1
|
Alturaiki W. The role of cross-reactive immunity to emerging coronaviruses: Implications for novel universal mucosal vaccine design. Saudi Med J 2023; 44:965-972. [PMID: 37777266 DOI: 10.15537/smj.2023.44.10.20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023] Open
Abstract
Host immune response to coronaviruses and the role of cross-reactivity immunity among different coronaviruses are crucial for understanding and combating the continuing COVID-19 outbreak and potential subsequent pandemics. This review paper explores how previous exposure to common cold coronaviruses and more pathogenic coronaviruses may elicit a protective immune response against SARS-CoV-2 infection, and discusses the challenges posed by some variants of concern that may escape current vaccines. It also highlights the need for a mucosal universal vaccine that can induce long-term protection against current and emerging coronaviruses by leveraging cross-reactive immunity. We propose a novel mucosal universal vaccine that consists of cross-reactive antigenic peptides with highly conserved epitopes among coronaviruses, conjugated with an immunostimulant adjuvant cytokine, including B-cell activating factor (BAFF). This vaccine may enhance the local mucosal adaptive response, induce tissue-resident memory cells, and inhibit viral replication and clearance. However, further research is required to evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Wael Alturaiki
- From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Almalki SG, Alqurashi YE, Alturaiki W, Almawash S, Khan A, Ahmad P, Iqbal D. Antioxidant, LC-MS Analysis, and Cholinesterase Inhibitory Potentials of Phoenix dactylifera Cultivar Khudari: An In Vitro Enzyme Kinetics and In Silico Study. Biomolecules 2023; 13:1474. [PMID: 37892156 PMCID: PMC10605097 DOI: 10.3390/biom13101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.
Collapse
Affiliation(s)
- Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Amir Khan
- Oral Medicine and Allied Dental Sciences Department, Faculty of Dentistry, Taif University, Taif 11099, Saudi Arabia;
| | - Parvej Ahmad
- IIRC-5 Clinical Biochemistry and Natural Product Research Laboratory, Integral University, Lucknow 226026, India;
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| |
Collapse
|
3
|
Awadalla ME, Alkadi H, Alarjani M, Al-Anazi AE, Ibrahim MA, ALOhali TA, Enani M, Alturaiki W, Alosaimi B. Moderately Low Effectiveness of the Influenza Quadrivalent Vaccine: Potential Mismatch between Circulating Strains and Vaccine Strains. Vaccines (Basel) 2023; 11:1050. [PMID: 37376439 DOI: 10.3390/vaccines11061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The annual seasonal influenza vaccination is the most effective way of preventing influenza illness and hospitalization. However, the effectiveness of influenza vaccines has always been controversial. Therefore, we investigated the ability of the quadrivalent influenza vaccine to induce effective protection. Here we report strain-specific influenza vaccine effectiveness (VE) against laboratory-confirmed influenza cases during the 2019/2020 season, characterized by the co-circulation of four different influenza strains. During 2019-2020, 778 influenza-like illness (ILI) samples were collected from 302 (39%) vaccinated ILI patients and 476 (61%) unvaccinated ILI patients in Riyadh, Saudi Arabia. VE was found to be 28% and 22% for influenza A and B, respectively. VE for preventing A(H3N2) and A(H1N1)pdm09 illness was 37.4% (95% CI: 43.7-54.3) and 39.2% (95% CI: 21.1-28.9), respectively. The VE for preventing influenza B Victoria lineage illness was 71.7% (95% CI: -0.9-3), while the VE for the Yamagata lineage could not be estimated due to the limited number of positive cases. The overall vaccine effectiveness was moderately low at 39.7%. Phylogenetic analysis revealed that most of the Flu A genotypes in our dataset clustered together, indicating their close genetic relatedness. In the post-COVID-19 pandemic, flu B-positive cases have reached three-quarters of the total number of influenza-positive cases, indicating a nationwide flu B surge. The reasons for this phenomenon, if related to the quadrivalent flu VE, need to be explored. Annual monitoring and genetic characterization of circulating influenza viruses are important to support Influenza surveillance systems and to improve influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Maaweya E Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Modhi Alarjani
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Abdullah E Al-Anazi
- Comprehensive Cancer Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Thamer Ahmad ALOhali
- Medical Protocol Department, Kind Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mushira Enani
- Dr. Sulaiman Alhabib Medical Group, Department of Medicine, Olaya Medical Complex, Riyadh 11643, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| |
Collapse
|
4
|
Mir SA, Madkhali Y, Firoz A, Al Othaim A, Alturaiki W, Almalki SG, Algarni A, Alsagaby SA. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton's Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules 2023; 28:molecules28083287. [PMID: 37110523 PMCID: PMC10144307 DOI: 10.3390/molecules28083287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable neoplasm of B-lymphocytes, which accounts for about one-third of all leukemias. Ocimum sanctum, an herbaceous perennial, is considered as one of the important sources of drugs for the treatment of various diseases, including cancers and autoimmune diseases. The present study was designed to screen various phytochemicals of O. sanctum for discovering their potential to inhibit Bruton's tyrosine kinase (BTK), a well-known drug target of CLL. Various phytochemicals of O. sanctum were screened for their potential to inhibit BTK using several in silico protocols. First, the molecular docking approach was used to calculate the docking scores of the selected phytochemicals. Then, the selected top-ranked phytochemicals were screened for their physicochemical characteristics using ADME analysis. Finally, the stability of the selected compounds in their corresponding docking complexes with BTK was analysed using molecular dynamics simulations. Primarily, our observations revealed that, out of the 46 phytochemicals of O. sanctum, six compounds possessed significantly better docking scores (ranging from -9.2 kcal/mol to -10 kcal/mol). Their docking scores were comparable to those of the control inhibitors, acalabrutinib (-10.3 kcal/mol), and ibrutinib (-11.3 kcal/mol). However, after ADME analysis of these top-ranked six compounds, only three compounds (Molludistin, Rosmarinic acid, and Vitexin) possessed drug likeliness characteristics. During the MD analysis, the three compounds Molludistin, Rosmarinic acid, and Vitexin were found to remain stable in the binding pocket in their corresponding docking complexes with BTK. Therefore, among the 46 phytochemicals of O. sanctum tested in this study, the three compounds, Molludistin, Rosmarinic acid, and Vitexin are the best inhibitors of BTK. However, these findings need to be confirmed by biological experiments in the laboratory.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
5
|
