1
|
Sharahili AY, Mir SA, ALDosari S, Manzar MD, Alshehri B, Al Othaim A, Alghofaili F, Madkhali Y, Albenasy KS, Alotaibi JS. Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study. Diseases 2023; 11:154. [PMID: 37987265 PMCID: PMC10660465 DOI: 10.3390/diseases11040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) patients are at high risk of dyslipidemia, which in turn is associated with macrovascular diseases, such as heart diseases and stroke, and microvascular diseases, such as neuropathy and nephropathy. There are contradictory findings in the literature regarding the relationship between glycated hemoglobin (HbA1c) and the lipid profile among T2DM patients. This study was performed to investigate the association between HbA1c level and the lipid profile in elderly T2DM patients at a primary care hospital in Jeddah City, Saudi Arabia. METHODS This study is a retrospective cross-sectional study conducted at the Prince Abdul Majeed Healthcare Center (PAMHC) in Jeddah, Saudi Arabia. The sociodemographic and clinical data of the T2DM patients who had visited the PAMHC from 1 January 2020 to 31 December 2021, were collected from the data registry of the PAMHC and analyzed for publication. RESULTS The study included a total of 988 T2DM patients (53.3% male). Of the participants, 42.9% were aged between 55 and 64 years. Dyslipidemia parameters were presented as high LDL-c (in 60.3% cases), low HDL-c (in 39.8% cases), high triglycerides (in 34.9% cases), and high total cholesterol (in 34.8% cases). The correlation of HbA1c with total cholesterol (TC) and triglycerides (TGs) was positively significant, thereby highlighting the important link between glycemic control and dyslipidemia. A mean increase of 4.88 mg/dL and 3.33 mmHg in TG level and diastolic blood pressure, respectively, was associated with the male gender, in comparison to the female gender. However, the male gender was significantly associated with the reduction in the mean cholesterol level, BMI, HbA1c, HDL-c, and LDL-c by 11.49 mg/dL, 1.39 kg/m2, 0.31%, 7.47 mg/dL, and 5.6 mg/dL, respectively, in comparison to the female gender. CONCLUSIONS The results of this study show that HbA1c was significantly associated with cholesterol and triglyceride levels in the T2DM patients included in the study. Our findings highlight the important relationship between glycemic control and dyslipidemia.
Collapse
Affiliation(s)
- Abdulaziz Yahya Sharahili
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sahar ALDosari
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Md Dilshad Manzar
- Department of Nursing, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (M.D.M.); (J.S.A.)
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Kamal Shaker Albenasy
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (A.Y.S.); (S.A.); (B.A.); (A.A.O.); (F.A.); (Y.M.); (K.S.A.)
| | - Jazi S. Alotaibi
- Department of Nursing, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (M.D.M.); (J.S.A.)
| |
Collapse
|
2
|
Abdel-Hadi A, Iqbal D, Alharbi R, Jahan S, Darwish O, Alshehri B, Banawas S, Palanisamy M, Ismail A, Aldosari S, Alsaweed M, Madkhali Y, Kamal M, Fatima F. Myco-Synthesis of Silver Nanoparticles and Their Bioactive Role against Pathogenic Microbes. Biology (Basel) 2023; 12:biology12050661. [PMID: 37237475 DOI: 10.3390/biology12050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Nanotechnology based on nanoscale materials is rapidly being used in clinical settings, particularly as a new approach for infectious illnesses. Recently, many physical/chemical approaches utilized to produce nanoparticles are expensive and highly unsafe to biological species and ecosystems. This study demonstrated an environmentally friendly mode of producing nanoparticles (NPs) where Fusarium oxysporum has been employed for generation of silver nanoparticles (AgNPs), which were further tested for their antimicrobial potentials against a variety of pathogenic microorganisms. The characterization of NPs was completed by UV-Vis spectroscopy, DLS and TEM, where it has been found that the NPs were mostly globular, with the size range of 50 to 100 nm. The myco-synthesized AgNPs showed prominent antibacterial potency observed as zone of inhibition of 2.6 mm, 1.8 mm, 1.5 mm, and 1.8 mm against Vibrio cholerae, Streptococcus pneumoniae, Klebsiella pneumoniae and Bacillus anthracis, respectively, at 100 µM. Similarly, at 200 µM for A. alternata, A. flavus and Trichoderma have shown zone of inhibition as 2.6 mm, 2.4 mm, and 2.1 mm, respectively. Moreover, SEM analysis of A. alternata confirmed the hyphal damage where the layers of membranes were torn off, and further EDX data analysis showed the presence of silver NPs, which might be responsible for hyphal damage. The potency of NPs may be related with the capping of fungal proteins that are produced extracellularly. Thus, these AgNPs may be used against pathogenic microbes and play a beneficial role against multi-drug resistance.
