1
|
Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Hussain M, El-Ghorab AH, Umar M, Al Jbawi E. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. International Journal of Food Properties 2023. [DOI: 10.1080/10942912.2023.2166951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Ijaz Khalil
- Institute of Food and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahzadi Neelum
- Department of Biochemistry, Hamdard University, Karachi, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Mushtaq Z, Aslam M, Imran M, Abdelgawad MA, Saeed F, Khursheed T, Umar M, Abdulmonem WA, Ghorab AHA, Alsagaby SA, Tufail T, Raza MA, Hussain M, Al JBawi E. Polymethoxyflavones: an updated review on pharmacological properties and underlying molecular mechanisms. International Journal of Food Properties 2023. [DOI: 10.1080/10942912.2023.2189568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed H. Al Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory sciences, College of Applied Medical Sciences, Majmaah University, AI Majmaah, Saudi Arabia
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
3
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. International Journal of Food Properties 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Mahrous NN, Jamous YF, Almatrafi AM, Fallatah DI, Theyab A, Alanati BH, Alsagaby SA, Alenazi MK, Khan MI, Hawsawi YM. A Current Landscape on Alport Syndrome Cases: Characterization, Therapy and Management Perspectives. Biomedicines 2023; 11:2762. [PMID: 37893135 PMCID: PMC10604007 DOI: 10.3390/biomedicines11102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Alport syndrome (AS) is a rare genetic disorder categorized by the progressive loss of kidney function, sensorineural hearing loss and eye abnormalities. It occurs due to mutations in three genes that encode for the alpha chains of type IV collagen. Globally, the disease is classified based on the pattern of inheritance into X-linked AS (XLAS), which is caused by pathogenic variants in COL4A5, representing 80% of AS. Autosomal recessive AS (ARAS), caused by mutations in either COL4A3 or COL4A4, represents 15% of AS. Autosomal dominant AS (ADAS) is rare and has been recorded in 5% of all cases due to mutations in COL4A3 or COL4A4. This review provides updated knowledge about AS including its clinical and genetic characteristics in addition to available therapies that only slow the progression of the disease. It also focuses on reported cases in Saudi Arabia and their prevalence. Moreover, we shed light on advances in genetic technologies like gene editing using CRISPR/Cas9 technology, the need for an early diagnosis of AS and managing the progression of the disease. Eventually, we provide a few recommendations for disease management, particularly in regions like Saudi Arabia where consanguineous marriages increase the risk.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia;
| | - Yahya F. Jamous
- The National Center of Vaccines and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Ahmad M. Almatrafi
- Department of Biological Sciences, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Deema I. Fallatah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah 11481, Saudi Arabia;
- Department of Biochemistry & Molecular Medicine, College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Bayan H. Alanati
- Center for Synthetic Microbiology, Bioinformatics Core Facility, University of Marburg, 35032 Marburg, Germany;
| | - Suliman A. Alsagaby
- Department of Medicinal Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Munifa K. Alenazi
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| | - Yousef M. Hawsawi
- Department of Biochemistry & Molecular Medicine, College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| |
Collapse
|
5
|
Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA. Mechanistic elucidation of Juglanthraquinone C targeting breast Cancer: A network Pharmacology-based investigation. Saudi J Biol Sci 2023; 30:103705. [PMID: 37425621 PMCID: PMC10329161 DOI: 10.1016/j.sjbs.2023.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Despite the recent treatment options like surgery, chemotherapy etc. the lethality of breast cancer is alarming. Natural compounds are considered a better treatment option against breast carcinoma because of their lower side effects and specificity in targeting important proteins involved in the aberrant activation of pathways in breast cancer. A recently discovered compound called Juglanthraquinone C, which is found in the bark of the Juglans mandshurica Maxim (Juglandaceae) tree has shown promising cytotoxicity in hepatocellular carcinoma. However, not much data is available on the molecular mechanisms followed by this compound. Therefore, we aimed to investigate the molecular mechanism followed by Juglanthraquinone C against breast cancer. We