Siddiqui AJ, Jahan S, Patel M, Abdelgadir A, Alturaiki W, Bardakci F, Sachidanandan M, Badraoui R, Snoussi M, Adnan M. Identifying novel and potent inhibitors of EGFR protein for the drug development against the breast cancer. J Biomol Struct Dyn 2023:1-13. [PMID: 36826428 DOI: 10.1080/07391102.2023.2181646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) has been shown to be extremely important in numerous signaling pathways, particularly those involved in cancer progression. Many therapeutic inhibitors, consisting of both small molecules and monoclonal antibodies, have been developed to target inflammatory, triple-negative and metastatic breast cancer. With the emergence of resistance in breast cancer treatment strategies, there is a need to develop novel drug targets that not only overcome resistance, but also exhibit low toxicity and high specificity. The work presented here focuses on the identification of new inhibitors against the EGFR protein using combined computational approaches. Using a comprehensive machine learning-based virtual screening approach complemented by other computational approaches, we identified six new molecules from the ZINC database. The gold docking score of these six novel molecules is 125.95, 125.38, 123.13, 119.71, 115.64 and 113.73, respectively, while the gold score of the control group is 120.74. In addition, we also analyzed the FEC value of these compounds and found that the values of compounds 1, 2, 3 and 4 (-61.82, -63.98, -67.98 and -63.32, respectively) were higher are than those of the control group (-61.05). Furthermore, these molecules showed highly stable RMSD plots and good interaction of hydrogen bonds. The identified inhibitors provided interesting insights for understanding the electronic, hydrophobic, steric and structural requirements for EGFR inhibitory activity. Distinguishing these novel molecules could lead to the development of new drugs useful in treating breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University Al Majmaah, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University Vadodara, India
| | | | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University Al Majmaah, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia.,Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia.,Laboratory of Genetics, Biodiversity and Valorization of Bio-resources (LR11ES41), University of Mo-nastir, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
6
|
Hamza M, Alhujaily M, Alosaimi B, El Bakkouri K, AlDughaim MS, Alonazi M, Alanazi MA, Abbass B, Alshehri A, Al-Shouli ST, Alturaiki W, Awadalla M. Association between inflammatory cytokines/chemokines, clinical laboratory parameters, disease severity and in-hospital mortality in critical and mild COVID-19 patients without comorbidities or immune-mediated diseases. J Immunoassay Immunochem 2023; 44:13-30. [PMID: 35915975 DOI: 10.1080/15321819.2022.2104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are limited data on inflammatory cytokines and chemokines; the humoral immune response; and main clinical laboratory parameters as indicators for disease severity and mortality in patients with critical and mild COVID-19 without comorbidities or immune-mediated diseases in Saudi Arabia. We determined the expression levels of major proinflammatory cytokines and chemokines; C-reactive protein (CRP); procalcitonin; SARS-CoV-2 IgM antibody and twenty-two clinical laboratory parameters and assessed their usefulness as indicators of disease severity and in-hospital death. Our results showed a significant increase in the expression levels of SARS-CoV-2 IgM antibody; IL1-β; IL-6; IL-8; TNF-α and CRP in critical COVID-19 patients; neutrophil count; urea; creatinine and troponin were also increased. The elevation of these biomarkers was significantly associated and positively correlated with in-hospital death in critical COVID-19 patients. Our results suggest that the levels of IL1-β; IL-6; IL-8; TNF-α; and CRP; neutrophil count; urea; creatinine; and troponin could be used to predict disease severity in COVID-19 patients without comorbidities or immune-mediated diseases. These inflammatory mediators could be used as predictive early biomarkers of COVID-19 disease deterioration; shock and death among COVID-19 patients without comorbidities or immune-mediated diseases.
Collapse
Affiliation(s)
- Muaawia Hamza
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia.,Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory, College of Applied Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia.,Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Karim El Bakkouri
- Department Project Manage; Microbiology Department, Laboratoire national de santé, Dudelange, Luxembourg
| | | | - Mona Alonazi
- Biochemistry Department, College of Science, King Saud University, Saudi Arabia
| | - Mona Awad Alanazi
- Second Health Cluster, Ministry of Healt, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Basma Abbass
- Department of Biological Sciences, College of Science, University of Jeddah, Saudi Arabia
| | - Abdulsalam Alshehri
- Second Health Cluster, Ministry of Healt, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Pathology department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | |
Collapse
|
7
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Author Correction: Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2023; 27:443. [PMID: 36734699 DOI: 10.26355/eurrev_202301_31044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Correction to: European Review for Medical and Pharmacological Sciences 2022; 26 (22): 8713-8718. DOI: 10.26355/eurrev_202212_30543- PMID: 36524490-published online on December 15, 2022. After publication, the authors applied a correction to the funding statement: The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (lFP-2020-36). There are amendments to this paper. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/30543.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Goel H, Goyal K, Pandey AK, Benjamin M, Khan F, Pandey P, Mittan S, Iqbal D, Alsaweed M, Alturaiki W, Madkhali Y, Kamal MA, Tanwar P, Upadhyay TK. Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS Neurol Disord Drug Targets 2023; 22:84-97. [PMID: 35352654 DOI: 10.2174/1871527321666220329103610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Keshav Goyal
- Division of Molecular and Cellular Biology, Faculty of Biology, Ludwig Maximilians Universitat, Munchen, Germany
| | - Avanish Kumar Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, One Gustave L. Levy Place, New York, USA
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham NSW 2770, Novel Global Community Educational Foundation, Australia
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
9
|
Alturaiki W, Alkadi H, Alamri S, Awadalla ME, Alfaez A, Mubarak A, Alanazi MA, Alenzi FQ, Flanagan BF, Alosaimi B. Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity. Heliyon 2022; 9:e12653. [PMID: 36589720 PMCID: PMC9788851 DOI: 10.1016/j.heliyon.2022.e12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The recent identification of the involvement of the immune system response in the severity and mortality of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection highlights the importance of cytokines and chemokines as important factors in the clinical outcomes of COVID-19. However, the impact and roles of the BAFF/APRIL cytokine system, homeostatic chemokines (CXCL12, CXCL13, CCL19, and CCL21), as well as Toll-like receptor (TLR)-3/4 in COVID-19, have not been investigated. We sought to assess the expression levels and roles of TLR3/4, BAFF, APRIL, IFN-β, homeostatic chemokines (CXCL12, CXCL13, CCL19, and CCL21), SARS-CoV-2 IgG and IgM antibodies in patients with critical (ICU) and non-ICU (mild) COVID-19 and their association with mortality and disease severity. Significant high levels of TLR-4 mRNA, IFN-β, APRIL, CXCL13, and IgM and IgG antibodies were observed in ICU patients with severe COVID-19 compared to non-ICU COVID-19 patients and healthy controls. On the other hand, BAFF and CCL21 expression were significantly upregulated in non-ICU patients with COVID-19 compared with that in critical COVID-19 patients. The two groups did not differ in TLR-3, CXCL12, and CCL19 levels. Our findings show high expression levels of some inflammatory chemokines in ICU patients with COVID-19. These findings highlight the potential utility of chemokine antagonists as an immune-based treatment for the severe form of COVID-19. We also believe that selective targeting of TLR/spike protein interactions might lead to the development of a new COVID-19 therapy.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Haitham Alkadi
