1
|
Wackers P, Dollé MET, van Oostrom CT, van Kerkhof LW. Exploration of genome-wide DNA methylation profiles in night shift workers. Epigenetics 2023; 18:2152637. [PMID: 36457290 PMCID: PMC9980630 DOI: 10.1080/15592294.2022.2152637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The past decades, studies indicated that night shift work is associated with adverse health effects, however, molecular mechanisms underlying these effects are poorly understood. A few previous studies have hypothesized a role for DNA-methylation (DNAm) in this relationship. We performed a cross-sectional epigenome-wide association study, to investigate if night shift work is associated with genome-wide DNAm changes and DNAm-based biological age acceleration, based on previously developed so-called 'epigenetic clocks.' Short term (2-6 years) and intermediate term (10-16 years) night shift workers, along with age and sex matched dayworkers (non-shift workers) were selected from the Lifelines Cohort Study. For genome-wide methylation analysis the Infinium Methylation EPIC array (Ilumina) was used. Linear regression analyses were used to detect differences in methylation at individual CpG-sites associated with night shift work. Pathway analysis was performed based on KEGG pathways and predictions of age acceleration in night shift workers were performed based on four previously developed epigenetic age calculators. Only in women, differences in methylation at individual CpG-sites were observed between night shift workers and non-shift workers. Most of these differentially methylated positions (DMPs) were observed in intermediate term night shift workers. Pathway analysis shows involvement of pathways related to circadian rhythm and cellular senescence. Increased age acceleration was observed only in short-term night shift workers (men and women). This might be indicative of adaptation to night shift work or a so-called healthy worker effect. In conclusion, these results show that DNA methylation changes are associated with night shift work, specifically in women.
Collapse
Affiliation(s)
- Paul Wackers
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn E. T. Dollé
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Conny T.M. van Oostrom
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Linda W.M. van Kerkhof
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands,CONTACT Linda W.M. van Kerkhof Centre for Health Protection; National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA; Bilthoven, The Netherlands
| |
Collapse
|
2
|
Fraszczyk E, Thio CHL, Wackers P, Dollé MET, Bloks VW, Hodemaekers H, Picavet HS, Stynenbosch M, Verschuren WMM, Snieder H, Spijkerman AMW, Luijten M. DNA methylation trajectories and accelerated epigenetic aging in incident type 2 diabetes. GeroScience 2022; 44:2671-2684. [PMID: 35947335 PMCID: PMC9768051 DOI: 10.1007/s11357-022-00626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/19/2022] [Indexed: 01/07/2023] Open
Abstract
DNA methylation (DNAm) patterns across the genome changes during aging and development of complex diseases including type 2 diabetes (T2D). Our study aimed to estimate DNAm trajectories of CpG sites associated with T2D, epigenetic age (DNAmAge), and age acceleration based on four epigenetic clocks (GrimAge, Hannum, Horvath, phenoAge) in the period 10 years prior to and up to T2D onset. In this nested case-control study within Doetinchem Cohort Study, we included 132 incident T2D cases and 132 age- and sex-matched controls. DNAm was measured in blood using the Illumina Infinium Methylation EPIC array. From 107 CpG sites associated with T2D, 10 CpG sites (9%) showed different slopes of DNAm trajectories over time (p < 0.05) and an additional 8 CpG sites (8%) showed significant differences in DNAm levels (at least 1%, p-value per time point < 0.05) at all three time points with nearly parallel trajectories between incident T2D cases and controls. In controls, age acceleration levels were negative (slower epigenetic aging), while in incident T2D cases, levels were positive, suggesting accelerated aging in the case group. We showed that DNAm levels at specific CpG sites, up to 10 years before T2D onset, are different between incident T2D cases and healthy controls and distinct patterns of clinical traits over time may have an impact on those DNAm profiles. Up to 10 years before T2D diagnosis, cases manifested accelerated epigenetic aging. Markers of biological aging including age acceleration estimates based on Horvath need further investigation to assess their utility for predicting age-related diseases including T2D.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Chris H. L. Thio