used the network pharmacology technique to analyse the mechanism of action of Juglanthraquinone C in breast cancer and validated our study by applying various computational tools such as UALCAN, cBioportal, TIMER, docking and simulation. The results showed the compound and breast cancer target network shared 31 common targets. Moreover, we observed that Juglanthraquinone C targets multiple deregulated genes in breast cancer such as TP53, TGIF1, IGF1R, SMAD3, JUN, CDC42, HBEGF, FOS and signaling pathways such as PI3K-Akt pathway, TGF-β signaling pathway, MAPK pathway and HIPPO signaling pathway. A docking examination revealed that the investigated drug had a high affinity for the primary target TGIF1 protein. A stable protein-ligand combination was generated by the best hit molecule, according to molecular dynamics modeling. The main aim of this study was to examine Juglanthraquinone C's significance as a prospective breast cancer treatment and to better understand the molecular mechanism this substance uses in breast cancer since there is a need to discover new therapeutics to decrease the load on current therapeutics which also are currently ineffective due to several side effects and development of drug resistance.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Mustfa Alkhanani
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, KSA
| | - Abdullah Almilaibary
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, 31991, KSA
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah 11932, KSA
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
6
|
Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA. A network pharmacology-based investigation of brugine reveals its multi-target molecular mechanism against Breast Cancer. Med Oncol 2023; 40:202. [PMID: 37308611 DOI: 10.1007/s12032-023-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Breast cancer represents the leading cause of mortality among women worldwide. Since the complexity of breast cancer as a disease resides in its heterogeneity as it consists of several subtypes such as hormone receptor-positive subtypes: Luminal A, Luminal B, Her2- overexpressed, basal-like and hormone receptor-negative subtype: TNBC. Among all the subtypes, triple negative breast cancer (TNBC) is the most lethal and complex subtype. Moreover, the available treatment options like surgery, radiation therapy, and chemotherapy are not sufficient because of the associated side effects and drug resistance development. Therefore, discovery of new effective natural compounds with anti-tumor activity is required. In this pursuit, marine organisms provide a plentiful supply of such chemicals compounds. A marine compound Brugine found in the bark and stem of mangrove species Bruguiera sexangula is a potential anti-cancer compound. It has shown its cytotoxic activity against sarcoma 180 and lewis lung cancer. The molecular processes, however, are currently unknown. So, in order to research the molecular pathways this compound utilizes, we sought to apply a network pharmacology approach. The network pharmacology strategy we used in this investigation to identify and evaluate possible molecular pathways involved in the treatment of breast cancer with brugine was supported by simulation and molecular docking experiments. The study was conducted using various databases such as the cancer genome atlas (TCGA) for the genetic profile study of breast cancer, Swiss ADME for studying the pharmacodynamic study of brugine, Gene cards for collection of information of genes, STRING was used to study the interaction among proteins, AutoDock vina was to study the binding efficacy of brugine with the best fit protein. The results showed that the compound and breast cancer target network shared 90 common targets. According to the functional enrichment analysis brugine exhibited its effects in breast cancer via modulating certain pathways such as cAMP signaling pathway, JAK/STAT pathway, HIF-1 signaling pathway PI3K-Akt pathway, calcium signaling pathway, and Necroptosis. Molecular docking investigations demonstrated that the investigated marine compound has a high affinity for the key target, protein kinase A (PKA). A stable protein-ligand combination was created by the best hit molecule, according to molecular dynamics modeling. The purpose of this research was to examine the importance of brugine as a potentially effective treatment for breast cancer and to obtain knowledge of the molecular mechanism used by this substance in breast cancer.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Science, University of Hafr Al-Batin, Hafr Al Batin, 31991, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha, 65511, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, CAMS, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Mir SA, Madkhali Y, Firoz A, Al Othaim A, Alturaiki W, Almalki SG, Algarni A, Alsagaby SA. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton's Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules 2023; 28:molecules28083287. [PMID: 37110523 PMCID: PMC10144307 DOI: 10.3390/molecules28083287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable neoplasm of B-lymphocytes, which accounts for about one-third of all leukemias. Ocimum sanctum, an herbaceous perennial, is considered as one of the important sources of drugs for the treatment of various diseases, including cancers and autoimmune diseases. The present study was designed to screen various phytochemicals of O. sanctum for discovering their potential to inhibit Bruton's tyrosine kinase (BTK), a well-known drug target of CLL. Various phytochemicals of O. sanctum were screened for their potential to inhibit BTK using several in silico protocols. First, the molecular docking approach was used to calculate the docking scores of the selected phytochemicals. Then, the selected top-ranked phytochemicals were screened for their physicochemical characteristics using ADME analysis. Finally, the stability of the selected compounds in their corresponding docking complexes with BTK was analysed using molecular dynamics simulations. Primarily, our observations revealed that, out of the 46 phytochemicals of O. sanctum, six compounds possessed significantly better docking scores (ranging from -9.2 kcal/mol to -10 kcal/mol). Their docking scores were comparable to those of the control inhibitors, acalabrutinib (-10.3 kcal/mol), and ibrutinib (-11.3 kcal/mol). However, after ADME analysis of these top-ranked six compounds, only three compounds (Molludistin, Rosmarinic acid, and Vitexin) possessed drug likeliness characteristics. During the MD analysis, the three compounds Molludistin, Rosmarinic acid, and Vitexin were found to remain stable in the binding pocket in their corresponding docking complexes with BTK. Therefore, among the 46 phytochemicals of O. sanctum tested in this study, the three compounds, Molludistin, Rosmarinic acid, and Vitexin are the best inhibitors of BTK. However, these findings need to be confirmed by biological experiments in the laboratory.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
8
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Author Correction: Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2023; 27:443. [PMID: 36734699 DOI: 10.26355/eurrev_202301_31044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Correction to: European Review for Medical and Pharmacological Sciences 2022; 26 (22): 8713-8718. DOI: 10.26355/eurrev_202212_30543- PMID: 36524490-published online on December 15, 2022. After publication, the authors applied a correction to the funding statement: The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (lFP-2020-36). There are amendments to this paper. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/30543.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2022; 26:8713-8718. [PMID: 36524490 DOI: 10.26355/eurrev_202212_30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The ensuing ischemia due to the disruption of blood supply to the brain is one of the most common causes of stroke. Evidence suggests a clear association of the ischemic injury with vascular dementia and Alzheimer's disease (AD). In response to the brain ischemia, a cascade reaction starts leading to neuronal damage due to oxidative stress and other inflammatory mediators. A pilot study was done, which showed that following stroke, monomeric-C-reactive protein (mCRP) is expressed in large quantities around the infarcted zone and this CRP is able to induce neurodegeneration and inflammation potentially perpetuating dementia. MATERIALS AND METHODS We examined both patient brain samples and excised mouse brain tissue, previously injected with 1.75 mg/mL mCRP into the CA1 area of the hippocampus through the stereotactic surgical procedures and followed them over a period of over 6 months. The distribution of mCRP was examined through immunohistochemistry (mouse anti-human mCRP-specific antibodies 8C10). RESULTS We observed a novel finding: those micro vessels close to the injection location were strongly stained with mCRP only in the mice that had been injected with mCRP, indicating that this small blood vessel can spread it throughout the brain. CONCLUSIONS mCRP found in the brain after a hemorrhagic stroke promotes damage over a large area via the induction of inflammation and degeneration of perivascular compartments.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jabeen S, Khan AU, Ahmed W, Ahmad MUD, Jafri SA, Bacha U, Ali A, Muzammil HS, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Riaz M, Mahwish, Nasir M, Zafar A, Tufail T, Imran M, Anwar Faridi T, Aslam M, Abid Shah SF, Farooq S, Awan TN, Ur-Rehman H. Corrigendum: Disease specific symptoms indices in patients with celiac disease—A hardly recognised entity. Front Nutr 2022; 9:1073102. [DOI: 10.3389/fnut.2022.1073102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