- Research Center, Riyadh Second Health Cluster, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Saad Alamri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Maaweya E. Awadalla
- Research Center, Riyadh Second Health Cluster, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulkarim Alfaez
- Department of Pathology, Immunology and Laboratory, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mona Awad Alanazi
- Prince Mohammed Bin Abdulaziz Hospital, Riyadh Second Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Faris Q. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Brian F. Flanagan
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool L12 2AP, UK
| | - Bandar Alosaimi
- Research Center, Riyadh Second Health Cluster, King Fahad Medical City, Riyadh, Saudi Arabia,Corresponding author.
| |
Collapse
|
10
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2022; 26:8713-8718. [PMID: 36524490 DOI: 10.26355/eurrev_202212_30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The ensuing ischemia due to the disruption of blood supply to the brain is one of the most common causes of stroke. Evidence suggests a clear association of the ischemic injury with vascular dementia and Alzheimer's disease (AD). In response to the brain ischemia, a cascade reaction starts leading to neuronal damage due to oxidative stress and other inflammatory mediators. A pilot study was done, which showed that following stroke, monomeric-C-reactive protein (mCRP) is expressed in large quantities around the infarcted zone and this CRP is able to induce neurodegeneration and inflammation potentially perpetuating dementia. MATERIALS AND METHODS We examined both patient brain samples and excised mouse brain tissue, previously injected with 1.75 mg/mL mCRP into the CA1 area of the hippocampus through the stereotactic surgical procedures and followed them over a period of over 6 months. The distribution of mCRP was examined through immunohistochemistry (mouse anti-human mCRP-specific antibodies 8C10). RESULTS We observed a novel finding: those micro vessels close to the injection location were strongly stained with mCRP only in the mice that had been injected with mCRP, indicating that this small blood vessel can spread it throughout the brain. CONCLUSIONS mCRP found in the brain after a hemorrhagic stroke promotes damage over a large area via the induction of inflammation and degeneration of perivascular compartments.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alosaimi B, Alshanbari HM, Alturaiqy M, AlRawi HZ, Alamri S, Albujaidy A, Bin Sabaan A, Alrashed AA, Alamer A, Alghofaili F, Al-Duraymih K, Alshalani AJ, Alturaiki W. Analyzing the Difference in the Length of Stay (LOS) in Moderate to Severe COVID-19 Patients Receiving Hydroxychloroquine or Favipiravir. Pharmaceuticals (Basel) 2022; 15:ph15121456. [PMID: 36558907 PMCID: PMC9785070 DOI: 10.3390/ph15121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background: The coronavirus 2019 (COVID-19) disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus led to a global pandemic. HCQ and FPV were used early in the pandemic as a treatment modality for COVID-19. Various studies evaluated the HCQ and FPV effectiveness, based on the mortality endpoint and showed conflicting results. We hypothesize that analyzing the difference in the LOS as a significant endpoint would be of a major interest, especially for healthcare providers, to prevent a lengthy hospitalization and disease progression. Methods: This is a retrospective observational study, conducted via a medical chart review of COVD-19 patients who were admitted between April 2020 and March 2021 with a moderate to severe illness. The LOS endpoint was tested using the paired Wilcoxon signed-rank (WSR) model. Prior to using the WSR model, the balance between the HCQ and FPV groups, the propensity score matching, the LOS distribution, and the normality assumptions were tested. Two sensitivity statistical analyses were conducted to confirm the results (stratified log-rank test and U Welch test after transforming the LOS by the squared root values). Results: A total of 200 patients were included for the analysis: 83 patients in the HCQ group and 117 patients in the FPV group. Thirty-seven patients were matched in each group. The LOS data was positively skewed and violated the normality (Shapiro−Wilk p < 0.001) and had an unequal variance (Levene’s test, p = 0.019). The WSR test showed no statistical significance in the LOS endpoint, with a median of −0.75 days (95% confidence interval: −4.0 to 2.5, p = 0.629), in favor of the HCQ group (four days), in comparison to seven days of the FPV group. The WSR findings were further confirmed with the stratified log rank test (p = 740) and the U Welch test (p = 391). Conclusions: The study concluded that the HCQ and FPV treatments have a comparable effectiveness in terms of the LOS in the moderate to severe COVID-19 patients. This study highlights the importance of analyzing the LOS as a relevant endpoint, in order to prevent the costs of a lengthy hospitalization and disease progression. The current study also emphasizes the importance of applying the appropriate statistical testing when dealing with two-sample paired data and analyzing non-parametric data such as the LOS.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Huda M. Alshanbari
- Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Halah Z. AlRawi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Saad Alamri
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Asma Albujaidy
- Department of Clinical Pharmacy Service, Prince Mohammed bin Abdulaziz Hospital, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | - Ahmed A. Alrashed
- Department of Pharmaceutical Services, Main Hospital, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Ahmad Alamer
- Department of Clinical Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Khaled Al-Duraymih
- Main Laboratory and Blood Bank, Alzulfi General Hospital, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Correspondence:
| |
Collapse
|
12