Collapse
Affiliation(s)
- Ahmed Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Raed Alharbi
- Department of Public Health, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Women's University, Denton, TX 76204, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Manikanadan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Ismail
- Department of Public Health, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11751, Egypt
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faria Fatima
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India
| |
Collapse
|
3
|
Mir SA, Madkhali Y, Firoz A, Al Othaim A, Alturaiki W, Almalki SG, Algarni A, Alsagaby SA. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton's Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules 2023; 28:molecules28083287. [PMID: 37110523 PMCID: PMC10144307 DOI: 10.3390/molecules28083287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable neoplasm of B-lymphocytes, which accounts for about one-third of all leukemias. Ocimum sanctum, an herbaceous perennial, is considered as one of the important sources of drugs for the treatment of various diseases, including cancers and autoimmune diseases. The present study was designed to screen various phytochemicals of O. sanctum for discovering their potential to inhibit Bruton's tyrosine kinase (BTK), a well-known drug target of CLL. Various phytochemicals of O. sanctum were screened for their potential to inhibit BTK using several in silico protocols. First, the molecular docking approach was used to calculate the docking scores of the selected phytochemicals. Then, the selected top-ranked phytochemicals were screened for their physicochemical characteristics using ADME analysis. Finally, the stability of the selected compounds in their corresponding docking complexes with BTK was analysed using molecular dynamics simulations. Primarily, our observations revealed that, out of the 46 phytochemicals of O. sanctum, six compounds possessed significantly better docking scores (ranging from -9.2 kcal/mol to -10 kcal/mol). Their docking scores were comparable to those of the control inhibitors, acalabrutinib (-10.3 kcal/mol), and ibrutinib (-11.3 kcal/mol). However, after ADME analysis of these top-ranked six compounds, only three compounds (Molludistin, Rosmarinic acid, and Vitexin) possessed drug likeliness characteristics. During the MD analysis, the three compounds Molludistin, Rosmarinic acid, and Vitexin were found to remain stable in the binding pocket in their corresponding docking complexes with BTK. Therefore, among the 46 phytochemicals of O. sanctum tested in this study, the three compounds, Molludistin, Rosmarinic acid, and Vitexin are the best inhibitors of BTK. However, these findings need to be confirmed by biological experiments in the laboratory.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
4
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Author Correction: Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2023; 27:443. [PMID: 36734699 DOI: 10.26355/eurrev_202301_31044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Correction to: European Review for Medical and Pharmacological Sciences 2022; 26 (22): 8713-8718. DOI: 10.26355/eurrev_202212_30543- PMID: 36524490-published online on December 15, 2022. After publication, the authors applied a correction to the funding statement: The authors extend their appreciation to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (lFP-2020-36). There are amendments to this paper. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/30543.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goel H, Goyal K, Pandey AK, Benjamin M, Khan F, Pandey P, Mittan S, Iqbal D, Alsaweed M, Alturaiki W, Madkhali Y, Kamal MA, Tanwar P, Upadhyay TK. Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS Neurol Disord Drug Targets 2023; 22:84-97. [PMID: 35352654 DOI: 10.2174/1871527321666220329103610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Keshav Goyal
- Division of Molecular and Cellular Biology, Faculty of Biology, Ludwig Maximilians Universitat, Munchen, Germany
| | - Avanish Kumar Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, One Gustave L. Levy Place, New York, USA
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham NSW 2770, Novel Global Community Educational Foundation, Australia
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
6
|