|
11
|
Mir SA, Noor M, Manzar MD, Alshehri B, Alaidarous M, Dukhyil AAB, Banawas S, Madkhali Y, Jahan S, Kashoo FZ, Iqbal D, Zia Q, Alsagaby SA, ALDosari S. Prevalence of rheumatoid arthritis and diagnostic validity of a prediction score, in patients visiting orthropedic clinics in the Madinah region of Saudi Arabia: a retrospective cross-sectional study. PeerJ 2022; 10:e14362. [PMID: 36405025 PMCID: PMC9673770 DOI: 10.7717/peerj.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction In Saudi Arabia, the epidemiology of rheumatoid arthritis (RA) is not well studied and is marked by inconsistencies in clinical diagnosis. Therefore, in this study, we explored the prevalence, clinical characteristics, and diagnostic validity of a prediction score based upon disease markers in orthropedic clinics' patients in the Madinah region of Saudi Arabia. Method The clinical data for this retrospective cross-sectional study were retrieved from the database registry of orthopedic clinics in selected hospitals of the Medinah province of Saudi Arabia. Sociodemographic features, disease markers and the clinical characteristics were collected for a period of 6 months, from December 1, 2020, to May 31, 2021. The prediction score was generated from the sum of disease markers, coded as dichotomous variables. Results The total sample size of our study was 401. The prevalence of RA in the study subjects (n = 401) was 14.46% (n = 58). Among RA patients, the majority were females (60.3%). Painful joints (69%) and swollen joints (51.7%) were the most common clinical complaints among RA patients. RA patients suffered from arthritis (51.7%) and experienced fatigue (46.6%), weight loss (44.8%), and loss of appetite (41.4%). Diabetes (55.2%) was the most common comorbidity in the RA patients. The sensitivity and specificity of the prediction score at the criterion score of 2.5 were 67.3% and 63.0%, respectively. The area under the curve was 0.69 (95% CI [0.62-0.76]). Conclusion There was a moderately high prevalence of RA in patients visiting the orthropedic clinics of the selected hospitals of Madinah region of Saudi Arabia. The diagnostic validity of the prediction score, though promising, was slightly lower than the acceptable range.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Mamdooh Noor
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Md Dilshad Manzar
- Department of Nursing, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Yahya Madkhali
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Faizan Z. Kashoo
- Department of Physical Therapy and Rehabilitation, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Sahar ALDosari
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Imran M, Aslam M, Alsagaby SA, Saeed F, Ahmad I, Afzaal M, Arshad MU, Abdelgawad MA, El‐Ghorab AH, Khames A, Shariati MA, Ahmad A, Hussain M, Imran A, Islam S. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10:3544-3561. [PMID: 36348778 PMCID: PMC9632228 DOI: 10.1002/fsn3.2994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carvacrol is a major natural constituent and is significantly present as an essential oil in aromatic plants and is well known for its numerous biological activities. Therapeutic properties of carvacrol have been demonstrated as anti-oxidant, anticancer, diabetes prevention, cardioprotective, anti-obesity, hepatoprotective and reproductive role, antiaging, antimicrobial, and immunomodulatory properties. The carvacrol biosynthesis has been mediated through mevalonate pathway. Carvacrol has the anticancer ability against malignant cells via decreasing the expressions of matrix metalloprotease 2 and 9, inducing apoptosis, enhancing the expression of pro-apoptotic proteins, disrupting mitochondrial membrane, suppressing extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signal transduction, and also decreasing the phosphoinositide 3-kinase/protein kinase B. It also decreased the concentrations of alanine aminotransferase, alkaline phosphatase and aspartate aminotransferase, and gamma-glutamyl transpeptidase as well as also restored liver function, insulin level, and plasma glucose level. Carvacrol also has been found to exert antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Coagulase-negative staphylococcus, Salmonella spp., Enterococcus sp. Shigella, and Escherichia coli. The current review article summarizes the health-promoting perspectives of carvacrol through various pathways.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Farhan Saeed
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPTUniversity of Veterinary & Animal SciencesLahorePakistan
| | - Muhamamd Afzaal
