fully activated complex. Furthermore, we present direct evidence that the complex at this intermediate state initiates a rate-limited nucleotide exchange before transitioning to the fully activated complex. In this state, BODIPY-GDP/GTP based nucleotide exchange assays further indicated the α-helical domain of the Gα is partially open, allowing it to grasp a nucleotide at a non-canonical binding site, distinct from the canonical nucleotide-binding site. These advances bridge a significant gap in our understanding of the complexity of GPCR signaling.
Collapse
Affiliation(s)
- Maxine Bi
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA, 94143, USA
| | - Xudong Wang
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Jinan Wang
- Pharmacology & Computational Medicine Program, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenkai Sun
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Victor Ayo Adediwura
- Pharmacology & Computational Medicine Program, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Yinglong Miao
- Pharmacology & Computational Medicine Program, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA, 94143, USA.
- Howard Hughes Medical Institute, University of California, 600 16th Street, San Francisco, CA, 94143, USA.
| | - Libin Ye
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
- H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
5
|
Barrantes FJ. The pleomorphic cholesterol sensing motifs of transmembrane proteins. Chem Phys Lipids 2025; 266:105460. [PMID: 39615777 DOI: 10.1016/j.chemphyslip.2024.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Millions of years of phylogenetic evolution have shaped the crosstalk between sterols and membrane-embedded proteins. This lengthy process, which began before the appearance of eukaryotic cells, has sculpted the two types of molecules to cover a wide spectrum of structural interconnectedness, ranging from rapid touch-and-go hits of low-affinity between surfaces to stronger lock-and-key type structural contacts. The former usually involve relatively loose contacts between linear amino acid sequences on the membrane-exposed transmembrane domains of the protein, readily accessible to the sterols as they briefly visit clefts between adjacent transmembrane segments while in rapid exchange with the bulk lipid bilayer. This operational mode is probably the most ancestral one, since it was already present in primitive bacteria interacting with hopanoid lipids. At the other end of this spectrum are more complex cholesterol binding sites that have required the acquisition of complex 3D non-sequential segments of the membrane protein to establish stereochemically elaborate 3D designs complementary to the rough and smooth surfaces of the eukaryotic neutral lipid, cholesterol. This short review explores cholesterol-membrane protein interactions using membrane protein paradigms having in common their participation in intercellular communications neurotransmission, hormone signalling, amino acid/neurotransmitter transport- and in cancer.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Buenos Aires C1107AAF, Argentina.
| |
Collapse
|
6
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
7
|
Ray AP, Jin B, Eddy MT. The conformational equilibria of a human GPCR compared between lipid vesicles and aqueous solutions by integrative 19F-NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618237. [PMID: 39464034 PMCID: PMC11507675 DOI: 10.1101/2024.10.14.618237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/29/2024]
Abstract
Endogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids. We investigated the conformational equilibria of the human A2A adenosine receptor (A2AAR) in phospholipid vesicles using 19F solid-state magic angle spinning NMR (SSNMR). By applying an optimized sample preparation workflow and experimental conditions, we were able to obtain 19F-SSNMR spectra for both antagonist- and agonist-bound complexes with sensitivity and linewidths closely comparable to those achieved using solution NMR. This facilitated a direct comparison of the A2AAR conformational equilibria across detergent micelle, lipid nanodisc, and lipid vesicle preparations. While antagonist-bound A2AAR showed a similar conformational equilibria across all membrane and membrane mimetic systems, the conformational equilibria of agonist-bound A2AAR exhibited differences among different environments. This suggests that the conformational equilibria of GPCRs may be influenced not only by specific receptor-lipid interactions but also by the membrane properties found in larger lipid assemblies.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Beining Jin
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Matthew T Eddy
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| |
Collapse
|
8