Al-Baradie RS, Abdel-Hadi A, Ahmad F, Alsagaby SA, Slevin M, Alturaiki W, Madkhali Y, Aljarallah BM, Alqahtani M, Miraj M, Ahmad I, Albaradie N, Albaradie R. Association of monomeric C-Reactive Protein (m-CRP) with hypothalamic neurons after CRP hippo-campal administration in a model of dementia. Eur Rev Med Pharmacol Sci 2022; 26:8713-8718. [PMID: 36524490 DOI: 10.26355/eurrev_202212_30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The ensuing ischemia due to the disruption of blood supply to the brain is one of the most common causes of stroke. Evidence suggests a clear association of the ischemic injury with vascular dementia and Alzheimer's disease (AD). In response to the brain ischemia, a cascade reaction starts leading to neuronal damage due to oxidative stress and other inflammatory mediators. A pilot study was done, which showed that following stroke, monomeric-C-reactive protein (mCRP) is expressed in large quantities around the infarcted zone and this CRP is able to induce neurodegeneration and inflammation potentially perpetuating dementia. MATERIALS AND METHODS We examined both patient brain samples and excised mouse brain tissue, previously injected with 1.75 mg/mL mCRP into the CA1 area of the hippocampus through the stereotactic surgical procedures and followed them over a period of over 6 months. The distribution of mCRP was examined through immunohistochemistry (mouse anti-human mCRP-specific antibodies 8C10). RESULTS We observed a novel finding: those micro vessels close to the injection location were strongly stained with mCRP only in the mice that had been injected with mCRP, indicating that this small blood vessel can spread it throughout the brain. CONCLUSIONS mCRP found in the brain after a hemorrhagic stroke promotes damage over a large area via the induction of inflammation and degeneration of perivascular compartments.
Collapse
Affiliation(s)
- R S Al-Baradie
- Department of Medical Laboratory Sciences, Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mir SA, Noor M, Manzar MD, Alshehri B, Alaidarous M, Dukhyil AAB, Banawas S, Madkhali Y, Jahan S, Kashoo FZ, Iqbal D, Zia Q, Alsagaby SA, ALDosari S. Prevalence of rheumatoid arthritis and diagnostic validity of a prediction score, in patients visiting orthropedic clinics in the Madinah region of Saudi Arabia: a retrospective cross-sectional study. PeerJ 2022; 10:e14362. [PMID: 36405025 PMCID: PMC9673770 DOI: 10.7717/peerj.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction In Saudi Arabia, the epidemiology of rheumatoid arthritis (RA) is not well studied and is marked by inconsistencies in clinical diagnosis. Therefore, in this study, we explored the prevalence, clinical characteristics, and diagnostic validity of a prediction score based upon disease markers in orthropedic clinics' patients in the Madinah region of Saudi Arabia. Method The clinical data for this retrospective cross-sectional study were retrieved from the database registry of orthopedic clinics in selected hospitals of the Medinah province of Saudi Arabia. Sociodemographic features, disease markers and the clinical characteristics were collected for a period of 6 months, from December 1, 2020, to May 31, 2021. The prediction score was generated from the sum of disease markers, coded as dichotomous variables. Results The total sample size of our study was 401. The prevalence of RA in the study subjects (n = 401) was 14.46% (n = 58). Among RA patients, the majority were females (60.3%). Painful joints (69%) and swollen joints (51.7%) were the most common clinical complaints among RA patients. RA patients suffered from arthritis (51.7%) and experienced fatigue (46.6%), weight loss (44.8%), and loss of appetite (41.4%). Diabetes (55.2%) was the most common comorbidity in the RA patients. The sensitivity and specificity of the prediction score at the criterion score of 2.5 were 67.3% and 63.0%, respectively. The area under the curve was 0.69 (95% CI [0.62-0.76]). Conclusion There was a moderately high prevalence of RA in patients visiting the orthropedic clinics of the selected hospitals of Madinah region of Saudi Arabia. The diagnostic validity of the prediction score, though promising, was slightly lower than the acceptable range.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Mamdooh Noor
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Md Dilshad Manzar
- Department of Nursing, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Yahya Madkhali
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Faizan Z. Kashoo
- Department of Physical Therapy and Rehabilitation, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Sahar ALDosari