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Umair Arshad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of PharmacyTaif UniversityTaifSaudi Arabia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Arslan Ahmad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muzamal Hussain
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
13
|
Atiya A, Alhumaydhi FA, Shamsi A, Olatunde A, Alsagaby SA, Al Abdulmonem W, Sharaf SE, Shahwan M. Mechanistic Insight into the Binding of Huperzine a with Human Transferrin: Computational, Spectroscopic and Calorimetric Approaches. ACS Omega 2022; 7:38361-38370. [PMID: 36340147 PMCID: PMC9631745 DOI: 10.1021/acsomega.2c03185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Huperzine A (HupA), an alkaloid found in the club moss Huperzia Serrata, has been in use for centuries in Chinese traditional medicine to treat dementia owing to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), thus acting as an acetylcholinesterase inhibitor (AChEI). An imbalance of metal ions in the brain is linked to Alzheimer's disease (AD) pathology. Transferrin (Tf) is a crucial player in iron homeostasis, thus highlighting its significance in AD. This study explores the plausible binding of HupA with Tf using molecular docking, molecular dynamics (MD) simulation, and free energy landscape (FEL) analyses. The docking results show that HupA binds to the functionally active region of Tf by forming three hydrogen bonds with Thr392, Glu394, and Ser688 and several hydrophobic interactions. The MD simulation analyses show that HupA binding is stable with Tf, causing minimal changes to the protein conformation. Moreover, principal component analysis (PCA) and FEL also depict the stable binding of HupA with Tf without any significant fluctuations. Further, fluorescence-based binding suggested excellent binding affinity of HupA with Tf affirming in silico observations. Isothermal titration calorimetry (ITC) advocated the spontaneous binding of HupA with Tf. This study provides an insight into the binding mechanism of HupA with Tf, and overall, the results show that HupA, after required experimentations, can be a better therapeutic agent for treating AD while targeting Tf.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha62529, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman346, United Arab Emirates
| | - Ahmed Olatunde
- Department
of Medical Biochemistry, Abubakar Tafawa
Balewa University, Bauchi740272, Nigeria
| | - Suliman A. Alsagaby
- Department
of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah11952, Saudi
Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah52571, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah21421, Saudi Arabia
- Clinical
Research Adminstration, Executive Adminstration of Research and Innovation, King Abdullah Medical City in the Holy Capital, Makkah21955, Saudi Arabia
| | - Moyad Shahwan
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman346, United Arab Emirates
- College
of Pharmacy and Health Sciences, Ajman University, Ajman346, United Arab Emirates
| |
Collapse
|
14
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Mir SA, Alaidarous M, Alshehri B, Bin Dukhyil AA, Banawas S, Madkhali Y, Alsagaby SA, Al Othaim A. Immunoinformatics-Based Identification of B and T Cell Epitopes in RNA-Dependent RNA Polymerase of SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10101660. [PMID: 36298525 PMCID: PMC9611076 DOI: 10.3390/vaccines10101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The ongoing coronavirus disease 2019 (COVID-19), which emerged in December 2019, is a serious health concern throughout the world. Despite massive COVID-19 vaccination on a global scale, there is a rising need to develop more effective vaccines and drugs to curb the spread of coronavirus. METHODOLOGY In this study, we screened the amino acid sequence of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 (the causative agent of COVID-19) for the identification of B and T cell epitopes using various immunoinformatic tools. These identified potent B and T cell epitopes with high antigenicity scores were linked together to design the multi-epitope vaccine construct. The physicochemical properties, overall quality, and stability of the designed vaccine construct were confirmed by suitable bioinformatic tools. RESULTS After proper in silico prediction and screening, we identified 3 B cell, 18 CTL, and 10 HTL epitopes from the RdRp protein sequence. The screened epitopes were non-toxic, non-allergenic, and highly antigenic in nature as revealed by appropriate servers. Molecular docking revealed stable interactions of the designed multi-epitope vaccine with human TLR3. Moreover, in silico immune simulations showed a substantial immunogenic response of the designed vaccine. CONCLUSIONS These findings suggest that our designed multi-epitope vaccine possessing intrinsic T cell and B cell epitopes with high antigenicity scores could be considered for the ongoing development of peptide-based novel vaccines against COVID-19. However, further in vitro and in vivo studies need to be performed to confirm our in silico observations.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Correspondence: ; Tel.: +966-536300645