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul Wackers
- grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn E. T. Dollé
- grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vincent W. Bloks
- grid.4494.d0000 0000 9558 4598Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hennie Hodemaekers
- grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - H. Susan Picavet
- grid.31147.300000 0001 2208 0118Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein Stynenbosch
- grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - W. M. Monique Verschuren
- grid.31147.300000 0001 2208 0118Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands ,grid.7692.a0000000090126352Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harold Snieder
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemieke M. W. Spijkerman
- grid.31147.300000 0001 2208 0118Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- grid.31147.300000 0001 2208 0118Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
3
|
Fraszczyk E, Spijkerman AMW, Zhang Y, Brandmaier S, Day FR, Zhou L, Wackers P, Dollé MET, Bloks VW, Gào X, Gieger C, Kooner J, Kriebel J, Picavet HSJ, Rathmann W, Schöttker B, Loh M, Verschuren WMM, van Vliet-Ostaptchouk JV, Wareham NJ, Chambers JC, Ong KK, Grallert H, Brenner H, Luijten M, Snieder H. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia 2022; 65:763-776. [PMID: 35169870 PMCID: PMC8960572 DOI: 10.1007/s00125-022-05652-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 11/15/2021] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Li Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Ealing, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - H Susan J Picavet
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp, Duesseldorf, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Jongbloed F, de Bruin RWF, Steeg HV, Beekhof P, Wackers P, Hesselink DA, Hoeijmakers JHJ, Dollé MET, IJzermans JNM. Protein and calorie restriction may improve outcomes in living kidney donors and kidney transplant recipients. Aging (Albany NY) 2020; 12:12441-12467. [PMID: 32652516 PMCID: PMC7377854 DOI: 10.18632/aging.103619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023]
Abstract
Previously, we and others showed that dietary restriction protects against renal ischemia-reperfusion injury in animals. However, clinical translation of preoperative diets is scarce, and in the setting of kidney transplantation these data are lacking. In this pilot study, we investigated the effects of five days of a preoperative protein and caloric dietary restriction (PCR) diet in living kidney donors on the perioperative effects in donors, recipients and transplanted kidneys. Thirty-five kidney donors were randomized into either the PCR, 30% calorie and 80% protein reduction, or control group without restrictions. Adherence to the diet and kidney function in donors and their kidney recipients were analyzed. Perioperative kidney biopsies were taken in a selected group of transplanted kidneys for gene expression analysis. All donors adhered to the diet. From postoperative day 2 up until month 1, kidney function of donors was significantly better in the PCR-group. PCR-donor kidney recipients showed significantly improved kidney function and lower incidence of slow graft function and acute rejection. PCR inhibited cellular immune response pathways and activated stress-resistance signaling. These observations are the first to show that preoperative dietary restriction induces postoperative recovery benefits in humans and may be beneficial in clinical settings involving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Franny Jongbloed
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harry Van Steeg
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.,Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piet Beekhof
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul Wackers
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn E T Dollé
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Opperhuizen AL, Foppen E, Jonker M, Wackers P, van Faassen M, van Weeghel M, van Kerkhof L, Fliers E, Kalsbeek A. Effects of Light-at-Night on the Rat Liver - A Role for the Autonomic Nervous System. Front Neurosci 2019; 13:647. [PMID: 31281239 PMCID: PMC6596368 DOI: 10.3389/fnins.2019.00647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected. Conclusion: One-hour light-at-night acutely affects the liver transcriptome. Part of this effect is mediated via the nervous innervation, as a hepatectomy modulated and reduced the effect of LAN on liver transcripts.