- Department of Medical Laboratory Science, College of Applied Medical Science, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mir SA, Alaidarous M, Alshehri B, Bin Dukhyil AA, Banawas S, Madkhali Y, Alsagaby SA, Al Othaim A. Immunoinformatics-Based Identification of B and T Cell Epitopes in RNA-Dependent RNA Polymerase of SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10101660. [PMID: 36298525 PMCID: PMC9611076 DOI: 10.3390/vaccines10101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The ongoing coronavirus disease 2019 (COVID-19), which emerged in December 2019, is a serious health concern throughout the world. Despite massive COVID-19 vaccination on a global scale, there is a rising need to develop more effective vaccines and drugs to curb the spread of coronavirus. METHODOLOGY In this study, we screened the amino acid sequence of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 (the causative agent of COVID-19) for the identification of B and T cell epitopes using various immunoinformatic tools. These identified potent B and T cell epitopes with high antigenicity scores were linked together to design the multi-epitope vaccine construct. The physicochemical properties, overall quality, and stability of the designed vaccine construct were confirmed by suitable bioinformatic tools. RESULTS After proper in silico prediction and screening, we identified 3 B cell, 18 CTL, and 10 HTL epitopes from the RdRp protein sequence. The screened epitopes were non-toxic, non-allergenic, and highly antigenic in nature as revealed by appropriate servers. Molecular docking revealed stable interactions of the designed multi-epitope vaccine with human TLR3. Moreover, in silico immune simulations showed a substantial immunogenic response of the designed vaccine. CONCLUSIONS These findings suggest that our designed multi-epitope vaccine possessing intrinsic T cell and B cell epitopes with high antigenicity scores could be considered for the ongoing development of peptide-based novel vaccines against COVID-19. However, further in vitro and in vivo studies need to be performed to confirm our in silico observations.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Correspondence: ; Tel.: +966-536300645
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
9
|
Iqbal D, Rizvi SMD, Rehman MT, Khan MS, Bin Dukhyil A, AlAjmi MF, Alshehri BM, Banawas S, Zia Q, Alsaweed M, Madkhali Y, Alsagaby SA, Alturaiki W. Soyasapogenol-B as a Potential Multitarget Therapeutic Agent for Neurodegenerative Disorders: Molecular Docking and Dynamics Study. Entropy (Basel) 2022; 24:e24050593. [PMID: 35626478 PMCID: PMC9141571 DOI: 10.3390/e24050593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - M. Salman Khan
- Clinical Biochemistry & Natural Product Research Laboratory, Department of Biosciences, Integral University, Lucknow 226026, U.P., India;
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| |
Collapse
|
10
|
Bijani S, Iqbal D, Mirza S, Jain V, Jahan S, Alsaweed M, Madkhali Y, Alsagaby SA, Banawas S, Algarni A, Alrumaihi F, Rawal RM, Alturaiki W, Shah A. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. Life (Basel) 2022; 12:life12040519. [PMID: 35455010 PMCID: PMC9029820 DOI: 10.3390/life12040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
A library of 1,4-dihydropyridine-based 1,2,3-triazol derivatives has been designed, synthesized, and evaluated their cytotoxic potential on colorectal adenocarcinoma (Caco-2) cell lines. All compounds were characterized and identified based on their 1H and 13C NMR (Nuclear Magnetic Resonance) spectroscopic data. Furthermore, molecular docking of best anticancer hits with target proteins (protein kinase CK2α, tankyrase1, and tankyrase2) has been performed. Our results implicated that most of these compounds have significant antiproliferative activity with IC50 values between 0.63 ± 0.05 and 5.68 ± 0.14 µM. Moreover, the mechanism of action of most active compounds 13ab′ and 13ad′ suggested that they induce cell death through apoptosis in the late apoptotic phase as well as dead phase, and they could promote cell cycle arrest at the G2/M phase. Furthermore, the molecular docking study illustrated that 13ad′ possesses better binding interaction with the catalytic residues of target proteins involved in cell proliferation and antiapoptotic pathways. Based on our in vitro and in silico study, 13ad′ was found to be a highly effective anti-cancerous compound. The present data indicate that dihydropyridine-linked 1,2,3-triazole conjugates can be generated as potent anticancer agents.