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Mubarak A, Almutairi S, Al-Dhabbah AD, Aldabas SY, Bhat R, Alqoufail MM, Abdel-Maksoud MA, Almanaa TN, Farrag MA, Alturaiki W. Durability of SARS-CoV-2 Specific IgG Antibody Responses Following Two Doses of Match and Mixed COVID-19 Vaccines Regimens in Saudi Population. Infect Drug Resist 2022; 15:3791-3800. [PMID: 35875613 PMCID: PMC9296867 DOI: 10.2147/idr.s369769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background SARS-CoV-2 pandemic continues to threaten the human population with millions of infections and deaths worldwide. Vaccination campaigns undertaken by several countries have resulted in a notable decrease in hospitalization and deaths. However, with the emergence of new virus variants, it is critical to determine the longevity and the protection efficiency provided by the current authorized vaccines. Aim The aims of this study are to provide data about the magnitude of immune responses in individuals fully vaccinated against COVID-19 in Riyadh province of Saudi Arabia. Also, to evaluate the continuity of specific IgG levels and compare the titers in individuals who have been received two doses of the matched and mixed vaccines, including Pfizer and AstraZeneca against SARS-CoV-2 during the period of three to six months. Moreover, we analyze the current state of immune response in terms of antibody responses in thepopulation postvaccination using homogenous or hetrogenous vaccine regimen. Methods A total of 141 healthy volunteers were recruited to our study; blood (n=63) and the saliva samples (n=78) and were collected from fully vaccinated individuals in Riyadh city. We employed a specific ELISA assay in plasma and saliva of fully vaccinated individuals. Results IgG levels varied with age groups with the highest concentration in the age group 19–29 years, but the age group (≥50) had the lowest IgG concentration. The IgG levels in both serum and saliva were higher after three months and start to wane after six months. Individuals who received mixed types of vaccines had significantly better response than Pfizer vaccine alone. Conclusion The current study investigates the status of humoral responses in different age groups, in terms of antibody measurements. These data will help to evaluate the need for further COVID-19 vaccine doses and to what extent a two-dose regimen will protect vaccinated individuals.
Collapse
Affiliation(s)
- Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abulrahman D Al-Dhabbah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shaha Y Aldabas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rauf Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahfoudh M Alqoufail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| |
Collapse
|
14
|
Zia Q, Rehman MT, Hashmi MA, Siddiqui S, Bin Dukhyil A, Ahmed MZ, Jamal A, Banawas S, Almalki SG, Owais M, Aldhafeeri HQ, Ibrahim IM, Alturaiki W, AlAjmi MF, Alsieni M, Alqurashi YE. Effect of Date Palm ( Phoenix dactylifera) Phytochemicals on Aβ 1-40 Amyloid Formation: An in-silico Analysis. Front Neurosci 2022; 16:915122. [PMID: 35958986 PMCID: PMC9359633 DOI: 10.3389/fnins.2022.915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most prevalent form of dementia. The generation of oxygen free radicals and oxidative damage is believed to be involved in the pathogenesis of AD. It has been suggested that date palm, a plant rich in phenolic compounds and flavonoids, can provide an alternative treatment to fight memory loss and cognitive dysfunction due to its potent antioxidant activity. Thus, we studied the effect of flavonoids present in date palm on Aβ1-40 amyloid formation using molecular docking and molecular dynamics simulation. AutoDock. Myricetin was used as a positive control drug. The flavonoids Diosmetin, Luteolin, and Rutin were found to be potent inhibitors of aggregation (docking energies ≤ -8.05 kcal mol-1) targeting Aβ1-40 fibrils (both 2LMO and 6TI5), simultaneously. Further screening by physicochemical properties and drug-likeness analysis suggested that all flavonoids except Rutin followed Lipinski's rule of five. Rutin was, thus, taken as a negative control (due to its violation of Lipinski's rule) to compare its dynamics with Diosmetin. Diosmetin exhibited the highest positive scores for drug likeness. Since Luteolin exhibited moderate drug-likeness and better absorption properties, it was also included in molecular dynamics simulation. Molecular dynamics of shortlisted compounds (Rutin, Diosmetin, and Luteolin) were performed for 200 ns, and the results were analyzed by monitoring root mean square deviations (RMSD), root mean square fluctuation (RMSF) analysis, the radius of gyration (Rg), and solvent accessible surface area (SASA). The results proved the formation of a stable protein-compound complex. Based on binding energies and non-bonded interactions, Rutin and Luteolin emerged as better lead molecules than Diosmetin. However, high MW (610.5), lowest absorption rate (16.04%), and more than one violation of Lipinski's rule make Rutin a less likely candidate as an anti-amyloidogenic agent. Moreover, among non-violators of Lipinski's rule, Diosmetin exhibited a greater absorption rate than Luteolin as well as the highest positive scores for drug-likeness. Thus, we can conclude that Diosmetin and Luteolin may serve as a scaffold for the design of better inhibitors with higher affinities toward the target proteins. However, these results warrant in-vitro and in-vivo validation before practical use.
Collapse
Affiliation(s)
- Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Z. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azfar Jamal
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Hamad Qasem Aldhafeeri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
15
|
Alshanbari HM, Mehmood T, Sami W, Alturaiki W, Hamza MA, Alosaimi B. Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE). Life (Basel) 2022; 12:life12071100. [PMID: 35888187 PMCID: PMC9318483 DOI: 10.3390/life12071100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 12/22/2022]
Abstract
Healthcare systems have been under immense pressure since the beginning of the COVID-19 pandemic; hence, studies on using machine learning (ML) methods for classifying ICU admissions and resource allocation are urgently needed. We investigated whether ML can propose a useful classification model for predicting the ICU admissions of COVID-19 patients. In this retrospective study, the clinical characteristics and laboratory findings of 100 patients with laboratory-confirmed COVID-19 tests were retrieved between May 2020 and January 2021. Based on patients’ demographic and clinical data, we analyzed the capability of the proposed weighted radial kernel support vector machine (SVM), coupled with (RFE). The proposed method is compared with other reference methods such as linear discriminant analysis (LDA) and kernel-based SVM variants including the linear, polynomial, and radial kernels coupled with REF for predicting ICU admissions of COVID-19 patients. An initial performance assessment indicated that the SVM with weighted radial kernels coupled with REF outperformed the other classification methods in discriminating between ICU and non-ICU admissions in COVID-19 patients. Furthermore, applying the Recursive Feature Elimination (RFE) with weighted radial kernel SVM identified a significant set of variables that can predict and statistically distinguish ICU from non-ICU COVID-19 patients. The patients’ weight, PCR Ct Value, CCL19, INF-β, BLC, INR, PT, PTT, CKMB, HB, platelets, RBC, urea, creatinine and albumin results were found to be the significant predicting features. We believe that weighted radial kernel SVM can be used as an assisting ML approach to guide hospital decision makers in resource allocation and mobilization between intensive care and isolation units. We model the data retrospectively on a selected subset of patient-derived variables based on previous knowledge of ICU admission and this needs to be trained in order to forecast prospectively.
