1
|
Yadav DK, Bhadresha K, Rao P, Shaikh S, Rawal RM. Identification of hub genes associated with prognosis of lung cancer via integrated bioinformatics and in vitro approach. J Biomol Struct Dyn 2023; 41:11204-11218. [PMID: 36572419 DOI: 10.1080/07391102.2022.2160816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Lung cancer is a severe health problem that affects more men than women around the world. The goal of this study was to identify the biomarker hub genes for lung cancer in order to ascertain the biological pathway and protein- protein interaction networks. The microarray datasets GSE80796, GSE68571, GSE118370 and GSE43458 were retrieved from the GEO database and were analysed using GEO2R. STRING, Cytoscape, and cytoHubba were used to construct the PPI network and hub genes. GEPIA was used to obtain the overall survival and expression level in LUAD/LUSC and normal tissue. The MTT assay was used to examine antiproliferative activity. PI staining was used to determine the cell cycle arrest. qPCR was used to analyse gene expressions. The datasets revealed a total of 401 common DEGs, with 258 up-regulated genes and 143 down-regulated genes. Further, in-vitro study of gallic acid cytotoxic effect in human lung cancer cell line A549 indicated that gallic acid dramatically suppressed cell growth in A549 cells. Gallic acid also, significantly promoted programmed cell death by halting cells in the G0/G1 phase of the cell cycle. Taken together, our study indicated that gallic acid is a promising natural STAT1 inhibitor as it hindered lung cancer progression by inducing cell cycle arrest and apoptosis which can be employed to increase the therapeutic efficacy of existing lung cancer treatments and to improve overall patient survival.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Kumari Yadav
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kinjal Bhadresha
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry and Forensics Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Shayma Shaikh
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Department of Biochemistry and Forensics Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Trivedi TS, Shaikh AM, Mankad AU, Rawal RM, Patel SK. Genome-Wide Characterization of Fennel (Anethum foeniculum) MiRNome and Identification of its Potential Targets in Homo sapiens and Arabidopsis thaliana: An Inter and Intra-species Computational Scrutiny. Biochem Genet 2023:10.1007/s10528-023-10575-7. [PMID: 38017284 DOI: 10.1007/s10528-023-10575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aafrinbanu M Shaikh
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
3
|
Radhakrishna U, Ratnamala U, Jhala DD, Uppala LV, Vedangi A, Saiyed N, Patel M, Vadsaria N, Shah SR, Rawal RM, Mercuri SR, McGonagle D, Jemec GBE, Damiani G. Hidradenitis suppurativa associated telomere-methylome dysregulations in blood. J Eur Acad Dermatol Venereol 2023. [PMID: 37872100 DOI: 10.1111/jdv.19586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic debilitating disease with a significant burden of both organic and psychological comorbidities. It has been shown that certain telomere-related genes (TRGs) affect a wide range of diseases, including HS and its associated comorbidities, but their exact role in HS pathogenesis is still unknown. OBJECTIVES To determine whether TRG methylomes can be used as biomarkers in HS. METHODS Using the Illumina HumanMethylation450 BeadChip array, we examined methylation variations associated with TRGs in HS cases and age-, sex-, and ethnicity-matched healthy controls. The study utilized integrated bioinformatics statistical methods, such as a false discovery rate (FDR), the area under the receiver operating characteristic curve (AUC), and principal component analysis. RESULTS There were a total of 585 different differentially methylated CpG sites identified in 585 TRGs associated with HS (474 hypomethylated and 111 hypermethylated) (FDR p-value <0.05). A number of these CpGs have been identified as being involved in increased pain sensitivity including EPAS1, AHR, CSNK1D, DNMT1, IKBKAP, NOS3, PLCB1, and PRDM16 genes; GABRB3 as a potential alcohol addiction marker; DDB1, NSMCE2, and HNRNPA2B1 associated with cancers. Pathway analysis identified 67 statistically significant pathways, including DNA repair, telomere maintenance, mismatch repair, and cell cycle control. (p<0.001). CONCLUSION The disruption of TRGs leads to the shortening of telomeres, which is associated with HS progression, aging, cellular senescence, and an increased risk of various diseases, including cancer and associated comorbidities, such as metabolic syndrome, cardiovascular disease, and inflammatory disorders. Further research is necessary to better understand the underlying mechanisms and establish causal links between TRGs and HS. The present study is the first effort to comprehend potential pathomechanisms of sporadic HS cases concentrating on PBMC methylome since ours.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, A unit of ICON Krishi Institute Medical Sciences, Sheelanagar, Visakhapatnam, India
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | | | - Sushma R Shah
- Department of Obstetrics and Gynecology, BJ Medical College Institute of Medical Post-Graduate Studies and Research Ahmedabad, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Santo R Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Giovanni Damiani
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Center of Precision Medicine and Chronic Inflammation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Radhakrishna U, Ratnamala U, Jhala DD, Uppala LV, Vedangi A, Patel M, Vadsaria N, Shah S, Saiyed N, Rawal RM, Mercuri SR, Jemec GBE, Damiani G. Hidradenitis suppurativa presents a methylome dysregulation capable to explain the pro-inflammatory microenvironment: Are these DNA methylations potential therapeutic targets? J Eur Acad Dermatol Venereol 2023; 37:2109-2123. [PMID: 37338327 DOI: 10.1111/jdv.19286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic, systemic, inflammatory skin condition with elusive pathogenesis that affects therapeutic intervention directly. OBJECTIVE To characterize epigenetic variations in cytokines genes contributing to HS. METHODS Epigenome-wide DNA methylation profiling with the Illumina Epic array was performed on blood DNA samples from 24 HS patients and 24 age- and sex-matched controls to explore DNA methylation changes in cytokine genes. RESULTS We identified 170 cytokine genes including 27 hypermethylated CpG sites and 143 genes with hypomethylated sites respectively. Hypermethylated genes, including LIF, HLA-DRB1, HLA-G, MTOR, FADD, TGFB3, MALAT1 and CCL28; hypomethylated genes, including NCSTN, SMAD3, IGF1R, IL1F9, NOD2, NOD1, YY1, DLL1 and BCL2 may contribute to the pathogenesis of HS. These genes were enriched in the 117 different pathways (FDR p-values ≤ 0.05), including IL-4/IL-13 pathways and Wnt/β-catenin signalling. CONCLUSIONS The lack of wound healing, microbiome dysbiosis and increased tumour susceptibility are all sustained by these dysfunctional methylomes, hopefully, capable to be targeted in the next future. Since methylome describes and summarizes genetic and environmental contributions, these data may represent a further step towards a feasible precision medicine also for HS patients.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynaecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Devendrasinh D Jhala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, India
| | - Lavanya V Uppala
- College of Information Science & Technology, The University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, Nebraska, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, A Unit of ICON Krishi Institute Medical Sciences, Visakhapatnam, India
| | | | | | - Sushma Shah
- Department of Obstetrics and Gynaecology, B.J. Medical College, Ahmedabad, India
| | - Nazia Saiyed
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- College of Information Science & Technology, The University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, Nebraska, USA