Collapse
Affiliation(s)
- Sabera Bijani
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.S.)
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Vicky Jain
- Department of Chemistry, Marwadi University, Rajkot 360005, Gujarat, India; (S.B.); (V.J.)
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51425, Saudi Arabia;
| | - Rakesh M. Rawal
- Department of Life Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.J.); (M.A.); (Y.M.); (S.A.A.); (S.B.); (W.A.)
| | - Anamik Shah
- Center of Excellence, National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India
- B/H Forensic Laboratory, Saurashtra University Karmachari Cooperative Society, Rajkot 360005, Gujarat, India
- Correspondence: (D.I.); (A.S.)
| |
Collapse
|
11
|
Madkhali Y, Rondon AMR, Featherby S, Maraveyas A, Greenman J, Ettelaie C. Factor VIIa Regulates the Level of Cell-Surface Tissue Factor through Separate but Cooperative Mechanisms. Cancers (Basel) 2021; 13:cancers13153718. [PMID: 34359618 PMCID: PMC8345218 DOI: 10.3390/cancers13153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Under normal conditions, blood coagulation is suppressed to prevent thrombosis. However, during inflammatory conditions such as injury or disease conditions, the protein “tissue factor (TF)” is expressed on the surface of the cells and is also released into the bloodstream within cell-derived vesicles called “microvesicles”. TF appears first at the site of trauma which makes TF suitable for determining the extent of damage and instructing cells to proliferate and repair, or if severely damaged, to die. The relationship between cancer and thrombosis was reported in the early part of the 19th century. Cancer cells and particularly those with aggressive tendencies have the ability to produce, and then optimise the amount of TF on the cell, in order to maximise the pro-survival and proliferative properties of this protein. This study has demonstrated some of the mechanisms by which cells control excessive amounts of TF, to levels ideal for tumour survival and growth. Abstract Procoagulant activity of tissue factor (TF) in response to injury or inflammation is accompanied with cellular signals which determine the fate of cells. However, to prevent excessive signalling, TF is rapidly dissipated through release into microvesicles, and/or endocytosis. To elucidate the mechanism by which TF signalling may become moderated on the surface of cells, the associations of TF, fVII/fVIIa, PAR2 and caveolin-1 on MDA-MB-231, BxPC-3 and 786-O cells were examined and compared to that in cells lacking either fVII/fVIIa or TF. Furthermore, the localisation of labelled-recombinant TF with cholesterol-rich lipid rafts was explored on the surface of primary human blood dermal endothelial cells (HDBEC). Finally, by disrupting the caveolae on the surface of HDBEC, the outcome on TF-mediated signalling was examined. The association between TF and PAR2 was found to be dependent on the presence of fVIIa. Interestingly, the presence of TF was not pre-requisite for the association between fVII/fVIIa and PAR2 but was significantly enhanced by TF, which was also essential for the proliferative signal. Supplementation of HDBEC with exogenous TF resulted in early release of fVII/fVIIa from caveolae, followed by re-sequestration of TF-fVIIa. Addition of labelled-TF resulted in the accumulation within caveolin-1-containing cholesterol-rich regions and was also accompanied with the increased assimilation of cell-surface fVIIa. Disruption of the caveolae/rafts in HDBEC using MβCD enhanced the TF-mediated cellular signalling. Our data supports a hypothesis that cells respond to the exposure to TF by moderating the signalling activities as well as the procoagulant activity of TF, through incorporation into the caveolae/lipid rafts.