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
16
|
Jabeen S, Khan AU, Ahmed W, Ahmad MUD, Jafri SA, Bacha U, Ali A, Muzammil HS, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Riaz M, Mahwish, Nasir M, Zafar A, Tufail T, Imran M, Anwar Faridi T, Aslam M, Abid Shah SF, Farooq S, Awan TN, Ur-Rehman H. Disease specific symptoms indices in patients with celiac disease—A hardly recognised entity. Front Nutr 2022; 9:944449. [PMID: 36159486 PMCID: PMC9494589 DOI: 10.3389/fnut.2022.944449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Celiac disease (CD) was considered a rare disease before and was perceivably only limited to children but now affects almost 1–2% of the global population. This abrupt increase in prevalence is due to advancements in diagnostic criteria and medical facilities but still many countries lack the basic data that can assess the severity of this health issue. The present study was conducted with the aim to assess the common but rarely diagnosed condition with the identification of its underlying secondary ailments. Materials and methods Patients visiting public sector hospitals were recruited and tested for clinical symptoms secondary to gluten-containing foods (wheat and barley, etc.), followed by serological testing for immunoglobulin A, tissue transglutaminase A, and anti-endomysial antibodies. Only seropositive candidates were included in the endoscopic and biopsy examination for the features of villous atrophy and intestinal cell damage. The secondary ailments including anemia, growth retardation, and gastrointestinal symptoms were also documented for the tested positive patients. The modified European Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) criterion was followed throughout the study. Results From 647 suspected cases from March 2018 to July 2019, 113 were confirmed with CD while 58% were female children and 42% were male children. The majority of them were from a lower class (75%) and 26% of them had a positive family history of CD. A total of 67% of patients with CD were underweight while wasting was observed in 38%, and 80% were stunted as well. Of the positively tested patients with CD, 49% had moderate anemia with 15% having severe anemia. Approximately 33% had hypoalbuminemia as well. The majority of them had a mild to severe range of gastrointestinal symptoms, such as abdominal pain, diarrhea, flatus, eructation, diarrhea, and steatorrhea. Conclusion The study finding indicates an increased number of patients diagnosed with CD with an excessive sum of secondary ailments, such as anemia, growth failure, growth retardation, malnutrition, and gastrointestinal symptoms.
Collapse
|
17
|
Alsagaby SA, Alharbi NK, Alhumaydhi FA, Alsubaie F, Bosaeed M, Aljouie A, Assiri AM, Alshammari K. Risk factors of SARS-CoV-2 infection in cancer patients pre- and post-vaccination. PLoS One 2022; 17:e0272869. [PMID: 35943973 PMCID: PMC9362932 DOI: 10.1371/journal.pone.0272869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Severe complications from COVID-19 and poor responses to SARS-CoV-2 vaccination were commonly reported in cancer patients compared to those without cancer. Therefore, the identification of predisposing factors to SARS-CoV-2 infection in cancer patients would assist in the prevention of COVID-19 and improve vaccination strategies. The literature lacks reports on this topic from the Kingdom of Saudi Arabia (KSA). Therefore, we studied clinical and laboratory data of 139 cancer patients from King Abdulaziz Medical City, Riyadh, KSA.
Methods
The cancer patients fall into three categories; (i) uninfected with SARS-CoV-2 pre-vaccination and remained uninfected post-vaccination (control group; n = 114; 81%), (ii) pre-vaccination infected group (n = 16; 11%), or (iii) post-vaccination infected group (n = 9; 6%). Next, the clinical and lab data of the three groups of patients were investigated.
Results
Comorbidity factors like diabetes and hemodialysis were associated with the risk of infection in cancer patients before the vaccination (p<0.05). In contrast to breast cancer, papillary thyroid cancer was more prevalent in the infected patients pre- and post-vaccination (p<0.05). Pre-vaccination infected group had earlier cancer stages compared with the control group (p = 0.01). On the other hand, combined therapy was less commonly administrated to the infected groups versus the control group (p<0.05). Neutrophil to lymphocyte ratio was lower in the post-vaccination infected group compared to the control group (p = 0.01).