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Denisov IG, Sligar SG. Nanodiscs for the study of membrane proteins. Curr Opin Struct Biol 2024; 87:102844. [PMID: 38795563 PMCID: PMC11283964 DOI: 10.1016/j.sbi.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Nanodiscs represent a versatile tool for studies of membrane proteins and protein-membrane interactions under native-like conditions. Multiple variations of the Nanodisc platform, as well as new experimental methods, have been recently developed to understand various aspects of structure, dynamics and functional properties of systems involved in signaling, transport, blood coagulation and many other critically important processes. In this mini-review, we focus on some of these exciting recent developments that utilize the Nanodisc platform.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Parikh A, Krogman W, Walker J. The impact of volatile anesthetics and propofol on phosphatidylinositol 4,5-bisphosphate signaling. Arch Biochem Biophys 2024; 757:110045. [PMID: 38801966 DOI: 10.1016/j.abb.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), as well as other anionic phospholipids, play a pivotal role in various cellular processes, including ion channel regulation, receptor trafficking, and intracellular signaling pathways. The binding of volatile anesthetics and propofol to PIP2 leads to alterations in PIP2-mediated signaling causing modulation of ion channels such as ɣ-aminobutyric acid type A (GABAA) receptors, voltage-gated calcium channels, and potassium channels through various mechanisms. Additionally, the interaction between anionic phospholipids and G protein-coupled receptors plays a critical role in various anesthetic pathways, with these anesthetic-induced changes impacting PIP2 levels which cause cascading effects on receptor trafficking, including GABAA receptor internalization. This comprehensive review of various mechanisms of interaction provides insights into the intricate interplay between PIP2 signaling and anesthetic-induced changes, shedding light on the molecular mechanisms underlying anesthesia.
Collapse
Affiliation(s)
- Ayaan Parikh
- Wichita Collegiate School, Wichita, KS. 9115 E 13th St N, Wichita, KS, 67206, USA.
| | - William Krogman
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| | - James Walker
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| |
Collapse
|
11
|
Bi M, Wang X, Wang J, Xu J, Sun W, Adediwura VA, Miao Y, Cheng Y, Ye L. Structure and function of a ligand-free GPCR-Gαβγ intermediate complex. RESEARCH SQUARE 2024:rs.3.rs-4566652. [PMID: 38978591 PMCID: PMC11230506 DOI: 10.21203/rs.3.rs-4566652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/10/2024]
Abstract
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive. Guided by a conformational landscape visualized via 19F quantitative NMR and molecular dynamics (MD) simulation, we determined the structure of an intermediate GPCR-mini-Gαsβγ complex at 2.8 Å using cryo-EM, by blocking its transition to the fully activated complex. Furthermore, we presented direct evidence that the intermediate complex initiates a rate-limited nucleotide exchange without progressing to the fully activated complex, in which the α-helical domain (AHD) of the Gα is partially open engaged by a second nucleotide. Our MD simulation supported the pose of the AHD domain. These advances bridge a significant gap in our understanding the complexity of GPCR signaling.
Collapse
Affiliation(s)
- Maxine Bi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Xudong Wang
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL USA 33620
| | - Jinan Wang
- Department of Pharmacology & Computational Medicinal Program, University of North Carolina at Chapel Hill, 116 Manning Drive, 11004C Mary Ellen Jones Building, Chapel Hill, NC 27599
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenkai Sun
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL USA 33620
| | - Victor Ayo Adediwura
- Department of Pharmacology & Computational Medicinal Program, University of North Carolina at Chapel Hill, 116 Manning Drive, 11004C Mary Ellen Jones Building, Chapel Hill, NC 27599
| | - Yinglong Miao
- Department of Pharmacology & Computational Medicinal Program, University of North Carolina at Chapel Hill, 116 Manning Drive, 11004C Mary Ellen Jones Building, Chapel Hill, NC 27599
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - Libin Ye
- Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL USA 33620
- H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, USA 33612
| |
Collapse
|
12
|
Nguyen K, Strauss T, Refaeli B, Hiller R, Vinogradova O, Khananshvili D. 19F-NMR Probing of Ion-Induced Conformational Changes in Detergent-Solubilized and Nanodisc-Reconstituted NCX_Mj. Int J Mol Sci 2024; 25:6909. [PMID: 39000018 PMCID: PMC11241019 DOI: 10.3390/ijms25136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Tali Strauss
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Bosmat Refaeli
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Chen X, Al-Mualem ZA, Baiz CR. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity. Annu Rev Phys Chem 2024; 75:283-305. [PMID: 38382566 DOI: 10.1146/annurev-physchem-090722-010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/23/2024]
Abstract
Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| | | | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
14
|