Collapse
Affiliation(s)
- Yahya Madkhali
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, P.O. Box 66, Majmaah 11952, Saudi Arabia
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sophie Featherby
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - John Greenman
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
| | - Camille Ettelaie
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
- Correspondence: ; Tel.: +44-(0)1482-465-528; Fax: +44-(0)1482-465-458
| |
Collapse
|
12
|
Ethaeb AM, Mohammad MA, Madkhali Y, Featherby S, Maraveyas A, Greenman J, Ettelaie C. Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling. Apoptosis 2020; 25:29-41. [PMID: 31654241 PMCID: PMC6965344 DOI: 10.1007/s10495-019-01576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulation of tissue factor (TF) within cells leads to cellular apoptosis mediated through p38 and p53 pathways. In this study, the involvement of Src1 in the induction of TF-mediated cell apoptosis, and the mechanisms of Src1 activation were investigated. Human coronary artery endothelial cell (HCAEC) were transfected with plasmids to express the wild-type TF (TFWt-tGFP), or a mutant (Ser253 → Ala) which is incapable of being released from cells (TFAla253-tGFP). The cells were then activated with PAR2-agonist peptide (SLIGKV-NH) and the phosphorylation of Src and Rac, and also the kinase activity of Src were assessed. Transfected cells were also pre-incubated with pp60c Src inhibitor, FAK inhibitor-14, or a blocking anti-β1-integrin antibody prior to activation and the phosphorylation of p38 as well as cellular apoptosis was examined. Finally, cells were co-transfected with the plasmids, together with a Src1-specific siRNA, activated as above and the cellular apoptosis measured. Activation of PAR2 lead to the phosphorylation of Src1 and Rac1 proteins at 60 min regardless of TF expression. Moreover, Src phosphorylation and kinase activity was prolonged up to 100 min in the presence of TF, with a significantly higher magnitude when the non-releasable TFAla253-tGFP was expressed in HCAEC. Inhibition of Src with pp60c, or suppression of Src1 expression in cells, reduced p38 phosphorylation and prevented cellular apoptosis. In contrast, inhibition of FAK had no significant influence on Src kinase activity or cellular apoptosis. Finally, pre-incubation of cells with an inhibitory anti-β1-integrin antibody reduced both Src1 activation and cellular apoptosis. Our data show for the first time that the over-activation of Src1 is a mediator of TF-induced cellular apoptosis in endothelial cells through a mechanism that is dependent on its interaction with β1-integrin.