| | - Santo Raffaele Mercuri
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Milan, Italy
- Italian Center of Precisione Medicine and Chronic Inflammation, Milan, Italy
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Giovanni Damiani
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Milan, Italy
- Italian Center of Precisione Medicine and Chronic Inflammation, Milan, Italy
- Clinical Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Young Dermatologists Italian Network, Milan, Italy
| |
Collapse
|
5
|
Dixit N, Motwani H, Patel SK, Rawal RM, Solanki HA. Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: a network pharmacology integrated molecular docking and dynamics approach. J Biomol Struct Dyn 2023:1-19. [PMID: 37728545 DOI: 10.1080/07391102.2023.2256866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
HepatoCellular Carcinoma, being one of the most mortally convoluted malignancy with mounting number of occurrences across the world and being classified as the third most prevalent cause of cancer-associated mortalities and sixth most prevalent neoplasia. The active phytoconstituent andrographolide, derived from Andrographis paniculata is conveyed to reconcile a number of human ailments including various oncologies. However, the molecular mechanism underlying the anti-oncogenic effects of Andrographolide on HCC remains skeptical and unclear, emerging as a budding challenge for researchers and oncologists. The present study intends to analyze the underlying pharmacological mechanism of Andrographolide over HCC, established via assimilated approach of network pharmacology. Herein, the Network pharmacology stratagem was instigated to investigate potential HCC targets. The Andrographolide targets along with HCC targets were extracted from multiple databases. A total of 162 potential overlapping targets among HCC and Andrographolide were obtained and further subjected to gene ontology and Pathway enrichment analysis by employing OmicsBox and DAVID database, respectively. Subsequently, Protein-protein interaction network construction by Cytoscape software identified the top 10 hub nodes which were validated by survival and expression analysis. Further, the results derived from molecular docking and dynamic simulations by CB-Dock2 server and Desmond module (Schrodinger software) indicate ALB, CCND1, HIF1A, TNF, and VEGFA as potential Andrographolide related targets with high binding affinity and promising complex stability. Our findings not only reveal the antioncogenic role of andrographolide but also provide novel insights illuminating the identified targets as scientific foundation for anti-oncogenic clinical application of andrographolide in HCC therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Harsha Motwani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Hiteshkumar A Solanki
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Shaikh S, Yadav DK, Bhadresha K, Rawal RM. Integrated computational screening and liquid biopsy approach to uncover the role of biomarkers for oral cancer lymph node metastasis. Sci Rep 2023; 13:14033. [PMID: 37640804 PMCID: PMC10462753 DOI: 10.1038/s41598-023-41348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is an abnormal, heterogeneous growth of cells with the ability to invade surrounding tissue and even distant organs. Worldwide, GLOBOCAN had an estimated 18.1 million new cases and 9.6 million death rates of cancer in 2018. Among all cancers, Oral cancer (OC) is the sixth most common cancer worldwide, and the third most common in India, the most frequent type, oral squamous cell carcinoma (OSCC), tends to spread to lymph nodes in advanced stages. Throughout the past few decades, the molecular landscape of OSCC biology has remained unknown despite breakthroughs in our understanding of the genome-scale gene expression pattern of oral cancer particularly in lymph node metastasis. Moreover, due to tissue variability in single-cohort studies, investigations on OSCC gene-expression profiles are scarce or inconsistent. The work provides a comprehensive analysis of changed expression and lays a major focus on employing a liquid biopsy base method to find new therapeutic targets and early prediction biomarkers for lymph node metastasis. Therefore, the current study combined the profile information from GSE9844, GSE30784, GSE3524, and GSE2280 cohorts to screen for differentially expressed genes, and then using gene enrichment analysis and protein-protein interaction network design, identified the possible candidate genes and pathways in lymph node metastatic patients. Additionally, the mRNA expression of discovered genes was assessed using real-time PCR, and the Human Protein Atlas database was utilized to determine the protein levels of hub genes in tumor and normal tissues. Angiogenesis was been investigated using the Chorioallentoic membrane (CAM) angiogenesis test. In a cohort of OSCC patients, fibronectin (FN1), C-X-C Motif Chemokine Ligand 8 (CXCL8), and matrix metallopeptidase 9 (MMP9) were significantly upregulated, corroborating these findings. Our identified significant gene signature showed greater serum exosome effectiveness in early detection and clinically linked with intracellular communication in the establishment of the premetastatic niche. Also, the results of the CAM test reveal that primary OC derived exosomes may have a function in angiogenesis. As a result, our study finds three potential genes that may be used as a possible biomarker for lymph node metastasis early detection and sheds light on the underlying processes of exosomes that cause a premetastatic condition.
Collapse
Affiliation(s)
- Shayma Shaikh
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Deep Kumari Yadav
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Kinjal Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- National Institute of Health, Bethesda, MD, USA
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Rao P, Ninama J, Dudhat M, Goswami D, Rawal RM. Curcumin interferes with chitin synthesis in Aedes aegypti: a computational and experimental investigation. Mol Divers 2023:10.1007/s11030-023-10672-0. [PMID: 37358753 DOI: 10.1007/s11030-023-10672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Throughout history, vector-borne diseases have consistently posed significant challenges to human health. Among the strategies for vector control, chemical insecticides have seen widespread use since their inception. Nevertheless, their effectiveness is continually undermined by the steady growth of insecticide resistance within these vector populations. As such, the demand for more robust, efficient, and cost-effective natural insecticides has become increasingly pressing. One promising avenue of research focuses on chitin, a crucial structural component of mosquitoes' exoskeletons and other insects. Chitin not only provides protection and rigidity but also lends flexibility to the insect body. It undergoes substantial transformations during insect molting, a process known as ecdysis. Crucially, the production of chitin is facilitated by an enzyme known as chitin synthase, making it an attractive target for potential novel insecticides. Our recent study delved into the impacts of curcumin, a natural derivative of turmeric, on chitin synthesis and larval development in Aedes aegypti, a mosquito species known to transmit dengue and yellow fever. Our findings demonstrate that even sub-lethal amounts of curcumin can significantly reduce overall chitin content and disrupt the cuticle development in the 4th instar larvae of Aedes aegypti. Further to this, we utilized computational analyses to investigate how curcumin interacts with chitin synthase. Techniques such as molecular docking, pharmacophore feature mapping, and molecular dynamics (MD) simulations helped to illustrate that curcumin binds to the same site as polyoxin D, a recognized inhibitor of chitin synthase. These findings point to curcumin's potential as a natural, bioactive larvicide that targets chitin synthase in mosquitoes and potentially other insects.