Collapse
Affiliation(s)
- Huda M. Alshanbari
- Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Tahir Mehmood
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Waqas Sami
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia;
- Azra Naheed Medical College, Superior University, Lahore 54000, Pakistan
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Mauawia A. Hamza
- Faculty of Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia
- Correspondence: ; Tel.: +966-11-288-9999 (ext. 26847)
| |
Collapse
|
16
|
Alturaiki W, Alhamad A, Alturaiqy M, Mir SA, Iqbal D, Bin Dukhyil AA, Alaidarous M, Alshehri B, Alsagaby SA, Almalki SG, Alghofaili F, Choudhary RK, Almutairi S, Banawas S, Alosaimi B, Mubarak A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis 2022; 25:1013-1019. [PMID: 35748059 DOI: 10.1111/1756-185x.14373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1β, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION Overall, the findings suggested that IL-1β, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Main Laboratory and blood bank, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Khare N, Maheshwari SK, Rizvi SMD, Albadrani HM, Alsagaby SA, Alturaiki W, Iqbal D, Zia Q, Villa C, Jha SK, Jha NK, Jha AK. Homology Modelling, Molecular Docking and Molecular Dynamics Simulation Studies of CALMH1 against Secondary Metabolites of Bauhinia variegata to Treat Alzheimer's Disease. Brain Sci 2022; 12:brainsci12060770. [PMID: 35741655 PMCID: PMC9220886 DOI: 10.3390/brainsci12060770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer’s disease. In the absence of an experimentally designed protein molecule, homology modelling was performed. Through homology modelling, different CALHM1 models were generated and validated through Rampage. To carry out further in silico studies, through molecular docking and molecular dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the interaction of alkaloids and flavonoids against CALHM1. The protein and protein–ligand complex were also validated through molecular dynamics simulations studies. The model generated through MODELLER software with 6VAM A was used because this model predicted the best results in the Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most appropriate candidate for the protein molecule with the minimum binding energy of −12.45 kcal/mol and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics simulations showed that CALHM1 and CALHM1–quercetin complex became stable at 2500 ps. It may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer’s disease, according to in silico research using molecular docking and molecular dynamics simulations, and future in vitro and in vivo analysis may confirm its effectiveness.
Collapse
Affiliation(s)
- Noopur Khare
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Sanjiv Kumar Maheshwari
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia;
| | - Hind Muteb Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.K.J.)
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Correspondence: (D.I.); (A.K.J.)
| |
Collapse
|
18
|
Iqbal D, Rizvi SMD, Rehman MT, Khan MS, Bin Dukhyil A, AlAjmi MF, Alshehri BM, Banawas S, Zia Q, Alsaweed M, Madkhali Y, Alsagaby SA, Alturaiki W. Soyasapogenol-B as a Potential Multitarget Therapeutic Agent for Neurodegenerative Disorders: Molecular Docking and Dynamics Study. Entropy (Basel) 2022; 24:e24050593. [PMID: 35626478 PMCID: PMC9141571 DOI: 10.3390/e24050593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - M. Salman Khan
- Clinical Biochemistry & Natural Product Research Laboratory, Department of Biosciences, Integral University, Lucknow 226026, U.P., India;
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| |
Collapse
|
19
|
Alosaimi B, AlFayyad I, Alshuaibi S, Almutairi G, Alshaebi N, Alayyaf A, Alturaiki W, Shah MA. Cardiovascular complications and outcomes among athletes with COVID-19 disease: a systematic review. BMC Sports Sci Med Rehabil 2022; 14:74. [PMID: 35443680 PMCID: PMC9020555 DOI: 10.1186/s13102-022-00464-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 01/19/2023]
Abstract
Background Current evidence still emerging regarding the risk of cardiovascular (CV) sequel associated with coronavirus disease 2019 (COVID-19) infection, and considerable replicated studies are needed to ensure safe return-to-play. Therefore, we aimed in this systematic review to measure the prevalence of CV complications suffered by COVID-19 athletic patients, explore the outcomes, optimal approaches to diagnoses, and safe return-to-play considerations. Methods A systematic search on post COVID-19 infection quantitative studies among athletes was conducted following MeSH terms in Medline, Cochrane Library, Ovid, Embase and Scopus (through 15 January 2022). We included peer-reviewed studies reported athletes’ CV complications and the outcomes post COVID-19 infection. Editorials, letters, commentaries, and clinical guidelines, as well as duplicate studies were excluded. Studies involving non-athletic patients were also excluded. Quality assessment was performed using Newcastle–Ottawa Scale. Results We included 15 eligible articles with a total of 6229 athletes, of whom 1023 were elite or professional athletes. The prevalence of myocarditis ranged between 0.4% and 15.4%, pericarditis 0.06% and 2.2%, and pericardial effusion between 0.27% and 58%. Five studies reported elevated troponin levels (0.9-6.9%). Conclusions This study provides a low prevalence of CV complications secondary to COVID-19 infection in short-term follow-up. Early recognition and continuous assessment of cardiac abnormality in competitive athletes are imperative to prevent cardiac complications. Establishing a stepwise evaluation approach is critical with an emphasis on imaging techniques for proper diagnosis and risk assessment for a safe return to play.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, 11525, Saudi Arabia. .,Research Center, King Fahad Medical City, Riyadh, 11525, Saudi Arabia.