Collapse
Affiliation(s)
- Ali M Ethaeb
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.,College of Veterinary Medicine, University of Wasit, Kut, Iraq
| | | | - Yahya Madkhali
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.,Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia
| | - Sophie Featherby
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - John Greenman
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Camille Ettelaie
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
13
|
Featherby S, Madkhali Y, Maraveyas A, Ettelaie C. Apixaban Suppresses the Release of TF-Positive Microvesicles and Restrains Cancer Cell Proliferation through Directly Inhibiting TF-fVIIa Activity. Thromb Haemost 2019; 119:1419-1432. [PMID: 31266079 DOI: 10.1055/s-0039-1692682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The activation of protease-activated receptor (PAR)-2 by factor Xa (fXa) promotes the release of tissue factor-positive microvesicles (TF+MV), and contributes to proliferation in cancer cells. This study examined the ability of direct oral anticoagulants (DOACs), apixaban and rivaroxaban, to inhibit the release of TF+MV from two cell lines (MDA-MB-231 and AsPC-1) as well as cell proliferation.Activation of the cells with fXa (10 nM) enhanced the release of TF+MV but was suppressed in the presence of either DOAC. These MVs were found to contain fVIIa, but not fXa. Incubation of cell lines with apixaban (1.8 µM) but not rivaroxaban (1.8 µM), in the absence of fXa decreased the release of TF+MV below that of resting cells, in a PAR2-dependent manner. Furthermore, incubation with apixaban reduced the proliferation rate in both cells lines. Incubation of purified fVIIa with apixaban but not rivaroxaban resulted in complete inhibition of fVIIa proteolytic activity as measured using two fVIIa chromogenic substrates. Pre-incubation of the cells with an inhibitory anti-fVIIa antibody, with apixaban or the blocking of PAR2 suppressed the release of TF+MV to a comparable level, and reduced cell proliferation but the effect was not cumulative.This study has established that the activation of PAR2 by TF-fVIIa complex is the principal mediator in augmenting the release of TF+MV as well as cancer cell proliferation. Importantly, for the first time we have shown that apixaban selectively inhibits the proteolytic activity of fVIIa as well as the signalling arising from the TF-fVIIa complex.
Collapse
Affiliation(s)
| | - Yahya Madkhali
- Biomedical Section, University of Hull, Hull, United Kingdom.,Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Anthony Maraveyas
- Division of Cancer, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
14
|
Madkhali Y, Featherby S, Collier ME, Maraveyas A, Greenman J, Ettelaie C. The Ratio of Factor VIIa:Tissue Factor Content within Microvesicles Determines the Differential Influence on Endothelial Cells. TH Open 2019; 3:e132-e145. [PMID: 31259295 PMCID: PMC6598090 DOI: 10.1055/s-0039-1688934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF)-positive microvesicles from various sources can promote cellular proliferation or alternatively induce apoptosis, but the determining factors are unknown. In this study the hypothesis that the ratio of fVIIa:TF within microvesicles determines this outcome was examined. Microvesicles were isolated from HepG2, BxPC-3, 786-O, MDA-MB-231, and MCF-7 cell lines and microvesicle-associated fVIIa and TF antigen and activity levels were measured. Human coronary artery endothelial cells (HCAECs) were incubated with these purified microvesicles, or with combinations of fVIIa-recombinant TF, and cell proliferation/apoptosis was measured. Additionally, by expressing mCherry-PAR2 on HCAEC surface, PAR2 activation was quantified. Finally, the activation of PAR2 on HCAEC or the activities of TF and fVIIa in microvesicles were blocked prior to addition of microvesicles to cells. The purified microvesicles exhibited a range of fVIIa:TF ratios with HepG2 and 786-O cells having the highest (54:1) and lowest (10:1) ratios, respectively. The reversal from proapoptotic to proliferative was estimated to occur at a fVIIa:TF molar ratio of 15:1, but HCAEC could not be rescued at higher TF concentrations. The purified microvesicles induced HCAEC proliferation or apoptosis according to this ruling. Blocking PAR2 activation on HCAEC, or inhibiting fVIIa or TF-procoagulant function on microvesicles prevented the influence on HCAEC. Finally, incubation of HCAEC with recombinant TF resulted in increased surface exposure of fVII. The induction of cell proliferation or apoptosis by TF-positive microvesicles is dependent on the ratio of fVIIa:TF and involves the activation of PAR2. At lower TF concentrations, fVIIa can counteract the proapoptotic stimulus and induce proliferation.
Collapse
Affiliation(s)
- Yahya Madkhali
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom.,Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, KSA, Al Majmaah, Saudi Arabia
| | - Sophie Featherby
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Mary E Collier
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Camille Ettelaie
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|