Collapse
Affiliation(s)
- Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jinal Ninama
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mansi Dudhat
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
8
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
9
|
Radhakrishna U, Ratnamala U, Jhala DD, Vadsaria N, Patel M, Uppala LV, Vedangi A, Saiyed N, Rawal RM, Damiani G, Jemec GBE. Cytochrome P450 Genes Mediated by DNA Methylation Are Involved in the Resistance to Hidradenitis Suppurativa. J Invest Dermatol 2023; 143:670-673.e19. [PMID: 36155054 DOI: 10.1016/j.jid.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics & Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA.
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Devendrasinh D Jhala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Nikita Vadsaria
- Department of Bioinformatics, Gujarat University, Ahmedabad, India
| | | | - Lavanya V Uppala
- College of Information Science & Technology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, Visakapatnam, India
| | - Nazia Saiyed
- Department of Obstetrics & Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Giovanni Damiani
- Clinical Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
10
|
Poojara L, K R, Rawal RM. Computational approaches screening DNA aptamers against conserved outer membrane protein W of Vibrio cholerae O1- an investigation expanding the potential for point-of-care detection with aptasensors. J Biomol Struct Dyn 2023:1-12. [PMID: 36812260 DOI: 10.1080/07391102.2023.2181634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Foodborne outbreaks urge public health domain to upgrade diagnosis by means of simpler, quicker, and more affordable pathogen detection methods. A molecular recognition probe against an analyte of interest makes up a biosensor, along with a method for turning the recognition event into a quantifiable signal. Single-stranded DNA or RNA aptamers are promising bio-recognition molecules for a range of targets, including a wide range of non-nucleic acid targets with which they are highly specific and affine. In the proposed study, 40 DNA aptamers were screened and analyzed interactions using in-silico SELEX procedures, which can selectively interact with active sites at the extracellular region of the Outer membrane Protein W (OmpW) of Vibrio Cholerae. Multiple modeling techniques, like protein structural prediction with I-TASSER, aptamer structural modeling using M-fold, RNA composer, protein-DNA docking using HADDOCK, and large-scale (500 ns) molecular dynamics simulations through GROMACS have been employed. Out of 40, six aptamers having lowest free energy were docked against the predicted active site at the extracellular region of OmpW. VBAPT4-OmpW and VBAPT17-OmpW, the two highest-scoring Aptamer-Protein complexes, were chosen for molecular dynamics simulations. VBAPT4-OmpW is quite unable to attain its structural local minima after 500 ns. But VBAPT17-OmpW is showing great stability and is not destructive even after 500 ns. RMSF, DSSP, PCA, and Essential Dynamics all provided additional confirmation. Current findings, combined with the fabrication of biosensor devices, could pave the way for an innovative pathogen detection platform with high sensitivity, along with an effective and low-impact curative strategy for corresponding diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lipi Poojara
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Ram K
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
Motwani H, Patel M, Nanavaty V, Dixit N, Rawal RM, Patel SK, Solanki HA. Small RNA sequencing and identification of Andrographis paniculata miRNAs with potential cross‑kingdom human gene targets. Funct Integr Genomics 2023; 23:55. [PMID: 36725761 DOI: 10.1007/s10142-023-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Cross-species post-transcriptional regulatory potential of plant derived small non-coding microRNAs (miRNAs) has been well documented by plenteous studies. MicroRNAs are transferred to host cells via oral ingestion wherein they play a decisive role in regulation of host genes; thus, miRNAs have evolved as the nascent bioactive molecules imparting pharmacological values to traditionally used medicinal plants. The present study aims to investigate small RNA profiling in order to uncover the potential regulatory role of miRNAs derived from Andrographis paniculata, one of the most widely used herb by tribal communities for liver disorders and document the pharmacological properties of A. paniculata miRNAs. In this study, high-throughput sequencing method was used to generate raw data, ~ 60 million sequences were generated from A. paniculata leaves. Using computational tools and bioinformatics approach, analyses of 3,480,097 clean reads resulted in identification of 3440 known and 51 putative novel miRNAs regulating 1365 and 192 human genes respectively. Remarkably, the identified plausible novel miRNAs apa-miR-5, apa-miR-1, apa-miR-26, and apa-miR-30 are projected to target significant host genes including CDK6, IKBKB, TRAF3, CHD4, MECP2, and ADIPOQ. Subsequent annotations revealed probable involvement of the target genes in various pathways for instance p38-MAPK, AKT, AMPK, NF-Kβ, ERK, WNT signalling, MYD88 dependant cascade, and pathways in cancer. Various diseases such as human papilloma virus infection, Alzheimer's, Non-alcoholic Fatty Liver, Alcoholic liver diseases, HepatoCellular Carcinoma (HCC), and numerous other cancers were predominantly found to be linked with target genes. Our findings postulate novel interpretations regarding modulation of human transcripts by A. paniculata miRNAs and exhibit the regulation of human diseases by plant-derived miRNAs. Though our study elucidates miRNAs as novel therapeutic agents, however, experimental validations for assessment of therapeutic potential of these miRNAs are still warranted.
Collapse
Affiliation(s)
- Harsha Motwani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, Gujarat, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India.
| | - Hitesh A Solanki
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
12
|
Jani SP, Kumar SP, Mangukia N, Patel SK, Pandya HA, Rawal RM. MHC2AffyPred: A machine-learning approach to estimate affinity of MHC class II peptides based on structural interaction fingerprints. Proteins 2023; 91:277-289. [PMID: 36116110 DOI: 10.1002/prot.26428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Understanding how MHC class II (MHC-II) binding peptides with differing lengths exhibit specific interaction at the core and extended sites within the large MHC-II pocket is a very important aspect of immunological research for designing peptides. Certain efforts were made to generate peptide conformations amenable for MHC-II binding and calculate the binding energy of such complex formation but not directed toward developing a relationship between the peptide conformation in MHC-II structures and the binding affinity (BA) (IC50 ). We present here a machine-learning approach to calculate the BA of the peptides within the MHC-II pocket for HLA-DRA1, HLA-DRB1, HLA-DP, and HLA-DQ allotypes. Instead of generating ensembles of peptide conformations conventionally, the biased mode of conformations was created by considering the peptides in the crystal structures of pMHC-II complexes as the templates, followed by site-directed peptide docking. The structural interaction fingerprints generated from such docked pMHC-II structures along with the Moran autocorrelation descriptors were trained using a random forest regressor specific to each MHC-II peptide lengths (9-19). The entire workflow is automated using Linux shell and Perl scripts to promote the utilization of MHC2AffyPred program to any characterized MHC-II allotypes and is made for free access at https://github.com/SiddhiJani/MHC2AffyPred. The MHC2AffyPred attained better performance (correlation coefficient [CC] of .612-.898) than MHCII3D (.03-.594) and NetMHCIIpan-3.2 (.289-.692) programs in the HLA-DRA1, HLA-DRB1 types. Similarly, the MHC2AffyPred program achieved CC between .91 and .98 for HLA-DP and HLA-DQ peptides (13-mer to 17-mer). Further, a case study on MHC-II binding 15-mer peptides of severe acute respiratory syndrome coronavirus-2 showed very close competency in computing the IC50 values compared to the sequence-based NetMHCIIpan v3.2 and v4.0 programs with a correlation of .998 and .570, respectively.