| | - Isamme AlFayyad
- Research Center, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| | - Salman Alshuaibi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317, Saudi Arabia
| | | | - Nawaf Alshaebi
- Faculty of Medicine, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulaziz Alayyaf
- Faculty of Medicine, Prince Sattam bin Abdulaziz University, Alkharj, Riyadh, 11942, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Muhammad Azam Shah
- Adult Cardiology Department, King Salman Heart Center, King Fahad Medical City, Riyadh, 11525, Saudi Arabia
| |
Collapse
|
20
|
Bijani S, Iqbal D, Mirza S, Jain V, Jahan S, Alsaweed M, Madkhali Y, Alsagaby SA, Banawas S, Algarni A, Alrumaihi F, Rawal RM, Alturaiki W, Shah A. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. Life (Basel) 2022; 12:life12040519. [PMID: 35455010 PMCID: PMC9029820 DOI: 10.3390/life12040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
A library of 1,4-dihydropyridine-based 1,2,3-triazol derivatives has been designed, synthesized, and evaluated their cytotoxic potential on colorectal adenocarcinoma (Caco-2) cell lines. All compounds were characterized and identified based on their 1H and 13C NMR (Nuclear Magnetic Resonance) spectroscopic data. Furthermore, molecular docking of best anticancer hits with target proteins (protein kinase CK2α, tankyrase1, and tankyrase2) has been performed. Our results implicated that most of these compounds have significant antiproliferative activity with IC50 values between 0.63 ± 0.05 and 5.68 ± 0.14 µM. Moreover, the mechanism of action of most active compounds 13ab′ and 13ad′ suggested that they induce cell death through apoptosis in the late apoptotic phase as well as dead phase, and they could promote cell cycle arrest at the G2/M phase. Furthermore, the molecular docking study illustrated that 13ad′ possesses better binding interaction with the catalytic residues of target proteins involved in cell proliferation and antiapoptotic pathways. Based on our in vitro and in silico study, 13ad′ was found to be a highly effective anti-cancerous compound. The present data indicate that dihydropyridine-linked 1,2,3-triazole conjugates can be generated as potent anticancer agents.
Collapse
Affiliation(s)
- Sabera Bijani
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.S.)
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Vicky Jain
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51425, Saudi Arabia;
| | - Rakesh M. Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Anamik Shah
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
- B/H Forensic Laboratory, Saurashtra University Karmachari Cooperative Society, Rajkot 360005, Gujarat, India
- Correspondence: (D.I.); (A.S.)
| |
Collapse
|
21
|
Banerjee S, Lo WC, Majumder P, Roy D, Ghorai M, Shaikh NK, Kant N, Shekhawat MS, Gadekar VS, Ghosh S, Bursal E, Alrumaihi F, Dubey NK, Kumar S, Iqbal D, Alturaiki W, Upadhye VJ, Jha NK, Dey A, Gundamaraju R. Multiple roles for basement membrane proteins in cancer progression and EMT. Eur J Cell Biol 2022; 101:151220. [PMID: 35366585 DOI: 10.1016/j.ejcb.2022.151220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-Mesenchymal transition (EMT) of the Basement Membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Nusrat K Shaikh
- Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, India
| | - Nishi Kant
- Department of Biotechnology, ARKA Jain University, Jamshedpur 831005, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | | | | | - Ercan Bursal
- Department of Biochemistry, Mus Alparslan University, Turkey
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan; ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park-III, Greater Noida, UP 201310, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), PO Limda, Tal Waghodia 391760, Vadodara, Gujarat, India
| | - Niraj Kumar Jha
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia.
| |
Collapse
|
22
|
Alturaiki W. Elevated Plasma Levels of CXCL13 Chemokine in Saudi Patients With Asthma Exacerbation. Cureus 2022; 14:e21142. [PMID: 35165593 PMCID: PMC8832178 DOI: 10.7759/cureus.21142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Bronchial asthma is a lung disorder characterized by chronic allergic inflammation of the airways, and several of the immune and non-immune cells contribute to asthma's pathogenicity. B-cell activation plays an essential role in developing allergic inflammation in the lungs. CXCL13 is a potent B-cell chemoattractant chemokine, which has a crucial role in the recruitment and trafficking of B cells after interaction with its receptor CXCR5. This study is aimed to evaluate plasma levels of CXCL13 and its receptor CXCR5 in Saudi patients with asthma exacerbation relative to healthy controls. Methods: A total of 23 patients with asthma exacerbation and 20 healthy controls participated in this study. Total immunoglobulin E (IgE) and CXCL13 protein levels were measured in the plasma of patients with asthma exacerbations and healthy controls by specific enzyme-linked immunosorbent assay (ELISA). Gene expression mRNA for CXCR5 was measured using real-time polymerase chain reaction (RT-PCR). Results: Total IgE protein concentrations were elevated significantly in asthma exacerbation patients than that in healthy controls. CXCL13 protein levels were increased significantly in the asthma group relative to healthy controls. In addition, CXCR5 mRNA levels were elevated significantly in the asthma group than in the healthy controls. Conclusions: Measurement of CXCL13 and CXCR5 may be used as an additional biomarker of asthma exacerbation, and targeting CXCL13 or its receptor may be used as new treatment options in asthma.
Collapse
|
23
|
Alanazi M, Alharbi R, Aloyuni S, Choudhary R, Alturaiki W, Banawas S, Alshehri B, Alaidarous MA. The Association of Anemia with Vitamin D Deficiency among Patients Visiting King Khalid General Hospital in Majmaah, Saudi Arabia. JPRI 2021. [DOI: 10.9734/jpri/2021/v33i60b34785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aims: To assess the association between vitamin D deficiency and anemia among patients visiting King Khalid General Hospital in Majmaah City, Saudi Arabia.
Methodology: We reviewed the medical records of 120 patients (median age, male 37.44 [±17.86] and female 43.22 [±16.23] years; range 1–96 years) who attended the King Khalid General Hospital laboratory in Majmaah city, Saudi Arabia, between January 2019 and January 2020. The laboratory data included the following parameters: complete blood count (Hb, MCV, MCHC, MCH, Hct, WBC, RBC, and Plt) and vitamin D (25(OH)D) levels.