Thakur N, Ray AP, Jin B, Afsharian NP, Lyman E, Gao ZG, Jacobson KA, Eddy MT. Membrane mimetic-dependence of GPCR energy landscapes. Structure 2024; 32:523-535.e5. [PMID: 38401537 PMCID: PMC11069452 DOI: 10.1016/j.str.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | | | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Bi M, Wang X, Wang J, Xu J, Sun W, Adediwura VA, Miao Y, Cheng Y, Ye L. Structure and function of an intermediate GPCR-Gαβγ complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587841. [PMID: 38617296 PMCID: PMC11014534 DOI: 10.1101/2024.04.02.587841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/16/2024]
Abstract
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated end-state complex. Consequently, a comprehensive understanding of the conformational transitions during GPCR activation and the roles of intermediate GPCR-G protein complexes in signaling remain elusive. Guided by a conformational landscape profiled by 19 F quantitative NMR ( 19 F-qNMR) and Molecular Dynamics (MD) simulations, we resolved the structure of an unliganded GPCR-G protein intermediate complex by blocking its transition to the fully activated end-state complex. More importantly, we presented direct evidence that the intermediate GPCR-Gαsβγ complex initiates a rate-limited nucleotide exchange without progressing to the fully activated end-state complex, thereby bridging a significant gap in our understanding the complexity of GPCR signaling. Understanding the roles of individual conformational states and their complexes in signaling efficacy and bias will help us to design drugs that discriminately target a disease-related conformation.
Collapse
|
16
|
Shih HW, Alas GCM, Paredez AR. Encystation stimuli sensing is mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia. Nat Commun 2023; 14:7245. [PMID: 37945557 PMCID: PMC10636121 DOI: 10.1038/s41467-023-43028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Protozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function. Through depletion of the cAMP producing enzyme Adenylate Cyclase 2 (AC2) and the use of a newly developed Giardia-specific cAMP sensor, we show that AC2 is necessary for encystation stimuli-induced cAMP upregulation and activation of downstream signaling. Conversely, over expression of AC2 or exogenous cAMP were sufficient to initiate encystation. Our findings indicate that encystation stimuli induce membrane reorganization, trigger AC2-dependent cAMP upregulation, and initiate encystation-specific gene expression, thereby advancing our understanding of a critical stage in the life cycle of a globally important parasite.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
17
|
Thakur N, Ray AP, Lyman E, Gao ZG, Jacobson KA, Eddy MT. Membrane Mimetic-Dependence of GPCR Energy Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562552. [PMID: 37905159 PMCID: PMC10614885 DOI: 10.1101/2023.10.16.562552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2023]
Abstract
Protein function strongly depends on temperature, which is related to temperature-dependent changes in the equilibria of protein conformational states. We leveraged variable-temperature 19F-NMR spectroscopy to interrogate the temperature dependence of the conformational landscape of the human A2A adenosine receptor (A2AAR), a class A GPCR. Temperature-induced changes in the conformational equilibria of A2AAR in lipid nanodiscs were markedly dependent on the efficacy of bound drugs. While antagonist complexes displayed only modest changes as the temperature rose, both full and partial agonist complexes exhibited substantial increases in the active state population. Importantly, the temperature-dependent response of complexes with both full and partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. In striking contrast to observations within lipid nanodiscs, in detergent micelles the active state population exhibited different behavior for A2AAR complexes with both full and partial agonists. This underscores the importance of the protein environment in understanding the thermodynamics of GPCR activation.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Jacobson KA, Suresh RR, Oliva P. A 2A adenosine receptor agonists, antagonists, inverse agonists and partial agonists. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:1-27. [PMID: 37741687 PMCID: PMC10775762 DOI: 10.1016/bs.irn.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/25/2023]
Abstract
The Gs-coupled A2A adenosine receptor (A2AAR) has been explored extensively as a pharmaceutical target, which has led to numerous clinical trials. However, only one selective A2AAR agonist (regadenoson, Lexiscan) and one selective A2AAR antagonist (istradefylline, Nouriast) have been approved by the FDA, as a pharmacological agent for myocardial perfusion imaging (MPI) and as a cotherapy for Parkinson's disease (PD), respectively. Adenosine is widely used in MPI, as Adenoscan. Despite numerous unsuccessful clinical trials, medicinal chemical activity around A2AAR ligands has accelerated recently, particularly through structure-based drug design. New drug-like A2AAR antagonists for PD and cancer immunotherapy have been identified, and many clinical trials have ensued. For example, imaradenant (AZD4635), a compound that was designed computationally, based on A2AAR X-ray structures and biophysical mapping. Mixed A2AAR/A2BAR antagonists are also hopeful for cancer treatment. A2AAR antagonists may also have potential as neuroprotective agents for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States.