Collapse
Affiliation(s)
- Siddhi P Jani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,BioInnovations, Mumbai, Maharashtra, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
13
|
Chouhan S, Mulani R, Ansari H, Sindhav G, Rao P, Rawal RM, Saraf M, Goswami D. Rapid method for detection, quantification and measuring microbial degradation of pesticide-thiram using high performance thin layer chromatography (HPTLC). Environ Sci Pollut Res Int 2023; 30:7874-7885. [PMID: 36048383 DOI: 10.1007/s11356-022-22731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Thiram (tetramethylthiuramdisulfide) or thiram sulphide is a dithiocarbamate group of non-systemic group of fungicide which are applied for seed treatment, control of the crop pests, to repel animals, etc. Moreover, thiram has also been responsible to cause moderate skin sensitivity and eye irritation. Higher exposure to thiram might also lead to developmental damages to newborn and neurotoxic effects to non-target organisms. Advancing to prevent such toxic effects and prevention of soil fertility from thiram and thiram-like chemicals is indispensable. The analytical High-Performance Thin-Layer Chromatography (HPTLC) is a simple, quick and a reliable method was proposed and validated for the detection and quantification of various small molecules for many years. This manuscript represents the solution to use microbes to degrade the thiram present in the soil and for that, HPTLC based method to study thiram degradation by Pseudomonas has been designed. Herein, a HPTLC protocol formalised to reveal the detection and quantification of thiram within the range of 100 to 700 ng/spot on TLC plate. The same concentration was then used for calculating percent microbial degradation of thiram from the culture broth. To perform the microbial degradation of thiram, Pseudomonas otitidis strain TD-8 and Pseudomonas stutzeri strain TD-18 were taken as thiram degrader microbial strain. The efficacy of TD-8 to degrade thiram was identified to be 81 and 99% when grown in presence of thiram for 4 days and 8 days, respectively, while TD-18 strain's efficacy to degrade thiram was found to be 57% and 99% when grown in presence of thiram for 4 days and 8 days, respectively.
Collapse
Affiliation(s)
- Sonalkunwar Chouhan
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rinkal Mulani
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hafsa Ansari
- Department of Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Sindhav
- Department of Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
14
|
Prajapati J, Rao P, Poojara L, Acharya D, Patel SK, Goswami D, Rawal RM. A Comprehensive in vitro and in silico Assessment on Inhibition of CYP51B and Ergosterol Biosynthesis by Eugenol in Rhizopus oryzae. Curr Microbiol 2023; 80:47. [PMID: 36538133 PMCID: PMC9764306 DOI: 10.1007/s00284-022-03108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Mucormycosis, also known as Zygomycosis, is a disease caused by invasive fungi, predominantly Rhizopus species belonging to the Order of Mucorales. Seeing from the chemistry perspective, heterocyclic compounds with an "azole" moiety are widely employed as antifungal agent for minimising the effect of mucormycosis as a prescribed treatment. These azoles serve as non-competitive inhibitors of fungal CYP51B by predominantly binding to its heme moiety, rendering its inhibition. However, long-term usage and abuse of azoles as antifungal medicines has resulted in drug resistance among certain fungal pathogens. Hence, there is an unmet need to find alternative therapeutic compounds. In present study, we used various in vitro tests to investigate the antifungal activity of eugenol against R. oryzae/R. arrhizus, including ergosterol quantification to test inhibition of ergosterol production mediated antifungal action. The minimum inhibitory concentration (MIC) value obtained for eugenol was 512 μg/ml with reduced ergosterol concentration of 77.11 ± 3.25% at MIC/2 concentration. Further, the molecular interactions of eugenol with fungal CYP51B were meticulously studied making use of proteomics in silico study including molecular docking and molecular dynamics simulations that showed eugenol to be strongly interacting with heme in an identical fashion to that shown by azole drugs (in this case, clotrimazole was evaluated). This is the first of a kind study showing the simulation study of eugenol with CYP51B of fungi. This inhibition results in ergosterol synthesis and is also studied and compared with keeping clotrimazole as a reference.
Collapse
Affiliation(s)
- Jignesh Prajapati
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Priyashi Rao
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Lipi Poojara
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, Gujarat 388001 India
| | - Saumya K. Patel
- grid.411877.c0000 0001 2152 424XDepartment of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat India
| | - Dweipayan Goswami
- grid.411877.c0000 0001 2152 424XDepartment of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rakesh M. Rawal
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India ,grid.411877.c0000 0001 2152 424XDepartment of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
15
|
Bhadresha K, Upadhyay V, Kumar SP, Pandya P, Jain N, Rawal RM. Computational investigation of ginkgetin and theaflavin as potential inhibitors of heat shock protein 90 (Hsp90). J Biomol Struct Dyn 2022; 40:13675-13681. [PMID: 34693877 DOI: 10.1080/07391102.2021.1993344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heat shock protein 90 (Hsp90) is the prime molecular chaperone found to be overexpressed in cancer cells and pose as an anti-cancer therapeutic drug target for cancer chemotherapy. Even drugs are available which inhibit Hsp90, the associated side effects along with multi-drug regimen necessitate the identification of natural molecules to block the activity of Hsp90. In this present investigation, we performed virtual screening of Hsp90 inhibitors from a curated collection of natural molecules with proven pharmacological effects. This process helped in the identification of the top two scoring ligands, ginkgetin and theaflavin with favorable as well as crucial interactions with the Hsp90 ligand-binding pocket. Molecular dynamics simulations of these two natural molecules exhibited minimal fluctuations in the binding pattern of ginkgetin and theaflavin to Hsp90 which retained crucial contacts throughout the simulation time. We anticipate that ginkgetin and theaflavin could act as potent Hsp90 inhibitors which are under current investigation in our laboratory.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Vinal Upadhyay
- Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Pujan Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Nayan Jain
- Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Science, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
16
|
Prajapati J, Goswami D, Dabhi M, Acharya D, Rawal RM. Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation. Comput Biol Med 2022; 151:106237. [PMID: 36327880 DOI: 10.1016/j.compbiomed.2022.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