Results: The chi-squared analysis showed that moderate anemia was highest among the participants who had vitamin D levels >30 ng/ml and less than 20 ng/ml, with a prevalence rate of 5% (n=6) for each category. Mild anemia was prevalent among 4.12% (n=5) of the participants with vitamin D levels <20 ng/ml. Finally, there were significant associations between parameters including age, RBC count, WBC count, platelet count, MCV, MCH, MCHC, hematocrit, vitamin D, and anemia. In addition, the odds ratio results indicated that mild vitamin D deficiency was associated with the degree of anemia, ranging from mild to moderate (OR=1.63 to 1.92). Moderate vitamin D deficiency was associated with the degree of anemia, ranging from mild to moderate (OR=1.76 to 1.97). The results confirmed a negative association between normal vitamin D values and the degree of anemia.
Conclusion: There is a significant association between vitamin D deficiency and anemia among patients visiting King Khalid General Hospital in Majmaah City, Saudi Arabia.
Collapse
|
24
|
Alturaiki W, Mubarak A, Mir SA, Afridi A, Premanathan M, Mickymaray S, Vijayakumar R, Alsagaby SA, Almalki SG, Alghofaili F, Alnemare AK, Flanagan BF. Plasma levels of BAFF and APRIL are elevated in patients with asthma in Saudi Arabia. Saudi J Biol Sci 2021; 28:7455-7459. [PMID: 34867050 PMCID: PMC8626297 DOI: 10.1016/j.sjbs.2021.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/02/2022] Open
Abstract
B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sajad Ahmad Mir
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi 11932, Saudi Arabia
| | - Adnan Afridi
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi 11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmad K Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Brian F Flanagan
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool L12 2AP, UK
| |
Collapse
|
25
|
Alturaiki W, Mubarak A, Al Jurayyan A, Hemida MG. The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Hum Vaccin Immunother 2021; 17:3297-3309. [PMID: 34114940 PMCID: PMC8204314 DOI: 10.1080/21645515.2021.1935172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV2 infection induces various degrees of infections ranging from asymptomatic to severe cases and death. Virus/host interplay contributes substantially to these outcomes. This highlights the potential roles of the host immune system in fighting virus infections. SARS-CoV-2. We highlighted the potential roles of host immune response in the modulation of the outcomes of SARS-CoV infections. The newly emerged SARS-CoV-2 mutants complicated the control and mitigation strategies measures. We are highlighting the current progress of some already deployed vaccines worldwide as well as those still in the pipelines. Recent studies from the large ongoing global vaccination campaign are showing promising results in reducing the hospitality rates as well as the number of severe SARS-CoV-2 infected patients. Careful monitoring of the genetic changes of the virus should be practiced. This is to prepare some highly sensitive diagnostic assays as well as to prepare some homologous vaccines matching the circulating strains in the future.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abduallah Al Jurayyan
- Immunology and HLA Department, Pathology and Laboratory Medicine, King Fahad Medical City, Riyadh, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| |
Collapse
|
26
|
Ahmad Mir S, Firoz A, Alaidarous M, Alshehri B, Aziz Bin Dukhyil A, Banawas S, Alsagaby SA, Alturaiki W, Ahmad Bhat G, Kashoo F, Abdel-Hadi AM. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J Biol Sci 2021; 29:394-401. [PMID: 34518755 PMCID: PMC8426002 DOI: 10.1016/j.sjbs.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp) enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity was investigated using molecular docking methods, and the interaction of phytochemicals with the RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals of N. sativa screened in this study, a significant docking score was observed for four compounds, namely α-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report that α-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our results prove that the top four potential phytochemical molecules of N. sativa, especially α-hederin, could be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and in vivo testing are required to confirm the findings of this study.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Ssaudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Science, Srinagar, India
| | - Faizan Kashoo
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah-11952, Saudi Arabia
| | - Ahmad M Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
27
|
Alqahtani SM, A. Alsagaby S, Mir SA, Alaidarous M, Bin Dukhyil A, Alshehri B, Banawas S, Alturaiki W, Alharbi NK, Azad TA, Al Abdulmonem W. Seroprevalence of Viral Hepatitis B and C among Blood Donors in the Northern Region of Riyadh Province, Saudi Arabia. Healthcare (Basel) 2021; 9:healthcare9080934. [PMID: 34442071 PMCID: PMC8394786 DOI: 10.3390/healthcare9080934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis B and C viral infections, which are the most common cause of liver infection worldwide, are major health issues around the globe. People with chronic hepatitis infections remain at risk of liver cirrhosis and hepatic carcinoma, while also being a risk to other diseases. These infections are highly contagious in nature, and the prevention of hepatitis B and C transmission during blood transfusion is a major challenge for healthcare workers. Although epidemiological characteristics of hepatitis B and C infections in blood donors in Saudi Arabia have been previously investigated in multiple studies, due to targeted cohorts and the vast geographical distribution of Saudi Arabia, there are a lot of missing data points, which necessitates further investigations. AIM OF THE STUDY This study aimed to determine the prevalence of hepatitis B and hepatitis C viral infections among blood donors in the northern region of Riyadh, Saudi Arabia. METHODS To determine the given objectives, a retrospective study was performed which included data gathered from serological as well as nucleic acid test (NAT) screening of blood donors. Clinical data of 3733 blood donors were collected for a period of 2 years (from January 2019 to December 2020) at the blood bank of King Khalid General Hospital and the associated blood banks and donation camps in the region. Statistical analysis of the clinical data was performed using SPSS. RESULTS The blood samples of 3733 donors were analyzed to determine the seroprevalence of hepatitis B and C among the blood donors in the northern region of Riyadh, Saudi Arabia. Among the total of 3733 blood donors, 3645 (97.65%) were men and 88 (2.36%) were women. Most of the donors were younger than 27 years of age (n = 1494). The most frequent blood group in our study was O-positive (n = 1534), and the least frequent was AB-negative (n = 29). After statistically analyzing the clinical data, we observed that 7 (0.19%), 203 (5.44%) and 260 (6.96%) donor blood samples were positive for the HBV serological markers HBsAgs, HBsAbs and HBcAbs, respectively, and 12 (0.32%) blood samples reacted positively to anti-HCV antibodies. Moreover, 10 (0.27%) and 1 (0.027%) samples were NAT-HBV positive and NAT-HCV positive, respectively. CONCLUSION In the current study, low prevalence rates of HBV and HCV were observed in the blood donors. Statistical correlations indicated that both serological tests and NATs are highly effective in screening potential blood donors for HBV and HCV, which, in turn, prevents potential transfusion-transmitted hepatitis.