Conclusion
Collectively, this is the first study from KSA to report potential risk factors of SARS-CoV-2 infection in cancer patients pre- and post-vaccination. Further investigations on these risk factors in a larger cohort are worthwhile to draw a definitive conclusion about their roles in predisposing cancer patients to the infection.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
- * E-mail:
| | - Naif Khalaf Alharbi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faisal Alsubaie
- Assistant Agency for Preventive Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Mohammad Bosaeed
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdulaziz Medical City (KAMC), Ministry of National Guard–Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulrhman Aljouie
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
| | - Abdullah M. Assiri
- Assistant Agency for Preventive Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Kanan Alshammari
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdulaziz Medical City (KAMC), Ministry of National Guard–Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Alharbi NK, Al-Tawfiq JA, Alwehaibe A, Alenazi MW, Almasoud A, Algaisi A, Alhumaydhi FA, Hashem AM, Bosaeed M, Alsagaby SA. Persistence of Anti-SARS-CoV-2 Spike IgG Antibodies Following COVID-19 Vaccines. Infect Drug Resist 2022; 15:4127-4136. [PMID: 35937784 PMCID: PMC9348632 DOI: 10.2147/idr.s362848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study was conducted to investigate antibody immune responses induced by BNT162b2 and AZD1222 human COVID-19 vaccines in Riyadh city, Saudi Arabia. Patients and Methods ELISA was used to evaluate antibodies, against the SARS-CoV-2 spike S1 protein, in serum samples from 432 vaccinated individuals at six time points: pre-vaccination (baseline), post-prime, post-boost, 6-months, and 1 year post-vaccination, and 3 weeks post a third dose. Virus microneutralization assay was used to confirm antibody responses in a subset of samples. Results Anti-SARS-CoV-2 spike IgG were detected in most subjects post-prime, reached a peak level post-boost, and remained at high level at the 6-month follow-up. At 1 year post-vaccine, the antibody levels were low but increased to a significant level higher than the peak following a third dose. The third dose was given at an average of 250 days after the second dose. The virus microneutralization assay confirmed the neutralization activity of the induced SARS-CoV-2 IgG antibodies. The vaccines induced higher IgG titres at post-prime (p=0.0001) and 6 months (p=0.006) in previously infected individuals. An increased interval between prime and boost, more than recommended time, appeared to enhance the IgG levels (p=0004). Moreover, the vaccines induced higher IgG levels in younger subjects (p=0.01). Conclusion These data provide insights and build on the current understanding of immune responses induced by these two vaccines; and support a third boosting dose for these COVID-19 vaccines.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Vaccine Development Unit, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- Correspondence: Naif Khalaf Alharbi, Email
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Diseases Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Infectious Diseases Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amal Alwehaibe
- Vaccine Development Unit, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohamed W Alenazi
- Vaccine Development Unit, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Abdullah Algaisi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Bosaeed
- Vaccine Development Unit, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
19
|
Alturaiki W, Alhamad A, Alturaiqy M, Mir SA, Iqbal D, Bin Dukhyil AA, Alaidarous M, Alshehri B, Alsagaby SA, Almalki SG, Alghofaili F, Choudhary RK, Almutairi S, Banawas S, Alosaimi B, Mubarak A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis 2022; 25:1013-1019. [PMID: 35748059 DOI: 10.1111/1756-185x.14373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1β, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION Overall, the findings suggested that IL-1β, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Main Laboratory and blood bank, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Seshadri VD, Oyouni AAA, Bawazir WM, Alsagaby SA, Alsharif KF, Albrakati A, Al-Amer OM. Zingiberene exerts chemopreventive activity against 7,12-dimethylbenz(a)anthracene-induced breast cancer in Sprague-Dawley rats. J Biochem Mol Toxicol 2022; 36:e23146. [PMID: 35698847 DOI: 10.1002/jbt.23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the primary cause of cancer-related death in females, wherein increased mortality of breast cancer patients is recorded worldwide. Zingiberene is a monocyclic sesquiterpene from the ginger plant and has many pharmacological benefits. In this exploration, we assessed the anticancer actions of Zingiberene against the 7,12-dimethylbenz(a)anthracene (DMBA)-stimulated mammary carcinogenesis in rats and MDA-MB-231 cells. Breast cancer was induced in the Female Sprague-Dawley rats through the 25 mg/kg of DMBA in 0.5 ml of corn oil and then treated with 20 and 40 mg/kg of Zingiberene, respectively. The body weight of animals and tumor volume was measured. Hematological parameters, transaminases, lipid profile, lipid peroxidation, and antioxidants status were scrutinized using standard techniques. The estrogen receptor-α and inflammatory markers were inspected by using respective assay kits. Histological damage scores were determined. In vitro experiments were conducted to scrutinize Zingiberene's effect on cell viability and apoptotic cell death in MDA-MB-231 cells. Zingiberene substantially modulated the DMBA-stimulated physiological and hematological changes and decreased the transaminases, and lipid peroxidation in the DMBA-stimulated animals. Zingiberene also elevated the antioxidant level and suppressed the inflammatory markers. Histological study revealed the protective effects of Zingiberene. The viability of MDA-MB-231 cells was noticeably diminished by the Zingiberene, thus inducing apoptotic cell death. Overall, our findings reliably proved the anticancer potential of Zingiberene against the DMBA-stimulated mammary tumorigenesis, and it could be a promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Waleed M Bawazir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Osama M Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