Ergosterol is the key sterol component in the cell membrane of fungi including moulds and yeasts. Any decrease in the levels of ergosterol in the cell membrane of fungi render them venerable to cell membrane damage and even its death. Majority of antifungal drug targets the key enzymes involved in ergosterol biosynthesis pathway. The biochemical pathway for the synthesis of Ergosterol is a complex one, though the reactions carried by Squalene Epoxidase (SE) and 14α-demethylase (CYP51- a member of Cytochrome P450 family) serves to the key rate limiting reactions that can impact the overall production of Ergosterol. Allylamines class of antifungal drug target SE while Azoles target the CYP51. Currently advancement in the drug development is focused to introduce newer drugs that can simultaneously inhibit both this rate limiting enzymes. However, natural compounds established to possess antifungal activity but the major loophole about their understanding lies in the fact that their mode of action are severely unstudied. One such well-established antifungal natural phytochemical is Eugenol, and in current manuscript we investigated its efficacy to interact with both, SE and CYP51 of Candida albicans using molecular Docking, Free energy change calculations and Molecular Dynamics (MD) simulation, showing promising outcomes. For experimental studies, terbinafine, clotrimazole and eugenol showed 4 μg/ml, 2 μg/ml, and 512 μg/ml MIC90 values, respectively against C. albicans and also showed reduction in Ergosterol production at sub-MIC levels. The obtained result indicates the involvement of eugenol in the inhibition of enzymes require in the ergosterol biosynthesis pathway.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Milan Dabhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, 388001, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India; Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
17
|
Rao P, Goswami D, Rawal RM. Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment. PLoS One 2022; 17:e0269036. [PMID: 35617284 PMCID: PMC9135230 DOI: 10.1371/journal.pone.0269036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Since its origin, the emergence of vector-borne infections has taken a toll on incalculable human lives. The use of chemical insecticides is one of the early known methods of vector control and although their use is still a prevalent way to combat insect population sadly the perils of insects related transmission still persists. Most commonly, the existing insecticides face the wrath of getting resisted repeatedly, paying way to develop resilient, efficient, and cost-effective natural insecticides. In this study, computational screening was performed using homology modelling, E-pharmacophore feature mapping, molecular docking, Density Function Theory (DFT) assessment, Molecular mechanics generalized Born surface area (MM-GBSA) based binding free energy calculations and Molecular Dynamics (MD) simulation to identify a potential lead phytochemical out of a manually curated library from published literature. The protein target used under this study is insect Butyrylcholine esterase (BChE). Additionally, in vitro insect (Aedes aegypti) BChE inhibition assay was also performed with the top phytochemical identified from in silico assessments. Our research highlights that curcumin leads to inhibition of enzyme BChE of Ae. aegypti. The identified mode of action of curcumin as an insect BChE inhibitor indicates the possibility of its use as an environment friendly and natural futuristic insecticide.
Collapse
Affiliation(s)
- Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
18
|
Sharma A, Yadav D, Rao P, Sinha S, Goswami D, Rawal RM, Shrivastava N. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Comput Biol Med 2022; 146:105688. [DOI: 10.1016/j.compbiomed.2022.105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023]
|
19
|
Bijani S, Iqbal D, Mirza S, Jain V, Jahan S, Alsaweed M, Madkhali Y, Alsagaby SA, Banawas S, Algarni A, Alrumaihi F, Rawal RM, Alturaiki W, Shah A. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. Life (Basel) 2022; 12:life12040519. [PMID: 35455010 PMCID: PMC9029820 DOI: 10.3390/life12040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
A library of 1,4-dihydropyridine-based 1,2,3-triazol derivatives has been designed, synthesized, and evaluated their cytotoxic potential on colorectal adenocarcinoma (Caco-2) cell lines. All compounds were characterized and identified based on their 1H and 13C NMR (Nuclear Magnetic Resonance) spectroscopic data. Furthermore, molecular docking of best anticancer hits with target proteins (protein kinase CK2α, tankyrase1, and tankyrase2) has been performed. Our results implicated that most of these compounds have significant antiproliferative activity with IC50 values between 0.63 ± 0.05 and 5.68 ± 0.14 µM. Moreover, the mechanism of action of most active compounds 13ab′ and 13ad′ suggested that they induce cell death through apoptosis in the late apoptotic phase as well as dead phase, and they could promote cell cycle arrest at the G2/M phase. Furthermore, the molecular docking study illustrated that 13ad′ possesses better binding interaction with the catalytic residues of target proteins involved in cell proliferation and antiapoptotic pathways. Based on our in vitro and in silico study, 13ad′ was found to be a highly effective anti-cancerous compound. The present data indicate that dihydropyridine-linked 1,2,3-triazole conjugates can be generated as potent anticancer agents.
Collapse
Affiliation(s)
- Sabera Bijani
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.S.)
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Vicky Jain
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51425, Saudi Arabia;
| | - Rakesh M. Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Anamik Shah
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
- B/H Forensic Laboratory, Saurashtra University Karmachari Cooperative Society, Rajkot 360005, Gujarat, India
- Correspondence: (D.I.); (A.S.)
| |
Collapse
|
20
|
Kumar SP, Dixit NY, Patel CN, Rawal RM, Pandya HA. PharmRF: A machine-learning scoring function to identify the best protein-ligand complexes for structure-based pharmacophore screening with high enrichments. J Comput Chem 2022; 43:847-863. [PMID: 35301752 DOI: 10.1002/jcc.26840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/09/2022]
Abstract
Structure-based pharmacophore models are often developed by selecting a single protein-ligand complex with good resolution and better binding affinity data which prevents the analysis of other structures having a similar potential to act as better templates. PharmRF is a pharmacophore-based scoring function for selecting the best crystal structures with the potential to attain high enrichment rates in pharmacophore-based virtual screening prospectively. The PharmRF scoring function is trained and tested on the PDBbind v2018 protein-ligand complex dataset and employs a random forest regressor to correlate protein pocket descriptors and ligand pharmacophoric elements with binding affinity. PharmRF score represents the calculated binding affinity which identifies high-affinity ligands by thorough pruning of all the PDB entries available for a particular protein of interest with a high PharmRF score. Ligands with high PharmRF scores can provide a better basis for structure-based pharmacophore enumerations with a better enrichment rate. Evaluated on 10 protein-ligand systems of the DUD-E dataset, PharmRF achieved superior performance (average success rate: 77.61%, median success rate: 87.16%) than Vina docking score (75.47%, 79.39%). PharmRF was further evaluated using the CASF-2016 benchmark set yielding a moderate correlation of 0.591 with experimental binding affinity, similar in performance to 25 scoring functions tested on this dataset. Independent assessment of PharmRF on 8 protein-ligand systems of LIT-PCBA dataset exhibited average and median success rates of 57.55% and 74.72% with 4 targets attaining success rate > 90%. The PharmRF scoring model, scripts, and related resources can be accessed at https://github.com/Prasanth-Kumar87/PharmRF.