Collapse
Affiliation(s)
- Saeed Mohammed Alqahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
- Correspondence: ; Tel.: +966-(0)16-404-2838
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.M.A.); (S.A.A.); (M.A.); (A.B.D.); (B.A.); (S.B.); (W.A.)
| | - Naif Khalaf Alharbi
- King Abdullah International Medical Research Center, Department of Infectious Disease Research, Riyadh 11451, Saudi Arabia;
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11451, Saudi Arabia
| | - Taif Anwar Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
28
|
Alosaimi B, Mubarak A, Hamed ME, Almutairi AZ, Alrashed AA, AlJuryyan A, Enani M, Alenzi FQ, Alturaiki W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front Immunol 2021; 12:668725. [PMID: 34276659 PMCID: PMC8281279 DOI: 10.3389/fimmu.2021.668725] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 severity due to innate immunity dysregulation accounts for prolonged hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections involve the complement pathway activation for cytokine storm development. Nevertheless, the role of complement in COVID-19 immunopathology, complement-modulating treatment strategies against COVID-19, and the complement and SARS-CoV-2 interaction with clinical disease outcomes remain elusive. This study investigated the potential changes in complement signaling, and the associated inflammatory mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of 53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild cases), and additional 18 healthy control patients were also included. Complement proteins and inflammatory cytokines and chemokines were measured in the sera of patients with COVID-19 as well as healthy controls by specific enzyme-linked immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IgM antibody levels, were higher in critical COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild patients compared to critical patients. Furthermore, the critical COVID-19 intra-group analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19 non-survival group than in the survival group. Additionally, IL-1β, IL-6, and IL-8 were significantly upregulated in the critical COVID-19 non-survival group compared to the survival group. Finally, C5a, C3a, factor P, and serum IL-1β, IL-6, and IL-8 levels positively correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential prognostic utility of the complement system for predicting COVID-19 severity and mortality while suggesting that complement anaphylatoxins and inflammatory cytokines are potential treatment targets against COVID-19.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- College of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed A. Alrashed
- Pharmaceutical Service Department, Main Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah AlJuryyan
- Pathology and Clinical Laboratory Management, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Faris Q. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
29
|
Albalawi O, Alharbi Y, Bakouri M, Alqahtani A, Alanazi T, Almutairi AZ, Alosaimi B, Mubarak A, Choudhary RK, Alturaiki W. Clinical characteristics and predictors of mortality among COVID-19 patients in Saudi Arabia. J Infect Public Health 2021; 14:994-1000. [PMID: 34153731 PMCID: PMC8192299 DOI: 10.1016/j.jiph.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The new coronavirus disease (COVID-19) has caused more than 1.8 million deaths, with a fatality rate of 2.5% in more than 200 countries as of January 4, 2021. Analysis of COVID-19 clinical features can help predict disease severity and risk of mortality, early identification of high-risk patients, and provide knowledge to inform clinical interventions. OBJECTIVE The purpose of this study is to investigate the clinical characteristics and possible predictors associated with mortality in patients with COVID-19 admitted to King Fahad (KFH), Ohood, and Miqat hospitals in Madina, Saudi Arabia. METHODS This retrospective observational study to investigate the clinical characteristic and possible predictors associated with mortality for those 119 mild, moderate, or critically ill patients confirmed by laboratory results to have COVID-19 who were admitted to three hospitals in Madina, Saudi Arabia, from March 25, 2020, to July 30, 2020. Data were collected from December 1, 2020, to December 14, 2020. RESULTS Of the 119 patients included in the study, the mean age was 54.2 (±15.7) years, with 78.2% survivors and 21.8% non-survivors. The demographic analysis indicated that the likelihood of mortality for patients in the older age group (i.e., ≥65 years) was five times higher than those in the younger age group (OR = 5.34, 95% CI 1.71-16.68, p = 0.004). The results also indicated those patients who admitted to the intensive care unit (ICU) was approximately seven times higher odds of mortality compare with those who were not admitted (OR = 6.48, 95% CI 2.52-16.63, p < 0.001). In addition, six laboratory parameters were positively associated with the odds of mortality: white blood cell count (OR = 1.11, 95% CI 1.02-1.21, p = 0.018), neutrophil (OR = 1.11, 95% CI 1.02-1.22, p = 0.020), creatine kinase myocardial band (OR = 1.02, 95% CI 1.00-1.03, p = 0.030), C-reactive protein (OR = 1.01, 95% CI 1.00-1.01, p = 0.002), urea (OR = 1.06, 95% CI 1.01-1.11, p = 0.026), and lactate dehydrogenase (OR = 1.00, 95% CI 1.00-1.01, p = 0.020). CONCLUSIONS In this cohort, COVID-19 patients within the older age group (≥65 years) admitted to the ICU with increased C-reactive protein levels in particular, were associated with increased odds of mortality. Further clinical observations are warranted to support these findings and enhance the mapping and control of this pandemic.
Collapse
Affiliation(s)
- Olayan Albalawi
- Department of Statistic, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia.
| | - Yousef Alharbi
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia.
| | - Mohsen Bakouri
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia; Department of Physics, College of Arts, Fezzan University, Traghen City 71340, Libya; Health and Basic Sciences Research Center, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia.
| | - Thamer Alanazi
- Department of Pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, PNU, Riyadh, Saudi Arabia.
| | | | - Bandar Alosaimi
- Department of Research Labs, Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia.
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| |
Collapse
|
30
|
Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. Int J Environ Res Public Health 2021; 18:6312. [PMID: 34200934 PMCID: PMC8296125 DOI: 10.3390/ijerph18126312] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.
Collapse
Affiliation(s)
- Mohamed A. Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Haitham M. Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Rauf Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Raid Saleem Al-Baradi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.);
|
|