Collapse
Affiliation(s)
- Anne-Loes Opperhuizen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Laboratory of Endocrinology, Amsterdam University Medical Center, Department of Clinical Chemistry, University of Amsterdam, Amsterdam, Netherlands
| | - Ewout Foppen
- Laboratory of Endocrinology, Amsterdam University Medical Center, Department of Clinical Chemistry, University of Amsterdam, Amsterdam, Netherlands
| | - Martijs Jonker
- MAD - Dutch Genomics Service and Support Provider, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Linda van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Eric Fliers
- Amsterdam University Medical Center, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Laboratory of Endocrinology, Amsterdam University Medical Center, Department of Clinical Chemistry, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam University Medical Center, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Pagano JFB, Rauwerda H, de Leeuw WC, Wackers P, de Jong M, Ensink W, Dekker R, Nehrdich U, Spaink HP, Jonker M, Breit TM. Transcriptome data on maternal RNA of 24 individual zebrafish eggs from five sibling mothers. Data Brief 2016; 8:69-72. [PMID: 27284564 PMCID: PMC4887590 DOI: 10.1016/j.dib.2016.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/14/2022] Open
Abstract
Maternal mRNA that is present in the mature oocyte plays an important role in the proper development of the early embryo. To elucidate the role of the maternal transcriptome we recently reported a microarray study on individual zebrafish eggs from five different clutches from sibling mothers and showed differences in maternal RNA abundance between and within clutches, “Mother-specific signature in the maternal transcriptome composition of mature, unfertilized Eggs” [1]. Here we provide in detail the applied preprocessing method as well as the R-code to identify expressed and non-expressed genes in the associated transcriptome dataset. Additionally, we provide a website that allows a researcher to search for the expression of their gene of interest in this experiment.
Collapse
Affiliation(s)
- Johanna F B Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim C de Leeuw
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Wackers
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob Dekker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Nehrdich
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Rauwerda H, Wackers P, Pagano JFB, de Jong M, Ensink W, Dekker R, Nehrdich U, Spaink HP, Jonker M, Breit TM. Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS One 2016; 11:e0147151. [PMID: 26799215 PMCID: PMC4723340 DOI: 10.1371/journal.pone.0147151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Maternal mRNA present in mature oocytes plays an important role in the proper development of the early embryo. As the composition of the maternal transcriptome in general has been studied with pooled mature eggs, potential differences between individual eggs are unknown. Here we present a transcriptome study on individual zebrafish eggs from clutches of five mothers in which we focus on the differences in maternal mRNA abundance per gene between and within clutches. To minimize technical interference, we used mature, unfertilized eggs from siblings. About half of the number of analyzed genes was found to be expressed as maternal RNA. The expressed and non-expressed genes showed that maternal mRNA accumulation is a non-random process, as it is related to specific biological pathways and processes relevant in early embryogenesis. Moreover, it turned out that overall the composition of the maternal transcriptome is tightly regulated as about half of the expressed genes display a less than twofold expression range between the observed minimum and maximum expression values of a gene in the experiment. Even more, the maximum gene-expression difference within clutches is for 88% of the expressed genes lower than twofold. This means that expression differences observed in maternally expressed genes are primarily caused by differences between mothers, with only limited variability between eggs from the same mother. This was underlined by the fact that 99% of the expressed genes were found to be differentially expressed between any of the mothers in an ANOVA test. Furthermore, linking chromosome location, transcription factor binding sites, and miRNA target sites of the genes in clusters of distinct and unique mother-specific gene-expression, suggest biological relevance of the mother-specific signatures in the maternal transcriptome composition. Altogether, the maternal transcriptome composition of mature zebrafish oocytes seems to be tightly regulated with a distinct mother-specific signature.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Wackers
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna F. B. Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Rob Dekker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Ulrike Nehrdich
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo M. Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
8
|
Melis JPM, Derks KWJ, Pronk TE, Wackers P, Schaap MM, Zwart E, van Ijcken WFJ, Jonker MJ, Breit TM, Pothof J, van Steeg H, Luijten M. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 2014; 88:1023-34. [PMID: 24390151 DOI: 10.1007/s00204-013-1189-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.
Collapse
Affiliation(s)
- Joost P M Melis
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|