21
|
Khare N, Maheshwari SK, Rizvi SMD, Albadrani HM, Alsagaby SA, Alturaiki W, Iqbal D, Zia Q, Villa C, Jha SK, Jha NK, Jha AK. Homology Modelling, Molecular Docking and Molecular Dynamics Simulation Studies of CALMH1 against Secondary Metabolites of Bauhinia variegata to Treat Alzheimer's Disease. Brain Sci 2022; 12:brainsci12060770. [PMID: 35741655 PMCID: PMC9220886 DOI: 10.3390/brainsci12060770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer’s disease. In the absence of an experimentally designed protein molecule, homology modelling was performed. Through homology modelling, different CALHM1 models were generated and validated through Rampage. To carry out further in silico studies, through molecular docking and molecular dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the interaction of alkaloids and flavonoids against CALHM1. The protein and protein–ligand complex were also validated through molecular dynamics simulations studies. The model generated through MODELLER software with 6VAM A was used because this model predicted the best results in the Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most appropriate candidate for the protein molecule with the minimum binding energy of −12.45 kcal/mol and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics simulations showed that CALHM1 and CALHM1–quercetin complex became stable at 2500 ps. It may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer’s disease, according to in silico research using molecular docking and molecular dynamics simulations, and future in vitro and in vivo analysis may confirm its effectiveness.
Collapse
Affiliation(s)
- Noopur Khare
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Sanjiv Kumar Maheshwari
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia;
| | - Hind Muteb Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.K.J.)
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Correspondence: (D.I.); (A.K.J.)
| |
Collapse
|
22
|
Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI. Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Jahan S, Ansari UA, Siddiqui AJ, Iqbal D, Khan J, Banawas S, Alshehri B, Alshahrani MM, Alsagaby SA, Redhu NS, Pant AB. Nobiletin Ameliorates Cellular Damage and Stress Response and Restores Neuronal Identity Altered by Sodium Arsenate Exposure in Human iPSCs-Derived hNPCs. Pharmaceuticals (Basel) 2022; 15:ph15050593. [PMID: 35631419 PMCID: PMC9147161 DOI: 10.3390/ph15050593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Environmental exposure to arsenic has been profoundly associated with chronic systemic disorders, such as neurodegeneration, in both experimental models and clinical studies. The neuronal cells of the brain and the nervous system have a limited regeneration capacity, thus making them more vulnerable to exposure to xenobiotics, leading to long-lasting disabilities. The functional and anatomical complexity of these cells hinders the complete understanding of the mechanisms of neurodegeneration and neuroprotection. The present investigations aimed to evaluate the neuroprotective efficacy of a herbal formulation of Nobiletin (NOB) against the toxic insult induced by sodium arsenate (NA) in human neural progenitor cells (hNPCs) derived from human induced pluripotent stem cells (hiPSCs). Prior to the neuroprotective experiments, biologically safe doses of both NOB and NA were ascertained using standard endpoints of cytotoxicity. Thereafter, the hNPCs were exposed to either NOB (50 μM) or NA (50 μM) and co-exposed to biologically safe concentrations of NA (50 μM) with NOB (50 μM) for a period of up to 48 h. NOB treatment restored the morphological damage (neurite damage), the levels of stress granule G3BP1 (Ras-GTPase-activating protein (SH3 domain)-binding protein) and TIA1 (T cell-restricted intracellular antigen), and the expression of neuronal markers (Tuj1, Nestin, MAP2, and PAX6) when compared to NA-exposed cells. A substantial restoration of reactive oxygen species and mitochondrial membrane potential was also witnessed in the co-exposure group (NA + NOB) in comparison to the NA-exposed group. The findings suggest that NOB possesses a significant restorative/protective potential against the NA challenge in hNPCs under experimental conditions and imply that nobiletin may impart a potential therapeutic impact if studied adequately using in vivo studies.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (B.A.); (S.A.A.)
- Correspondence: ; Tel.: +966-500590133
| | - Uzair Ahmad Ansari
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India; (U.A.A.); (A.B.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 55476, Saudi Arabia;
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (B.A.); (S.A.A.)
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (B.A.); (S.A.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (B.A.); (S.A.A.)
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (B.A.); (S.A.A.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia;
| | |
|