Collapse
Affiliation(s)
- Sivakumar Prasanth Kumar
- Institute of Defence Studies and Research, Gujarat University, Ahmedabad, India.,Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India.,Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Nandan Y Dixit
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Institute of Defence Studies and Research, Gujarat University, Ahmedabad, India.,Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Himanshu A Pandya
- Institute of Defence Studies and Research, Gujarat University, Ahmedabad, India.,Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India.,Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
21
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
22
|
Patel CN, Goswami D, Jaiswal DG, Jani SP, Parmar RM, Rawal RM, Pandya HA. Excavating phytochemicals from plants possessing antiviral activities for identifying SARS-CoV hemagglutinin-esterase inhibitors by diligent computational workflow. J Biomol Struct Dyn 2022; 41:2382-2397. [PMID: 35098887 DOI: 10.1080/07391102.2022.2033642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coronaviruses (CoVs) belong to a group of RNA viruses that cause diseases in vertebrates including. Newer and deadlier than SARS CoV-2 are sought to appear in future for which the scientific community must be prepared with the strategies for their control. Spike protein (S-protein) of all the CoVs require angiotensin-converting enzyme2 (ACE2), while CoVs also require hemagglutinin-acetylesterase (HE) glycoprotein receptor to simultaneously interact with O-acetylated sialic acids on host cells, both these interactions enable viral particle to enter host cell leading to its infection. Target inhibition of viral S-protein and HE glycoprotein receptor can lead to a development of therapy against the SARS CoV-2. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask the active site of, HE glycoprotein which would ideally bind to O-acetylated sialic acids on human host cells. Such molecules can be addressed as 'HE glycoprotein blockers'. A library of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica was constructed and was used under present study. In silico analysis was employed with plant-derived phytochemicals. The molecular docking, molecular dynamics simulations over the scale of 1000 ns (1 μs) and ADMET prediction revealed that the Withania somnifera (ashwagandha) and Asparagus racemosus (shatavari) plants possessed various steroidal saponins and alkaloids which could potentially inhibit the COVID-19 virus and even other CoVs targeted HE glycoprotein receptor.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharmesh G Jaiswal
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Siddhi P Jani
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Robin M Parmar
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
23
|
Prajapati J, Rao P, Poojara L, Goswami D, Acharya D, Patel SK, Rawal RM. Unravelling the antifungal mode of action of curcumin by potential inhibition of CYP51B: A computational study validated in vitro on mucormycosis agent, Rhizopus oryzae. Arch Biochem Biophys 2021; 712:109048. [PMID: 34600893 DOI: 10.1016/j.abb.2021.109048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Like human, fungi too are known to share lot of structural similarities amongst their CYPs (Cytochrome P450 super family of enzymes) which allows antifungal 'azole' compounds to interact with CYPs of human. Clotrimazole, an 'azole' antifungal drug, is a known inhibitor of fungal CYP named CYP51B. Curcumin, a phytochemical obtained from Curcuma longa has the ability to interact with several different human CYPs to induce inhibition. The sequence and the structural similarities amongst both human and fungal CYPs suggest a strong possibility for curcumin to interact with fungal CYP51B to behave like an antifungal agent. To test this hypothesis a study was designed involving mucormycosis agent, Rhizopus oryzae. The ability of curcumin to interact with fungal CYP51B was analysed computationally through molecular docking, MM-GBSA and Molecular Dynamics (MD) simulation assessment. Further, interaction profile for fungal CYP51B-curcumin was compared with human CYP3A4-curcumin, as there are published evidence describing curcumin as an inhibitor of human CYPs. Additionally, to validate in silico findings, an in vitro assay was performed to examine the antifungal potentials of curcumin on the R. oryzae. Conclusive results allow us to determine a plausible mode of action of curcumin to act as an antifungal against a mucormycosis agent.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Lipi Poojara
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, 388001, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
24
|
Patel CN, Jani SP, Jaiswal DG, Kumar SP, Mangukia N, Parmar RM, Rawal RM, Pandya HA. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (M pro) inhibitor using docking and molecular dynamics simulations. Sci Rep 2021; 11:20295. [PMID: 34645849 PMCID: PMC8514552 DOI: 10.1038/s41598-021-99165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Novel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Siddhi P Jani
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Dharmesh G Jaiswal
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
- BioInnovations, Bhayander (West), Mumbai, 401101, India
| | - Robin M Parmar
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
25
|
Patel R, Prajapati J, Rao P, Rawal RM, Saraf M, Goswami D. Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation. Mol Divers 2021; 26:2189-2209. [PMID: 34591234 PMCID: PMC8481324 DOI: 10.1007/s11030-021-10325-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Papain-like protease (nsp-3; non-structural protein) of novel corona virus is an ideal target for developing drugs as it plays multiple important functions for viral growth and replication. For instance, role of nsp-3 has been recognized in cleavage of viral polyprotein; furthermore, in infected host it weakens the immune system via downregulating the production of type I interferon. This downregulation is promoted by removal of ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon-responsive factor 3 (IRF3) protein. Among known inhibitors of SARS-CoV-PLpro GRL0617 is by far the most effective inhibitor. As PLpro of SARS-CoV2 is having more than 80% similarity with SARS-CoV-PLpro, GRL0617 is reported to be effective even against SARS-CoV2. Owing to this similarity, certain key amino acids remain the same/conserved in both proteins. Among conserved amino acids Tyr268 for SARS-CoV2 and Tyr269 for SARS-CoV produce important hydrophobic interactions with aromatic rings of GRL0617. Here, in this study antibacterial compounds were collected from ZINC database, and they were filtered to select compounds that are having similar structural features as GRL0617. This filtered library of compound was then docked with SARS-CoV and CoV2-PLpro. Five hits were noted that were able to interact with Tyr268 (SARS-CoV2) and Tyr269 (SARS-CoV). Further, best hit 2-(2-((benzofuran-2-carboxamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid (ZINC44459905) was studied using molecular dynamic simulation where stability of protein–ligand complex as well as stability of produced interactions was noted.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyashi Rao
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
26
|
Rao P, Goswami D, Rawal RM. Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor. Sci Rep 2021; 11:17474. [PMID: 34471175 PMCID: PMC8410813 DOI: 10.1038/s41598-021-96963-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Emergence of vector borne diseases has continued to take toll on millions of lives since its inception. The use of insecticides began as vector control strategy in the early 1900's but the menace of insects is still prevalent. Additionally, the inadequate use of organophosphates and carbamates which target acetylcholine esterase (AChE), are known to develop resistance amongst vectors of transmission and are toxic to humans. In this study, extensive computational screening was performed using homology modelling, molecular docking, molecular dynamics (MD) simulation and free energy change calculation, which highlighted curcumin as a lead molecule out of ~ 1700 phytochemicals against Culex pipiens AChE. In vivo larvicidal activity was carried out along with in vivo and in vitro AChE inhibition assay to determine the biochemical efficacy of curcumin. Our study reveals that curcumin induces mortality in Cx. pipiens at an early stage of its life cycle by AChE inhibition. This also underlines the use of curcumin as a coming-age natural product insecticide.