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| |
Collapse
|
19
|
Zerbetto De Palma G, Recoulat Angelini AA, Vitali V, González Flecha FL, Alleva K. Cooperativity in regulation of membrane protein function: phenomenological analysis of the effects of pH and phospholipids. Biophys Rev 2023; 15:721-731. [PMID: 37681089 PMCID: PMC10480370 DOI: 10.1007/s12551-023-01095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 09/09/2023] Open
Abstract
Interaction between membrane proteins and ligands plays a key role in governing a wide spectrum of cellular processes. These interactions can provide a cooperative-type regulation of protein function. A wide variety of proteins, including enzymes, channels, transporters, and receptors, displays cooperative behavior in their interactions with ligands. Moreover, the ligands involved encompass a vast diversity and include specific molecules or ions that bind to specific binding sites. In this review, our particular focus is on the interaction between integral membrane proteins and ligands that can present multiple "binding sites", such as protons or membrane phospholipids. The study of the interaction that protons or lipids have with membrane proteins often presents challenges for classical mechanistic modeling approaches. In this regard, we show that, like Hill's pioneering work on hemoglobin regulation, phenomenological modeling constitutes a powerful tool for capturing essential features of these systems.
Collapse
Affiliation(s)
- Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Villa Tesei, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alvaro A. Recoulat Angelini
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Vitali
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F. Luis. González Flecha
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alleva
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Guo C, Yang L, Liu Z, Liu D, Wüthrich K. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A 2AAR in Lipid Nanodiscs. Molecules 2023; 28:5419. [PMID: 37513291 PMCID: PMC10383251 DOI: 10.3390/molecules28145419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.
Collapse
Affiliation(s)
- Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
22
|
Real Hernandez LM, Levental I. Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. Biophys J 2023; 122:2256-2266. [PMID: 36641625 PMCID: PMC10257115 DOI: 10.1016/j.bpj.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.
Collapse
Affiliation(s)
- Luis M Real Hernandez
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
23
|
Shih HW, Alas GCM, Paredez AR. Encystation stimuli sensing mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536239. [PMID: 37090513 PMCID: PMC10120678 DOI: 10.1101/2023.04.10.536239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/25/2023]
Abstract
Protozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function. Through depletion of the cAMP producing enzyme Adenylate Cyclase 2 (AC2) and the use of a newly developed Giardia-specific cAMP sensor, we show that AC2 is necessary for encystation stimuli-induced cAMP upregulation and activation of downstream signaling. Conversely, over expression of AC2 or exogenous cAMP were sufficient to initiate encystation. Our findings indicate that encystation stimuli induce membrane reorganization, trigger AC2-dependent cAMP upregulation, and initiate encystation-specific gene expression, thereby advancing our understanding of a critical stage in the life cycle of a globally important parasite.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
24
|
Huang SK, Picard LP, Rahmatullah RSM, Pandey A, Van Eps N, Sunahara RK, Ernst OP, Sljoka A, Prosser RS. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat Struct Mol Biol 2023; 30:502-511. [PMID: 36997760 DOI: 10.1038/s41594-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαβ1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the βγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4β6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the βγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | | | - Rima S M Rahmatullah
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Thakur N, Ray AP, Sharp L, Jin B, Duong A, Pour NG, Obeng S, Wijesekara AV, Gao ZG, McCurdy CR, Jacobson KA, Lyman E, Eddy MT. Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat Commun 2023; 14:794. [PMID: 36781870 PMCID: PMC9925817 DOI: 10.1038/s41467-023-36425-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we explore the impact of anionic lipids on the function-related conformational equilibria of the human A2A adenosine receptor (A2AAR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids prime the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeds through a less favorable induced fit mechanism. In computational models, anionic lipids mimic interactions between a G protein and positively charged residues in A2AAR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly alters the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Alexander Duong
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Anuradha V Wijesekara
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA.