Collapse
Affiliation(s)
- Priyashi Rao
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Dweipayan Goswami
- grid.411877.c0000 0001 2152 424XDepartment of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rakesh M. Rawal
- grid.411877.c0000 0001 2152 424XDepartment of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
27
|
Prajapati J, Goswami D, Rawal RM. Endophytic fungi: A treasure trove of novel anticancer compounds. Curr Res Pharmacol Drug Discov 2021; 2:100050. [PMID: 34909676 PMCID: PMC8663939 DOI: 10.1016/j.crphar.2021.100050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer is a multifactorial disease with a convoluted genesis and progression. The emergence of multidrug resistance to presently be offered drug and relapse is by far, the most critical concern to tackle this deteriorating disease. Henceforth, there is undeniably an inflated necessity for safe, promising, and less harmful new anticancer drugs. Natural compounds from various sources like plants, animals, and microorganisms have occupied a center stage in drug discovery due to their tremendous chemical diversity and potential as therapeutic agents. Endophytic microbes are symbiotically associated with plants and have been proven to produce novel or analogues of host bioactive metabolites exhibiting a variety of biological activities including anticancer activity. This review emphasizes on structurally diverse unprecedented anticancer natural compounds that have been reported exclusively from endophytic fungi from 2016 to 2020. It covers chemical nature of metabolites, its fungal source associated with terrestrial, as well as marine plants and anticancer activity based on their cytotoxicity profile against various cancer cell lines. Many of these fungal metabolites with promising anticancer activity can be used as lead molecules for in silico experiments and deserve special attention from scientists for further in vitro and clinical research.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M. Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
28
|
Mangukia N, Rao P, Patel K, Pandya H, Rawal RM. Identifying potential human and medicinal plant microRNAs against SARS-CoV-2 3'UTR region: A computational genomics assessment. Comput Biol Med 2021; 136:104662. [PMID: 34311261 PMCID: PMC8288231 DOI: 10.1016/j.compbiomed.2021.104662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
The coronavirus disease of 2019 (COVID-19) began as an outbreak and has taken a toll on human lives. The current pandemic requires scientific attention; hence we designed a systematic computational workflow to identify the cellular microRNAs (miRNAs) from human host possessing the capability to target and silence 3′UTR of SARS-CoV-2 genome. Based on this viewpoint, we extended our miRNA search to medicinal plants like Ocimum tenuiflorum, Zingiber officinale and Piper nigrum, which are well-known to possess antiviral properties, and are often consumed raw or as herbal decoctions. Such an approach, that makes use of miRNA of one species to interact and silence genes of another species including viruses is broadly categorized as cross-kingdom interactions. As a part of our genomics study on host-virus-plant interaction, we identified one unique 3′UTR conserved site ‘GGAAGAG’ amongst 5024 globally submitted SARS-CoV-2 complete genomes, which can be targeted by the human miRNA ‘hsa-miR-1236–3p’ and by Z. officinale miRNA ‘zof-miR2673b’. Additionally, we also predicted that the members of miR477 family commonly found in these three plant genomes possess an inherent potential to silence viral genome RNA and facilitate antiviral defense against SARS-CoV-2 infection. In conclusion, this study reveals a universal site in the SARS-CoV-2 genome that may be crucial for targeted therapeutics to cure COVID-19.
Collapse
Affiliation(s)
- Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India; BioInnovations, Bhayander (West), Mumbai, 401101, Maharashtra, India.
| | - Priyashi Rao
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Kamlesh Patel
- Advait Theragnostics, GUSEC, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
29
|
Bhadresha KP, Jain NK, Rawal RM. Assessing the Protective Effect of Moringa oleifera Extract against Bone Metastasis: An In Vitro Simulated Digestion Approach. Nutr Cancer 2021; 74:1023-1036. [PMID: 34170200 DOI: 10.1080/01635581.2021.1933099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moringa oleifera possesses numerous advantageous effects like anti-microbial, antioxidant, and anti-inflammatory, leaves contain a high multiplicity of the bioactive compound; however, little is identified about its bioaccessibility. The objective of this study was to assess the bioefficacy, bioaccessible and anticancer activity of Moringa oleifera in a PC3 cell line before and after simulated in vitro digestion. Digested and non-digested extracts were prepared and evaluated for total polyphenols, flavonoids, and total antioxidant capacity by spectrophotometric analysis and LCMS analysis. Cell viability, apoptosis, colony formation, cell cycle, Glutathione level, and gene expression study were tested with Moringa oleifera (MO) and digested Moringa oleifera (DMO). Results revealed that total polyphenols, total flavonoids, and TAC were significantly (P < 0.05) reduced after in vitro digestion. Furthermore, biological activity against the PC3 cell line showed that DMO extracts significant cytotoxic and reduced cell vitality compared to the MO. In addition, DMO extract had a noteworthy effect in apoptosis and inhibiting the colony formation ability; while cell cycle was blocked in S phase by both extracts but significant effect showed in DMO. These studies have increased understanding of the influence of in vitro simulation digestion on the biological activity effect of M. oleifera against prostate cancer bone metastasis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1933099 .
Collapse
Affiliation(s)
- Kinjal P Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Nayan K Jain
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
30
|
Jha N, Mangukia N, Patel MP, Bhavsar M, Gadhavi H, Rawal RM, Patel SK. Exploring the MiRnome of Carica papaya: A cross kingdom approach. Gene Reports 2021. [DOI: 10.1016/j.genrep.2021.101089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Parmar P, Rao P, Sharma A, Shukla A, Rawal RM, Saraf M, Patel BV, Goswami D. Meticulous assessment of natural compounds from NPASS database for identifying analogue of GRL0617, the only known inhibitor for SARS-CoV2 papain-like protease (PLpro) using rigorous computational workflow. Mol Divers 2021; 26:389-407. [PMID: 34008129 PMCID: PMC8130811 DOI: 10.1007/s11030-021-10233-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 02/11/2023]
Abstract
The latest global outbreak of 2019 respiratory coronavirus disease (COVID-19) is triggered by the inception of novel coronavirus SARS-CoV2. If recent events are of any indicators of the epidemics of past, it is undeniable to state a fact that the SARS-CoV2 viral infection is highly transmissible with respect to its previously related SARS-CoV’s. Papain-like protease (PLpro) is an enzyme that is required by the virus itself for replicating into the host system; and it does so by processing its polyproteins into a functional replicase complex. PLpro is also known for downregulating the genes responsible for producing interferons, an essential family of molecules produced in response to viral infection, thus making this protein an indispensable drug target. In this study, PLpro inhibitors were identified through high throughput structure-based virtual screening approach from NPASS natural product library possessing ~ 35,000 compounds. Top five hits were scrutinised based on structural aromaticity and ability to interact with a key active site residue of PLpro, Tyr268. For second level of screening, the MM-GBSA End-Point Binding Free Energy Calculation of the docked complexes was performed, which identified Caesalpiniaphenol A as the best hit. Caesalpiniaphenol A not only possess a double ring aromatic moiety but also has lowest minimum binding energy, which is at par with the control GRL0617, the only known inhibitor of SARS-CoV2 PLpro. Details of the Molecular Dynamics (MD) simulation and ADMET analysis helped to conclusively determine Caesalpiniaphenol A as potentially an inhibitor of SARS-CoV2 PLpro.