| |
Collapse
|
26
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
27
|
Thakur N, Ray AP, Sharp L, Jin B, Duong A, Pour NG, Obeng S, Wijesekara AV, Gao ZG, McCurdy CR, Jacobson KA, Lyman E, Eddy MT. Anionic Phospholipids Control Mechanisms of GPCR-G Protein Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523010. [PMID: 36711594 PMCID: PMC9882065 DOI: 10.1101/2023.01.11.523010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A 2A adenosine receptor (A 2A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids primed the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeded through a less favorable induced fit mechanism. In computational models, anionic lipids mimicked interactions between a G protein and positively charged residues in A 2A AR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly altered the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Alexander Duong
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Anuradha V Wijesekara
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
28
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
Köck Z, Ermel U, Martin J, Morgner N, Achilleas Frangakis S, Dötsch V, Hilger D, Bernhard F. Biochemical characterization of cell-free synthesized human β 1 adrenergic receptor cotranslationally inserted into nanodiscs. J Mol Biol 2022; 434:167687. [PMID: 35717996 DOI: 10.1016/j.jmb.2022.167687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Cell-free expression enables direct cotranslational insertion of G protein coupled receptors (GPCRs) and other membrane proteins into the defined membrane environments of nanodiscs. This technique avoids GPCR contacts with detergents and allows rapid identification of lipid effects on GPCR function as well as fast screening of receptor derivatives. Critical steps of conventional GPCR preparation from cellular membranes followed by detergent-based reconstitution into nanodisc membranes are thus eliminated. We report the efficient cotranslational insertion of full-length human β1-adrenergic receptor and of a truncated derivative into preformed nanodisc membranes. Their biochemical characterization revealed significant differences in lipid requirements, dimer formation and ligand binding activity. The truncated receptor showed a higher affinity to most tested ligands, in particular in presence of choline-containing lipids. However, introducing the naturally occurring G389R polymorphism in the full-length receptor resulted into an increased affinity to the antagonists alprenolol and carvedilol. Receptor quality was generally improved by coexpression with the agonist isoproterenol and the percentage of the ligand binding active fraction was twofold increased. Specific coupling of full-length and truncated human receptors in nanodisc membranes to Mini-Gαs protein as well as to purified Gs heterotrimer could be demonstrated and homogeneity of purified GPCR/Gs protein complexes in nanodiscs was demonstrated by negative stain single particle analysis.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Utz Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - S Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main.
| |
Collapse
|
30
|
McGraw C, Koretz KS, Oseid D, Lyman E, Robinson AS. Cholesterol Dependent Activity of the Adenosine A 2A Receptor Is Modulated via the Cholesterol Consensus Motif. Molecules 2022; 27:molecules27113529. [PMID: 35684466 PMCID: PMC9182133 DOI: 10.3390/molecules27113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Membrane cholesterol dysregulation has been shown to alter the activity of the adenosine A2A receptor (A2AR), a G protein-coupled receptor, thereby implicating cholesterol levels in diseases such as Alzheimer's and Parkinson's. A limited number of A2AR crystal structures show the receptor interacting with cholesterol, as such molecular simulations are often used to predict cholesterol interaction sites. METHODS Here, we use experimental methods to determine whether a specific interaction between amino acid side chains in the cholesterol consensus motif (CCM) of full length, wild-type human A2AR, and cholesterol modulates activity of the receptor by testing the effects of mutational changes on functional consequences, including ligand binding, G protein coupling, and downstream activation of cyclic AMP. RESULTS AND CONCLUSIONS Our data, taken with previously published studies, support a model of receptor state-dependent binding between cholesterol and the CCM, whereby cholesterol facilitates both G protein coupling and downstream signaling of A2AR.
Collapse
Affiliation(s)
- Claire McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Kirsten Swonger Koretz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Daniel Oseid
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA;
| | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-268-7673
| |
Collapse
|
31
|
Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure 2022; 30:1208-1217.e2. [PMID: 35660161 PMCID: PMC9356978 DOI: 10.1016/j.str.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022]
Abstract
Class A (rhodopsin-like) G protein-coupled receptors (GPCRs) are constitutive phospholipid scramblases as evinced after their reconstitution into liposomes. Yet phospholipid scrambling is not detectable in the resting plasma membrane of mammalian cells that is replete with GPCRs. We considered whether cholesterol, a prominent component of the plasma membrane, limits the ability of GPCRs to scramble lipids. Our previous Markov State Model (MSM) analysis of molecular dynamics simulations of membrane-embedded opsin indicated that phospholipid headgroups traverse a dynamically revealed hydrophilic groove between transmembrane helices (TM) 6 and 7 while their tails remain in the bilayer. Here, we present comparative MSM analyses of 150-μs simulations of opsin in cholesterol-free and cholesterol-rich membranes. Our analyses reveal that cholesterol inhibits phospholipid scrambling by occupying the TM6/7 interface and stabilizing the closed groove conformation while itself undergoing flip-flop. This mechanism may explain the inability of GPCRs to scramble lipids at the plasma membrane.
Collapse
|
32
|
Wang J, Bhattarai A, Do HN, Akhter S, Miao Y. Molecular Simulations and Drug Discovery of Adenosine Receptors. Molecules 2022; 27:2054. [PMID: 35408454 PMCID: PMC9000248 DOI: 10.3390/molecules27072054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.
Collapse
Affiliation(s)
| | | | | | | | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA; (J.W.); (A.B.); (H.N.D.); (S.A.)
| |
Collapse
|
33
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Bolcato G, Pavan M, Bassani D, Sturlese M, Moro S. Ribose and Non-Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor Recognition Mechanism? Biomedicines 2022; 10:biomedicines10020515. [PMID: 35203724 PMCID: PMC8962312 DOI: 10.3390/biomedicines10020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosine receptors have been a promising class of targets for the development of new therapies for several diseases. In recent years, a renewed interest in this field has risen, thanks to the implementation of a novel class of agonists that lack the ribose moiety, once considered essential for the agonistic profile. Recently, an X-ray crystal structure of the A2A adenosine receptor has been solved, providing insights about the receptor activation from this novel class of agonists. Starting from this structural information, we have performed supervised molecular dynamics (SuMD) simulations to investigate the binding pathway of a non-nucleoside adenosine receptor agonist as well as one of three classic agonists. Furthermore, we analyzed the possible role of water molecules in receptor activation.
Collapse
|
35
|
Korkutata M, Agrawal L, Lazarus M. Allosteric Modulation of Adenosine A 2A Receptors as a New Therapeutic Avenue. Int J Mol Sci 2022; 23:ijms23042101. [PMID: 35216213 PMCID: PMC8880556 DOI: 10.3390/ijms23042101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022] Open
Abstract
The therapeutic potential of targeting adenosine A2A receptors (A2ARs) is immense due to their broad expression in the body and central nervous system. The role of A2ARs in cardiovascular function, inflammation, sleep/wake behaviors, cognition, and other primary nervous system functions has been extensively studied. Numerous A2AR agonist and antagonist molecules are reported, many of which are currently in clinical trials or have already been approved for treatment. Allosteric modulators can selectively elicit a physiologic response only where and when the orthosteric ligand is released, which reduces the risk of an adverse effect resulting from A2AR activation. Thus, these allosteric modulators have a potential therapeutic advantage over classical agonist and antagonist molecules. This review focuses on the recent developments regarding allosteric A2AR modulation, which is a promising area for future pharmaceutical research because the list of existing allosteric A2AR modulators and their physiologic effects is still short.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Lokesh Agrawal
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Onna 904-0412, Japan;
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
- Correspondence: ; Tel.: +81-29-853-3681
| |
Collapse
|