Collapse
Affiliation(s)
- Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.,Department of Biological Sciences and Biotechnology, University of Innovation, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.,Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Baldev V Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
32
|
Patel KR, Brahmbhatt JG, Pandya PA, Bhadresha K, Daraji DG, Patel HD, Rawal RM, Baran SK, Jayanthi S. Design, Synthesis and Biological Evaluation of Novel 5‐Phenyl‐5‐(thiophen‐2‐yl)‐4
H
‐1,2,4‐triazole‐3‐thiols as an Anticancer Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krupa R. Patel
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Jpan G. Brahmbhatt
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Pranav A. Pandya
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Kinjal Bhadresha
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Drashti G. Daraji
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Hitesh D. Patel
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Rakesh M. Rawal
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Sujit K. Baran
- Department of Chemistry The M. S. University of Baroda Vadodara 390002 Gujarat India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab School of Bio Sciences and Technology Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| |
Collapse
|
33
|
Upadhyay VA, Shah KA, Makwana DP, Raval AP, Shah FD, Rawal RM. Putative stemness markers octamer-binding transcription factor 4, sex-determining region Y-box 2, and NANOG in non-small cell lung carcinoma: A clinicopathological association. J Cancer Res Ther 2020; 16:804-810. [PMID: 32930122 DOI: 10.4103/jcrt.jcrt_213_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The promising improvement in the clinical outcome of lung cancer can be possibly achieved by identification of the molecular events that underlie its pathogenesis. Cancer stem cell (CSC) being one of the subsets of tumor majorly participates in drug resistance and treatment failure because of the moderate cell cycle, lower proliferation, and increased expression of DNA repair and anti-apoptosis genes. Although many putative CSC markers exist, a precise characterization for non-small cell lung cancer is of utmost importance due to increased mortality rate and lack of targeted therapies. Hence, the article focuses on the expression of stemness-associated markers, namely octamer-binding transcription factor 4 (OCT4), NANOG, and sex-determining region Y-box 2 (SOX2) in non-small cell lung cancer (NSCLC) patients. Methods The expression of OCT4, NANOG, and SOX2 were evaluated in 32 histopathologically confirmed NSCLC tissues using real-time polymerase chain reaction. The obtained expression was correlated with clinical and pathological manifestations using the statistical test such as Student's t-test and Pearson correlation in varied statistical software. Results Results showed a significantly higher expression of OCT4 and NANOG compared to SOX2 in the tumor tissues. When the expression of these markers was correlated with the clinical parameters, higher expression was seen in males, patients with age above 60 years, and in adenocarcinoma subtype. In correlation with the habit, higher expression of OCT4 and SOX2 was observed in habituated patients. Expression of NANOG and OCT4 was higher even in patients with poor differentiation. Conclusion The expression and prognostic significance of CSC markers obviously vary depending on histological NSCLC subtype. Importantly, our findings suggest that OCT4, SOX2, and NANOG network together may be promising for ongoing targeted therapies in specific NSCLC subgroups.
Collapse
Affiliation(s)
- Vinal A Upadhyay
- Department of Cancer Biology, Stem Cell Biology Laboratory, The Gujarat Cancer and Research Institute, Civil Hospital, Ahmedabad, Gujarat, India
| | - Kanisha A Shah
- Department of Cancer Biology, Stem Cell Biology Laboratory, The Gujarat Cancer and Research Institute, Civil Hospital, Ahmedabad, Gujarat, India
| | - Dimple P Makwana
- Department of Cancer Biology, Stem Cell Biology Laboratory, The Gujarat Cancer and Research Institute, Civil Hospital, Ahmedabad, Gujarat, India
| | - Apexa P Raval
- Department of Cancer Biology, Stem Cell Biology Laboratory, The Gujarat Cancer and Research Institute, Civil Hospital, Ahmedabad, Gujarat, India
| | - Franky Dhaval Shah
- Department of Cancer Biology, Stem Cell Biology Laboratory, The Gujarat Cancer and Research Institute, Civil Hospital, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
34
|
Patel CN, Kumar SP, Rawal RM, Thaker MB, Pandya HA. Development of cardiotoxicity model using ligand-centric and receptor-centric descriptors. Toxicology Research and Application 2020. [DOI: 10.1177/2397847320971259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Bioinformatics and statistical analysis have been employed to develop a classification model to distinguish toxic and non-toxic molecules. Aims: The primary objective of this study is to enumerate the cut-off values of various physico-chemical (ligand-centric) and target interaction (receptor-centric) descriptors which forms the basis for classifying cardiotoxic and non-toxic molecules. We also sought correlation of molecular docking, absorption, distribution, metabolism, excretion, and toxicology (ADMET) parameters, Lipinski rules, physico-chemical parameters, etc. of human cardiotoxicity drugs. Methods: A training and test set of 91 compounds were applied to linear discriminant analysis (LDA) using 2D and 3D descriptors as discriminating variables representing various molecular modeling parameters to identify which function of descriptor type is responsible for cardiotoxicity. Internal validation was performed using the leave-one-out cross-validation methodology ensuing in good results, assuring the stability of the discriminant function (DF). Results: The values of the statistical parameters Fisher Discriminant Analysis (FDA) and Wilk’s λ for the DF showed reliable statistical significance, as long as the success rate in the prediction for both the training and the test set attained more than 93% accuracy, 87.50% sensitivity and 94.74% specificity. Conclusion: The predictive model was built using a hybrid approach using organ-specific targets for docking and ADMET properties for the FDA (Food and Drug Administration) approved and withdrawn drugs. Classifiers were developed by linear discriminant analysis and the cut-off was enumerated by receiver operating characteristic curve (ROC) analysis to achieve reliable specificity and sensitivity.
Collapse
|